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Abstract

Emotion recognition in conversations is cru-
cial for building empathetic machines. Cur-
rent work in this domain do not explicitly con-
sider the inter-personal influences that thrive in
the emotional dynamics of dialogues. To this
end, we propose Interactive COnversational
memory Network (ICON), a multimodal emo-
tion detection framework that extracts mul-
timodal features from conversational videos
and hierarchically models the self- and inter-
speaker emotional influences into global mem-
ories. Such memories generate contextual
summaries which aid in predicting the emo-
tional orientation of utterance-videos. Our
model outperforms state-of-the-art networks
on multiple classification and regression tasks
in two benchmark datasets.

1 Introduction

Emotions play an important role in our daily life.
A long-standing goal of AI has been to create af-
fective agents that can detect and comprehend emo-
tions. Research in affective computing has mainly
focused on understanding affect (emotions and sen-
timent) in monologues. However, with increasing
interactions of humans with machines, researchers
now aim at building agents that can seamlessly an-
alyze affective content in conversations. This can
help in creating empathetic dialogue systems, thus
improving the overall human-computer interaction
experience (Young et al., 2018).

Analyzing emotional dynamics in conversations,
however, poses complex challenges. This is due
to the presence of intricate dependencies between
the affective states of speakers participating in the
dialogue. In this paper, we address the problem of
emotion recognition in conversational videos. We
specifically focus on dyadic conversations where
two entities participate in a dialogue.

We propose Interactive COnversational mem-
ory Network (ICON), a multimodal network for
identifying emotions in utterance-videos. Here, ut-
terances are units of speech bounded by breaths
or pauses of the speaker. Emotional dynamics in
conversations consist of two important properties:
self and inter-personal dependencies (Morris and
Keltner, 2000). Self-dependencies, also known as
emotional inertia, deal with the aspect of emotional
influence that speakers have on themselves during
conversations (Kuppens et al., 2010). On the other
hand, inter-personal dependencies relate to the emo-
tional influences that the counterparts induce into
a speaker. Conversely, during the course of a dia-
logue, speakers also tend to mirror their counter-
parts to build rapport (Navarretta et al., 2016).

Figure 1 demonstrates a sample conversation
from the dataset involving both self and inter-
personal dependencies. While most conversa-
tional frameworks only focus on self dependencies,
ICON leverages both such dependencies to gen-
erate affective summaries of conversations. First,
it extracts multimodal features from all utterance-
videos. Next, given a test utterance to be classified,
ICON considers the preceding utterances of both
speakers falling within a context-window and mod-
els their self-emotional influences using local gated
recurrent units (GRUs).

Furthermore, to incorporate inter-speaker influ-
ences, a global representation is generated using
a GRU that intakes output of the local GRUs. For
each instance in the context-window, the output of
this global GRU is stored as a memory cell. These
memories are then subjected to multiple read/write
cycles that include attention mechanism for gener-
ating contextual summaries of the conversational
history. At each iteration, the representation of
the test utterance is improved with this summary
representation and finally used for prediction.
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I don’t think I can do this 
anymore. [ frustrated ]

Well I guess you aren’t trying hard 
enough. [ neutral ]

      Its been three years. I have tried 
everything. [ frustrated ]

Maybe you’re not smart enough. 
[ neutral ]

Just go out and keep trying. 
[ neutral ]

         I am smart enough. I am really good at 
what I do. I just don’t know how to make 

someone else see that. [anger]

Person BPerson A

u1

u3

u6

u2

u4

u5

Figure 1: An abridged dialogue from the IEMOCAP dataset.
Pa is frustrated over her long term unemployment and seeks
encouragement (u1, u3). Pb, however, is pre-occupied and
replies sarcastically (u4). This enrages Pa to appropriate
an angry response (u6). In this dialogue, emotional inertia
is evident in Pb who does not deviate from his nonchalant
behavior. Pa, however, gets emotionally influenced by her
counterpart. This influence is content-based, not label-based.

