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Abstract
We develop a semantic parser that is trained in
a grounded setting using pairs of videos cap-
tioned with sentences. This setting is both
data-efficient, requiring little annotation, and
similar to the experience of children where
they observe their environment and listen to
speakers. The semantic parser recovers the
meaning of English sentences despite not hav-
ing access to any annotated sentences. It does
so despite the ambiguity inherent in vision
where a sentence may refer to any combina-
tion of objects, object properties, relations or
actions taken by any agent in a video. For this
task, we collected a new dataset for grounded
language acquisition. Learning a grounded se-
mantic parser — turning sentences into logi-
cal forms using captioned videos — can sig-
nificantly expand the range of data that parsers
can be trained on, lower the effort of training a
semantic parser, and ultimately lead to a better
understanding of child language acquisition.

1 Introduction

Children learn language from observations that
are very different in nature from what parsers are
trained on today. Most of the time, rather than re-
ceiving direct feedback such as annotated sentences
or answers to direct questions, children observe and
occasionally interact with their environment. They
must use these observations to learn the structure
of the speaker’s language despite never seeing that
structure overtly. This weak and indirect super-
vision where most of the information is obtained
through passive observation poses a difficult disam-
biguation problem for learners: how do you know
what the speaker is referring to in the environment,
i.e., what does the speaker mean? Speakers can
refer to actions, objects, the properties of actions
and objects, relations between those actions and
objects, as well as other features in the environment
and generally do so by combining multiple features

The woman walks by the table with a yellow cup.
λxyz.woman x,walk x, near x y, table y,

hold x z, yellow z, cup z

Figure 1: We develop a semantic parser trained on video-
sentence pairs, without parses. At inference time a sentence,
without a video, is presented and a logical form is produced.

into complex sentences. Moreover, speakers need
not refer to the most visually salient parts of a vi-
sual scene. Here, we induce a semantic parser by
simultaneously resolving visual ambiguities and
grounding the semantics of language using a cor-
pus of sentences paired with videos without other
annotations.

The goal of semantic parsing is to convert a
natural-language sentence into a representation
that encodes its meaning. The parser takes sen-
tences as input and produces these representations
– a lambda-calculus expression in our case – that
can be used for a variety of tasks such as query-
ing databases, understanding references in images
and videos, and answering questions. To train the
parser presented here we collected a video dataset,
balanced such that the raw statistics of the co-
occurrences of objects and events are not infor-
mative, and asked annotators on Mechanical Turk
to produce sentences that are true of those videos.
The parser is presented with pairs of short clips
and sentences. It hypothesizes potential meanings
for those sentences as lambda-calculus expressions.
Each hypothesized expression serves as input for
a modular vision system that constructs a specific
detector for that lambda-calculus expression and
determines the likelihood of the parse being true of
the video. The likelihood of the parse with respect
to the video is used as supervision for the parser. To
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test the parser, we annotated each sentence with its
ground-truth semantic parse, but this information
is not available at training time.

This process introduces ambiguity. For example,
Figure 1 shows a frame from a video annotated
with the sentence “The woman walks by the table
with a yellow cup.”, yet the parse, λx. object(x),
corresponding to a sentence like “There exists an
object.”, is also true of that video. For a single
video there exists an infinite number of true parses
that have high likelihood with respect to the vision
system because they are indeed indicative of some-
thing that is occurring in the video. We demonstrate
how to construct a semantic parser that resolves this
ambiguity and acquires language from captioned
videos by learning to tune the amount of polysemy
in the induced lexicon.

This work makes several contributions: We show
how to construct a semantic parser that learns lan-
guage in a setting closer to that of children. We
demonstrate how to jointly resolve linguistic and
visual ambiguities at training time in a way that can
be adapted to other semantic parsing approaches.
We demonstrate how such an approach can be used
to augment data where a small number of directly
annotated sentences can be combined with a large
number of videos paired with sentences in order to
improve performance. We release a dataset system-
atically constructed and annotated on Mechanical
Turk for joint visual and linguistic learning tasks.

2 Prior work

Learning to understand language in a multimodal
environment is a well-developed task. For example,
visual question answering (VQA) datasets have led
to a number of systems capable of answering com-
plex questions about scenes (Antol et al., 2015).
The goal of our work is not to produce answers for
any one set of questions, although it is possible to
do so from our results; it is instead to learn to pre-
dict the structure of the sentences and their mean-
ing. This is a more general and difficult problem,
in particular because at test time we do not receive
any visual input, only the sentence. The resulting
approach is reusable, generic and more similar to
the kind of general-purpose linguistic knowledge
that humans have. For example, one could use it
to guide robotic actions. Al-Omari et al. (2017)
acquire a grammar for a fragment of English and
Arabic from videos paired with sentences. They
learn a small number of grammar rules for a lan-

guage restricted to robotic commands. Learning
occurs mostly in simulation and with little visual
ambiguity, and the resulting model is not a parser
but a means of associating n-grams with visual
concepts.

Siddharth et al. (2014) and Yu et al. (2015) ac-
quire the meaning of a lexicon from videos paired
with sentences but assume a fully-trained parser.
Matuszek et al. (2012) similarly present a model
to learn the meanings and referents of words re-
stricted to attributes and static scenes. Hermann
et al. (2017) extend these notions to train agents
that learn to carry out instructions in simulated en-
vironments without the need for a parser, but do
so using simple adjective-noun-relation utterances.
Kollar et al. (2013) learn to parse similar utterances
in an interactive setting. Wang et al. (2016) cre-
ate a language game to learn a parser but do not
incorporate visual ambiguity or fallible perception.

Berant et al. (2013) describe semantic parsing
with execution by annotating answers to database
queries. This learning mechanism provides the
same results as the one described here: a parser
produces the meanings of sentences at inference
time without requiring the database, or in our case
a video. Databases have far less ambiguity than
videos; there is not a temporal aspect to their con-
tents and there is not a notion of unreliable per-
ception. Berant and Liang (2014) learn to parse
sentences from paraphrases; one might consider
the work here as concerned with visual and not
just linguistic paraphrases. Artzi and Zettlemoyer
(2013) consider a setting where a validation func-
tion involves the dynamic actions of a simulated
robot while sentences describe its actions.

3 Task

Given a dataset of captioned videos, D, we train
the parameters and lexicon, θ and Λ, of a semantic
parser. At training time, we perform gradient de-
scent over the parameters θ and employ GENLEX
(Zettlemoyer and Collins, 2005) to augment the
lexicon Λ. The objective function of the seman-
tic parser is written in terms of a visual-linguistic
compatibility between a hypothesized parse p and
video v. This compatibility computes the likeli-
hood of the parse being true of the video, P (v|p).
At test time, we take as input a sentence without
an associated video and produce a semantic parse.
We could in principle also take as input the video
and produce a targeted parse for that visual sce-
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nario. This is a problem similar to that considered
by Berzak et al. (2015), but we do not do so here.

We create a CCG-based (Combinatory Categor-
ical Grammar; Steedman (1996)) semantic parser
capable of being trained in this setting. To do so,
we adapt the objective function, training proce-
dure, and feature set to this new scenario. The
visual-linguistic compatibility function is similar
to the Sentence Tracker developed in Siddharth
et al. (2014) and Yu et al. (2015). Given a parse,
the Sentence Tracker produces a targeted detector
that determines if the parse is true of a video, which
provides a weak supervision signal for the parser.

Parses are represented as lambda-calculus ex-
pressions consisting of a set of binders and a con-
junction of literal expressions referring to those
binders. The domain of the variables are the poten-
tial object locations, or object tracks, in the videos.
For example, in the parse presented in Figure 1,
three potential object track slots are available, rep-
resented by the binders x, y, and z. Because of
perceptual ambiguities and the large number of
possible referents in any one video, we do not ex-
plicitly enumerate the space of object tracks. In-
stead, we rely on a joint-inference process between
the parser and the Sentence Tracker. Intuitively,
each literal expression of the parse asserts a con-
straint; for example, if an expression conveys that
one object is approaching another, the Sentence
Tracker will search the space of object tracks and
attempt to satisfy these constraints. In Figure 1, for
instance, there is a constraint that for whichever
objects are bound to x and z, x must be near y, x
must be walking, x must be a person, etc.