The contributions of this paper are as follows:

• We propose ICON, a novel model for emo-
tion recognition that incorporates self and inter-
speaker influences in a dialogue. Memory net-
works are used to model contextual summaries
for prediction.

• We introduce a multimodal approach that pro-
vides comprehensive features from modalities
such as language, visual, and audio in utterance-
videos.

• ICON can be considered as a generic framework
for conversational modeling that can be extended
to multi-party conversations.

• Experiments on two benchmark datasets show
that ICON significantly outperforms existing
models on multiple discrete and continuous emo-
tional categories.

The remainder of the paper is organized as fol-
lows: Section 2 presents related works; Section 3
formalizes the problem statement and Section 4 de-
scribes our proposed approach; Section 5 provides
details on experimental setup; Section 6 reports
the results and related analysis; finally, Section 7
concludes the paper.

2 Related Works

Emotion recognition is an interdisciplinary field of
research with contributions from psychology, cog-
nitive science, machine learning, natural language
processing, and others (Picard, 2010).

Initial research in this area primarily involved
visual and audio processing (Ekman, 1993; Datcu
and Rothkrantz, 2008). The role of text in emo-
tional analysis became evident with later research
such as Alm et al. (2005); Strapparava and Mi-
halcea (2010). Current research in this domain
is mainly performed from a multimodal learning
perspective (Poria et al., 2017a; Baltrušaitis et al.,
2018). Numerous previous approaches have relied
on fusion techniques that leverage multiple modali-
ties for affect recognition (Soleymani et al., 2012;
Zadeh et al., 2017; Chen et al., 2017; Tzirakis et al.,
2017; Zadeh et al., 2018b).

Understanding conversations is crucial for ma-
chines to replicate human language and discourse.
Emotions play an important role in shaping such
social interactions (Ruusuvuori, 2013). Richards
et al. (2003) attribute emotional dynamics to be an
interactive phenomena, rather than being within-
person. We utilize this trait in the design of our
model that accommodates inter-personal dynam-
ics. Being a temporal event, context also plays
an important role in conversational analysis. Po-
ria et al. (2017b) use contextual information from
neighboring utterances of the same speaker to pre-
dict emotions. However, there is no provision to
model interactive influences. Work by Yang et al.,
2011; Xiaolan et al., 2013 stresses the study of pat-
terns for emotion transitions. In contrast, we posit
the use of utterance content to model context with
multimodal features.

In the literature, memory networks have been
successfully applied in many areas, includ-
ing question-answering (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2016), ma-
chine translation (Bahdanau et al., 2014), speech
recognition (Graves et al., 2014), and others. In
emotional analysis, Zadeh et al. (2018a) propose a
memory-based sequential learning for multi-view
signals. Although we utilize memory networks,
our work is different as we use memories to en-
code whole utterances. Also, each memory cell in
our network is processed using GRUs to capture
temporal dependencies. This technique deviates
from the traditional use of embedding matrices to
encode information into memory cells.

ICON builds on our previous research (Hazarika
et al., 2018) that used separate memory networks
for both interlocutors participating in a dyadic con-
versation. In contrast, ICON adopts an interac-
tive scheme that actively models inter-speaker emo-
tional dynamics with fewer trainable parameters.
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3 Problem Setting

Let us define a conversation U to be a set of asyn-
chronous exchange of utterances between two per-
sons Pa and Pb over time. With T utterances,
U = {u1, u2, ..., uT } is a totally ordered set which
can be arranged as a sequence (u1, ..., uT ) based
on temporal occurrence. Here, each utterance
ui is spoken by either Pa or Pb. Furthermore,
for each λ ∈ {a, b}, Uλ denotes person Pλ’s in-
dividual utterances in U , i.e., Uλ = {ui ∣ ui ∈
U and ui spoken by Pλ, ∀i ∈ [1, ∣U ∣]}. This pro-
vides two sets of utterances for both the respective
speakers, such that U = Ua ∪Ub.