4 Model

We develop an approach that combines a semantic
parser with a vision system at training time, but
does not require the vision system at test time.

4.1 Semantic Parsing

We adopt a semantic parsing framework similar
to that of Artzi and Zettlemoyer (2013), although
the general approach of using vision as weak su-
pervision for semantic parsing generalizes to other
parsers. CCG-based parsing employs a small num-
ber of fixed unary and binary derivation rules
(Steedman, 2000) while learning a lexicon. In
CCG-based parsing, a parser takes as input a se-
quence of tokens and a lexicon that maps tokens to
potential syntactic types and derives parse trees by

She takes the cup

NP (S\NP)/NP NP/N N
λx. person x λfgxy. fx, take xy, gy λfx. fx λx. cup x

>
NP

λx.cup x
>

S\NP
λfxy. fx, take xy, cup y

<
S

λxy. person x, take xy, cup y

Figure 2: A simple sentence parsed into a lambda-calculus
expression using a CCG-based grammar. The parse is deter-
mined by the lexicon that associates tokens with syntactic and
semantic types as well as the order of function applications.
Here, we acquire this lexicon and a means to score derivations.

creating and ranking multiple hypotheses that com-
bine those types together. The syntactic types are
richer than other approaches and include forward
and backward function application (the forward
and backward slash) in addition to the standard
syntactic categories. Each derivation has a current
syntactic type that is the result of the application of
a sequence of rules. To create a derivation, at each
step the parser applies each rule to either an indi-
vidual subderivation or to a pair of subderivations.
This process produces multiple hypotheses. Pars-
ing rules are generic, polymorphic, and language-
neutral and include concepts like function applica-
tion and type raising (Carpenter, 1997). The parser
accepts a derivation when the tree reaches a single
node. We refer to the single node of the parse tree
as the logical form. Figure 2 shows a parse starting
with tokens and their syntactic types along with
each rule being applied.

Semantic parsing with CCGs extends this frame-
work to simultaneously derive a logical form while
performing syntactic parsing. Each syntactic rule
includes a simple semantic component that ma-
nipulates the logical form of its arguments. For
example, the forward application rule reduces the
syntactic type by applying the syntactic type of
the right argument to that of the left, while at the
same time performing a lambda-calculus reduction
of the semantic types of those same arguments.
Concretely, consider a case from Figure 2 where
a determiner is attached to a noun, the cup. The
tokens the and cup are hypothesized to have syn-
tactic types NP/N and N (a function returning
NP given an argument on the right side and a
noun) and semantic type λfx.fx and λx.cup(x)
(the identity function and a function that adds a cup
constraint). These two derivations can be reduced
by forward application, denoted by >. Both the
syntactic and semantic types are applied and re-
duced, which means the semantics helps guide the
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syntax. Derivations that produce illegal operations,
such as applying an argument to a constant, are
forbidden.

Following Zettlemoyer and Collins (2005) and
Curran et al. (2007), we adopt a weighted linear
semantic parser. For each sentence paired with its
hypothesized derivation, this approach computes a
feature vector φ and a parameter vector θ. Given
a sentence s, a parse p, a lexicon Λ, the set of
all possible parses for that sentence with that lexi-
con, P (s,Λ), and an n-dimensional feature vector
computed for that sentence and parse, φ(s, p), the
parser optimizes

argmax
p∈P

θ · φ(s, p) (1)

to find the best parse p∗. Using a fixed-width beam
search, the parser enumerates derivations by choos-
ing a potential syntactic and semantic type for each
token from the lexicon and choosing a set of deriva-
tion rules to apply. For the i-th training sample
di, consisting of a sentence dsi and a video dvi in
dataset D and the feature function, the parser finds
margin-violating positive, E+, and negative, E−,
parses, and then uses

θ +
1

|E+
i |

∑
e∈E+

i

φi(e, d
v
i )− 1

|E−i |
∑
e∈E−

i

φi(e, d
v
i )

(2)
to update the parameter θ. After each sweep
through the dataset, the lexicon Λ is augmented
using the modified GENLEX from Artzi and Zettle-
moyer (2013), which does not require the ground-
truth logical form. At no point is the logical form
needed for updating the lexicon or parameters; we
rely instead on a visual validation function to com-
pute the margin-violating examples.

Rather than attempting to learn a fixed lexicon
that directly maps tokens to semantic and syntac-
tic parses, we use a factored lexicon like that of
Kwiatkowski et al. (2011). This represents tokens
and any associated constants separately from po-
tential syntactic and semantic types. For example,
the token chair is associated with a single con-
stant chair; chair ` [chair]. In addition to the
token-constants pairs, there exists a list of pairs of
syntactic and semantic types along with placehold-
ers for constants; in the case for chair, a useful type
might be λv.[N : λx.placeholder(x)]. When
parsing, each token is applied to a potential syntac-
tic and semantic type and the derivation proceeds
from there. The factored lexical entries allow for
far greater reuse; the model learns a small number

of constants that a word can imply separately from
a small number of syntactic and semantic types for
any word. The weighted linear CCG-based parser
searches over potential lexical entries, applying
the token to different syntactic and semantic types
and over multiple hypotheses for which rule should
be applied. At training time, in order to learn a
reasonable lexicon and set of parameters, a super-
vision signal is required to validate candidates. We
provide that supervision using the vision system
described below.

4.2 Sentence Tracking
To score a video-parse pair, we employ a frame-
work similar to that of Yu et al. (2015). This ap-
proach constructs a parse-specific model by ex-
tracting the number of participants in the scene
described by a caption as well as the relationships
and properties of those participants. It builds a
graphical model where each participant is local-
ized by an object tracker and each relationship is
encoded by temporal models that express the prop-
erties of the trackers that those models refer to. The
parser’s output representation is chosen to make
building the vision system possible. Each target
logical form is a lambda expression with a set of
binders, whose domain are objects, and a conjunc-
tion of constraints that refer to those binders. In
essence, this notes which objects should be present
in a scene and what static and changing properties
and relationships those objects should have with
respect to one another.

The Sentence Tracker creates one Viterbi-based
tracker for each participant and, given a map-
ping from constraints to Hidden Markov models
(HMMs), connects each tracker and each constraint
together. Given a video v and a parse p, first a large
number of object detections are computed for the
video by using a low confidence threshold of an
object detector. Trackers weave these bounding-
box detections into high-scoring object tracks and
use constraints to verify if the tracks have the de-
sired properties and relations. Inference proceeds
jointly between vision and the parse to allow the
parse to focus the vision component on events and
properties that might otherwise be missed.

Understanding the relationship between a sen-
tence and a video requires finding the objects that
the sentence refers to and determining if those ob-
jects follow the behavior implied by the sentence.
We carry out a joint optimization that finds objects
whose behavior follows certain rules. For clarity,



2651

the two steps are presented separately, while we
find the global optimum for a linear combination of
Equation (3) and Equation (4). Object trackers are a
maximum-entropy Markov model with a per-frame
score f , the likelihood that any one object detec-
tion is true, as well as a motion-coherence score
g, the likelihood that the bounding boxes selected
between frames refer to the same object instance.
Given a parse p with L participants and a video v
of length T , Equation (3) shows the optimization
where J is a set of L candidate tracks ranging over
every hypothesis from the object detector and b is
a candidate object detection.

max
J

L∑
l=1

(
T∑

t=1

f(btjt
l
) +

T∑
t=1

g(bt−1

jt−1
l

, btjt
l
)