Our aim is to identify the emotions of utterances
in conversational videos. At each time step t ∈
[1, T ] of video U , our model is provided with the
utterance spoken at that time, i.e. ut, and tasked
to predict its emotion. Moreover, we also utilize
the previous utterances within U spoken by both
persons. Considering a context-window of size K,
the preceding utterances of Pa and Pb (starting with
the most recent) within this context-window can be
represented by Ha and Hb, respectively. Formally,
for each λ ∈ {a, b}, Hλ is created as,

Hλ = {ui ∣ i ∈ [t −K, t − 1] and ui ∈ Uλ} (1)
and ∣Ha∣ + ∣Hb∣ ≤K (2)

Table 1 provides a sample conversation with a
context-window of size K = 5.

U { ua1, ua2, ub3, ua4, ua5, ub6 }
Ua, Ub { u1, u2, u4, u5 }, { u3, u6}
test utterance ua7
Ha, Hb { u2, u4, u5 }, { u3, u6 }

Table 1: Sample conversation U with test utterance u7.
Context-window K = 5. Here, uλi = ith utterance by Pλ.

4 Methodology

ICON has been designed as a generic framework
for affective modeling of conversations. Its compu-
tations can be categorized as a sequence of four suc-
cessive modules: Multimodal Feature Extraction,
Self-Influence Module, Dynamic Global-Influence
Module, and Multi-hop Memory. Figure 2 illus-
trates the overall model.

4.1 Multimodal Feature Extraction
ICON adopts a multimodal framework and per-
forms feature extraction from three modalities, i.e.,
language (transcripts), audio and visual.

These features are extracted for each utterance
in the conversation and their concatenated vec-
tors serve as the utterance representations. The
motivation of this setup derives from previous
works that demonstrate the effectiveness of mul-
timodal features in creating rich feature represen-
tations (D’mello and Kory, 2015). These features
provide complementary information from hetero-
geneous sources which helps to accumulate com-
prehensive features. Its need is particularly pro-
nounced in videos as they are often plagued with
noisy signals and missing-information within indi-
vidual modalities (e.g., facial occlusion, loud back-
ground music, imperfect transcriptions).

4.1.1 Textual Features
We employ a convolutional neural network (CNN)
to extract textual features from the transcript of
each utterance. CNNs are capable of learning
abstract semantic representations of a sentence
based on its words and n-grams (Kalchbrenner
et al., 2014). For our purpose, we utilize a simple
CNN with a single convolutional layer followed by
max-pooling (Kim, 2014). The input to this net-
work consists of pre-trained word embeddings ex-
tracted from the 300-dimensional FastText embed-
dings (Bojanowski et al., 2016). The convolution
layer consists of three filters with sizes f1t , f

2
t , f

3
t

with fout feature maps each. We perform 1D convo-
lutions using these filters followed by max-pooling
on its output. The pooled features are finally pro-
jected onto a dense layer with dimension dt and its
activations are used as the textual representation
tu ∈ Rdt .

4.1.2 Audio Features
Audio plays a significant role in determining the
emotional states of a speaker (De Silva and Ng,
2000; Song et al., 2004). To extract audio features,
we first format the audio of each utterance-video as
a 16-bit PCM WAV file and use the open-sourced
software openSMILE (Eyben et al., 2010). This
tool provides high dimensional vectors for audio
files that summarizes important statistical descrip-
tors such as loudness, pitch, Mel-spectra, MFCC,
etc. Specifically, we use the IS13 ComParE1 ex-
tractor which provides 6373 features for each ut-
terance. The features are then normalized using
Min-Max scaling followed by L2-based feature se-
lection. This selection provides low-dimensional
audio features au ∈ Rda of dimensions da.