)
(3)

Determining if an object track follows a set of
behaviors implied by a sentence is done using a
collection of HMMs. Each has a per-frame score h
that observes one or more objects tracks, depend-
ing on the number of participants in the behavior
being modeled, and a transition function a that
determines the temporal sequence of the behav-
ior. Given a parse p with C behaviors, also termed
constraints, along with a video v of length T , Equa-
tion (4) shows the optimization where K is a set of
states, one for each constraint, and γ is a linking
function.

max
J,K

C∑
c=1

(
T∑

t=1

hc(b
t−1

jt−1

γ1c

, btjt
γ2c

, ktc) +

T∑
t=1

ac(k
t−1
c , ktc)

)
(4)

The linking function is an indicator variable that
encodes the structure of the logical form thereby
filling in the correct trackers as arguments for the
corresponding constraints. The exposition above
presents a variant using binary constraints that is
trivially generalized to n-ary constraints by extend-
ing γ and adding arguments to the appropriate con-
straint observation functions hc. The domain of the
optimization problem is the combination of all ob-
jects at all timesteps that the logical form can refer
to as well as every state of each constraint. The
Viterbi algorithm carries out this optimization in
time linear in the length of the video and quadratic
in the number of detections per frame. The result is
a likelihood of the parse being true of a video. This
is used to create the joint model that supervises the
parser with vision. The tracker can also produce a
time series of bounding boxes that make explicit
the groundings of the sentences, though we do not
use these directly here.

4.3 Joint Model

At training time, we jointly learn using both the
semantic parser and the language-vision compo-
nent. At test time, only the parser is used. Two
parameters are learned, a set of weights θ and the
lexicon Λ. For both the parser and the associated
language-vision component, Λ is used to structure
inference. To induce new lexical entries, we em-
ploy a variant of GENLEX (Artzi and Zettlemoyer,
2013) that takes as input a validation function —
the compatibility between a parse and the video.
This GENLEX uses an ontology of predicates, a
validation function, and templates from the current
lexicon to construct new syntactic and semantic
forms. A ground-truth logical form is not required
or used.

The joint model must learn these parameters
despite three sources of noise. First, the vision-
language component may simply fail to produce
the correct likelihood because machine vision is
far from perfect. Overcoming this requires large
beam widths to avoid falling into local minima due
to these errors.

Second, an infinite number of possibly-
erroneous parses are true of a video. When children
learn language, they face this same challenge as
they do not have access to bounding boxes or to
logical forms. The parse λx.person(x) as well as
many other seemingly reasonable parses are true
and cannot be distinguished from the ground-truth
parse — which is not available — by the vision
component. This is a far less constrained environ-
ment than other approaches to semantic parsing.
It is easy to be misguided by a loss function that
is often true when it should not be and thus cre-
ate many special-purpose definitions of words that
happen to fit the peculiarities of any video. This
results in two different problems: assigning empty
semantics to many words since the likelihood of a
subset of a parse is always the same or higher than
the whole parse and excessive polysemy where the
meaning of a word is highly specific to some irrele-
vant feature in a video. We introduce two features
to the parser that bias it against empty semantics
and against excessive polysemy. Models of com-
munication such as the Rational Speech Acts model
(Frank and Goodman, 2012) predict that speakers
will avoid inserting meaningless words. One fea-
ture counts the number of predicates mapped onto
semantic forms which are empty that occur in each
parse. The other feature attempts to prevent exces-
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sive polysemy by counting how many new seman-
tic forms are introduced for existing tokens by the
generated entries from each parse. As the parser
becomes more capable of handling sentences in the
training set, these features begin to bias it against
adding empty semantics and new semantic forms.

Third, models in computer vision are computa-
tionally expensive while many evaluations of parse-
video pairs are required to train a parser. To over-
come this, we construct a provably-correct cache
that keeps track of failing subexpressions. This
is possible because of a feature of this particu-
lar vision-language scoring function: the score
decreases monotonically with the number of con-
straints. With these improvements, the modified
semantic parser employing vision-language-based
validation learns to map sentences into semantic
parses despite facing a challenging setting with few
examples and much ambiguity.

5 Dataset

We collected and annotated a dataset of captioned
videos with fully annotated semantic parses of the
captions. The videos contain people carrying out
one of 15 actions, such as picking things up and
putting things down, with one of 20 objects span-
ning 10 different colors. We control for 11 spatial
relations between objects and actors. Many videos
depict multiple agents performing actions leading
to additional ambiguity. Videos were filmed in mul-
tiple locations with multiple agents but care was
taken to ensure that the background and agents are
not informative of the events depicted.

On Mechanical Turk we asked participants to
provide sentences that describe something about
the video. We did not specify what participants
should describe to avoid biasing them and to add
richness to the dataset. This sometimes led to sen-
tences that referred to properties of the video that
are well beyond the capacities of the vision sys-
tem, e.g., descriptions of an agent being lazy or
references to the camera’s movement. We removed
such sentences. At training time, the parser re-
ceives captioned videos but no annotations about
which objects those captions refer to. Each sen-
tence was annotated with a ground-truth semantic
form by two trained annotators using a set of 34
predicates. Each sentence was then reviewed and
corrected by one other annotator.

To detect the objects in the videos, we used two
off-the-shelf detectors, OpenPose (Cao et al., 2017)

for person detection and YOLO version 3 (Redmon
and Farhadi, 2018) for the remaining objects. In
each case we significantly lowered the confidence
threshold to avoid false negatives. Many objects in
this dataset are small and are handled by humans,
which leads to regular object detector failures that
are only partially compensated for by lowering the
detection threshold at the cost of a large number
of false positives. We rely on the inference mecha-
nism of the grounded parser to automatically elimi-
nate these numerous false positives as candidates
when grounding sentences due to their low likeli-
hoods. False negatives are much more misleading
and difficult to overcome than false positives. It is
harder to read in where an unseen object might be
than to eliminate a low-confidence detection.

In total, the dataset contains 1200 captions from
401 videos, which selected out of a larger body of
sentences collected and pruned as described above.
This is comparable to the size of other datasets used
for semantic parsing such as two datasets from
Tang and Mooney (2001) with 880 and 640 ex-
amples respectively and the navigation instruction
dataset (Chen and Mooney, 2011) with 706 exam-
ples (containing 3236 single sentences). The sen-
tences comprising our dataset contain 169 unique
tokens with an average of 7.93 tokens per caption.
There are an average of 2.31 objects per caption.

6 Evaluation

6.1 Experimental Setup

We adapted the Cornell SFP (Semantic Parsing
Framework) developed by Artzi (2016) to jointly
reason about sentences and videos. We selected
720 examples for training and used 120 examples
for the validation set to fine-tune the model param-
eters. We used the remaining 360 examples for the
test set. This split was fixed and used in all experi-
ments below. No sentences or videos occurred in
both the training and test sets. During training, each
hypothesized parse for each sentence is marked as
either correct or incorrect, using either direct super-
vision with the target parse or compatibility with
the video, depending on the experiment.

We use beams of 80 for the CKY-parser and
GENLEX. CCG-based semantic parsers are seeded
with a small number of generic combinations of
syntactic and semantic types. For example, Artzi
(2016) seed with 141 lexical entries; we provide 98.
GENLEX uses these entries along with an ontology
to form new syntactic and semantic types.
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Precision Recall F1
Direct supervision

0.851 0.946 0.84 0.933 0.846 0.939

Noisy supervision (60%)
0.235 0.423 0.201 0.362 0.217 0.390

Shuffled labels (direct supervision)
0.147 0.384 0.122 0.321 0.136 0.349

Shuffled videos (weak supervision)
0.000 0.106 0.000 0.103 0.000 0.104

Object-only vision
0.051 0.387 0.042 0.349 0.046 0.367

Vision-language
0.223 0.663 0.183 0.553 0.201 0.591

Figure 3: Pairs of results for each condition. On the left, we
show exact match results and on the right, in italics, results for
the near miss metric. In the case of direct supervision, we train
with the target parses. In the case of noisy supervision, a per-
centage of the time (60% here) the parser randomly accepts or
rejects a parse. In the case of shuffled labels, the target logical
forms are assigned to random sentences. For shuffled videos
the sentences are assigned to random videos. The likelihood
of any sentence being true of a random video is low. In the
case of object-only vision, the vision system consists solely of
an object detector discarding any other predicates. The full
vision-language approach learns to parse a significant fraction
of sentences, far outperforming the object-only approach, and
usually being within one predicate of the correct answer.

6.2 Results

Figures 3 and 4 summarize the experiments and
ablation studies performed. The metrics we use
when reporting results are exact matches, where
the predicted parses must perfectly match the target
parses, and near misses, where a single predicate
in the semantic parse is allowed to differ from the
target. Experiments were averaged across 5 runs.

To establish chance-level performance, we
trained the directly supervised approach on shuffled
labels, assigning random correct parses to random
sentences. This is more powerful than a simple
chance-level performance calculation as the parser
can still take advantage of any dataset biases. Even
with the ability to exploit potential biases, perfor-
mance is very low with F1 scores of 0.136 and
0.349 for the exact and near miss metrics. Both
metrics pose a challenging learning problem.

As a baseline, we directly supervised the parser
with the target logical forms. When doing so, it
achieved high performance with F1 scores of 0.841
and 0.911 for the exact match and near miss cases.
Figure 4 shows performance of direct supervision
as a function of training set size.

We then added noise to the directly supervised
parser. Doing so simulates the unreliable nature

of vision and, to an extent, the ambiguities inher-
ent in vision. Noise was introduced by modifying
the compatibility function which determines if a
parse is correct. A certain percentage of the time,
that function returned true or false randomly when
given a hypothesized logical form. With around
60% noise, performance was 0.22 and 0.39 F1 for
the noisy and near miss cases. Figure 4 shows per-
formance of the noisy baseline as a function of how
much noise was introduced.

The fully grounded parser produced 0.2 and 0.6
F1 scores for the exact and near miss metrics. This
is far beyond chance performance and corresponds
to direct supervision with around 55% noise. There
are a number of reasons for why performance is
not perfect. First, the evaluation metrics cannot
consider equivalences in meaning, just form. A
hypothesized parse may carry the same meaning
as the target logical form yet it will be considered
incorrect. This is less of a problem with direct
supervision where the preferences that annotators
have for a particular way of encoding the mean-
ing of a sentence can be learned. In the grounded
case, this cannot be learned; visually equivalent
parses are equally likely. Second, computer vision
is unreliable, i.e., object detectors fail. We find that
in many of our videos while person detection is
fairly reliable, object detection is unreliable. Third,
vision in the real world is very ambiguous. Predi-
cates like hold are true in almost every interaction.
This makes learning the meanings of words much
more difficult resulting in the grounded parser of-
ten adding useless entries into the predicted logical
forms or substituted one predicate for a similar one.
The near miss metric shows that overall the parser
learned reasonable logical forms. Figure 5 shows
six examples from our dataset along with expected
and predicted parses, both correct and incorrect.

To understand how much of the performance
of the grounded parser comes from visual correla-
tions, like the presence or absence of particular ob-
jects, as opposed to more complex and cognitively
relevant spatio-temporal relations like actions, we
ablated the parser. We removed all features other
than objects. The resulting grounded parser accepts
any hypothesized parse as long as the objects men-
tioned in that parse are present in the video. This
led to a significant performance drop, near-chance
level performance on the exact metric, F1 0.05, and
nearly half the F1 score on the near miss metric,
0.37. Having a sophisticated vision system to infer
about agents and interactions is crucial for learning.
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Figure 4: Results from training the grounded semantic parser. In blue, direct supervision as a function of the amount of training
data. In dashed blue, noisy supervision uses the whole training set but accepts and rejects parses at random for a given fraction of
the time. The red cross is the full vision system while the green o is the object detector ablation. The orange triangle represents
shuffled videos and shows chance performance. While direct supervision outperforms vision-only supervision, the grounded
parser closes the gap and operates like noisy direct supervision with roughly 55% noise.

7 Discussion

We present a semantic parser that learns the struc-
ture of language using weak supervision from vi-
sion. At test time, the model parses sentences with-
out the need for visual input. Learning by passive
observation in this way extends the capabilities of
semantic parsers and points the way to a more cog-
nitively plausible model of language acquisition.
Several limits remain. Evaluating parses as correct
or incorrect depending on a match to a human-
annotated logical form is an overly strict criterion
and is a problem that also plagues fully-supervised
syntactic parsing (Berzak et al., 2016). Since two
logical forms may express the same meaning, it is
not yet clear what an effective evaluation metric is
for these grounded scenarios. In addition, learning
in such a passive scenario is hard as correlations
between events, e.g., every pick up event involves
a touch event, are very difficult to disentangle.

An interesting source of error in the experimen-
tal results comes from visual ambiguities. At the
level of relative motions of labeled bounding boxes,
the analysis performed by the language-vision sys-
tem we employed here has difficulty distinguishing
certain parts of actions. For example, carrying a
shirt and wearing a shirt appear very similar to one
another as they are actions that mostly involve mov-
ing alongside a person detection. Moreover, since
every agent is wearing a shirt it becomes more dif-
ficult to learn to distinguish the two actions using
positive evidence alone, i.e., a maximum likelihood

approach. A more robust vision system, perhaps
including object segmentations, person pose, and
weak negative evidence for the occurrence of ac-
tions, would likely significantly improve the results
presented.

In the future, we intend to add a generative
model along with a physical simulation allowing
the learner to imagine scenarios where a predicate
might not hold. This would help mitigate sys-
tematic correlations between sentences and videos.
The sentences selected here were all chosen such
that they are true of the video being shown, yet
much of what people discuss is ungrounded, or at
least not grounded in the current visual scene. We
intend to combine the weakly supervised parser
with an unsupervised parser and learn to determine
whether a sentence should be grounded visually
during training. We hope this work will find ap-
plications in robotics where learning to adapt to
the specific language of a user while engaging
with them is of utmost importance when deploying
robots in users’ homes.
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Annotated sentence: The woman is picking up an apple.
(i) Ground-truth parse: λxy.woman x, pick_up x y, apple y

Predicted parse: λxy.woman x, pick_up x y, apple y

Annotated sentence: A man walks across the hall holding a chair.
(ii) Ground-truth parse: λxyz.person x,walk x, across x y, hallway y, hold x z chair z

Predicted parse: λxyz.person x, from x y, person y, hold x z chair z

Annotated sentence: A man is walking toward a chair.
(iii) Ground-truth parse: λxy.person x,walk x, toward x y, chair y

Predicted parse: λxy.person x,walk x, toward x y, chair y

Annotated sentence: She places the toy car down on the table.
(v) Ground-truth parse: λxyz.person x, put_down x y, toy y, car y, on y z table z

Predicted parse: λxyz.person x, in x y, toy y, car y, on y z table z

Annotated sentence: A man is lifting the chair.
(iv) Ground-truth parse: λxy.person x, pick_up x y, chair y

Predicted parse: λxy.person x, pick_up x y, chair y

Annotated sentence: A woman reaches for a book on the table.
(vi) Ground-truth parse: λxyz.person x, pick_up x y, book y, on y z table z

Predicted parse: λxyz.person x, stand x, in x y, book y, on y z table z

Figure 5: Six examples of frames from videos in the dataset along with target and predicted logical forms showing both
successes and failures. Failures are highlighted in red. Note how incorrect parses are usually similar to the correct semantic
forms. The intended meaning is often preserved even in these cases.
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