1
http://audeering.com/technology/opensmile

http://audeering.com/technology/opensmile
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4.1.3 Visual Features
Visual indicators such as facial expressions are key
to understand emotions. In our work, we use a deep
3D-CNN to model spatiotemporal features of each
utterance video (Tran et al., 2015). 3D-CNN helps
to understand emotional concepts such as smiling
or frowning that are often spread across multiple
frames of a video with no predefined spatial lo-
cation. The input to this network is a video with
dimensions (c, h,w, f), where c is the number of
channels, h,w are the height and width of each
frame, with a total of f frames per video.

The network contains three blocks of convolu-
tion where each block contains two convolutional
layers followed by max-pooling. For the convolu-
tion, 3D filters are employed having dimensions
(fout, fin, fh, fw, fd), where, f

[out/in/h/w/d] repre-
sents the number of feature maps, input channels,
height, width, and depth of the filter, respectively.
After a non-linear reLU activation (LeCun et al.,
2015), max-pooling is performed using a sliding
window of dimensions (mp,mp,mp). For an in-
put utterance video, the final features of the third
convolutional block is mapped onto a dense layer
of dimension dv whose activations are used as the
visual features vu ∈ Rdv .

4.1.4 Fusion
We generate the final representation of an utterance
u by concatenating all three multimodal features:

u = tanh((W f [tu;au;vu]) + bf) (3)

Concatenation is one of the most common fusion
methods (Shwartz et al., 2016). Its simplicity also
allows us to emphasize the contribution of the re-
maining components of ICON.

4.2 SIM: Self-Influence Module

Given a test utterance ut to be classified, this mod-
ule independently processes the histories of both
speakers. SIM consists of two GRUs, GRU sa and
GRU sb , for Ha and Hb, respectively. For each
λ ∈ {a, b}, GRU sλ attempts to model the emotional
inertia of speaker Pλ which represents the emo-
tional dependency of a speaker with their own pre-
vious states. In particular, for each historical ut-
terance ui<t ∈ Hλ, an internal memory state h

(j)
λ

is computed by GRU sλ conditioned on utterance
ui and previous memory state h

(j−1)
λ . This can be

abbreviated as h(j)
λ = GRU sλ(ui,h

(j−1)
λ ).

Gated Recurrent Unit: GRUs are gated recur-
rent cells introduced by Cho et al. (2014). At time
step j, GRU computes hidden state sj ∈ Rdem by
calculating two gates, rj (reset gate) and zj (up-
date gate) with jth input xj and previous state sj−1.
The computations are:

zj = σ(V zxj +W zsj−1 + bz)
rj = σ(V rxj +W rsj−1 + br)

vj = tanh(V hxj +W h(sj−1 ⊗ rj) + bh)
sj = (1 − zj)⊗ vj + zj ⊗ sj−1

In this work, input xj = ui and sj = h
(j)
λ . SIM

computes both sequences H∗

a ∈ Rdem×∣Ha∣ and
H∗

b ∈ Rdem×∣Hb∣ using the respective GRUs,

H∗

λ = [h(j)
λ ]∣Hλ∣j=1 = GRU sλ(Hλ) , λ ∈ {a, b} (4)

4.3 DGIM: Dynamic Global Influence
Module

Emotions are not only regarded as internal-
psychological phenomena but also interpreted and
processed communicatively through social inter-
actions (Fiehler, 2002). Conversations exemplify
such a scenario where inter-personal emotional in-
fluence persists. Theories in cognitive science also
suggest the existence of emotional contagion that
causes humans to mirror their counterpart’s ges-
ture, posture and emotional state (Chartrand and
Bargh, 1999; Navarretta et al., 2016). Additionally,
these interactions occur dynamically through the
discourse of a dialogue.

While modeling the contextual history, we incor-
porate such properties using a dynamic influence
module. This module maintains a global represen-
tation of the conversation and updates it recurrently
at each time step of the K-length conversation his-
tory. For any k ∈ [1,K], the global state is updated
using a GRU operation on the previous state sk−1
and current speaker Pλ’s SIM memory h

(j)
λ for the

corresponding spoken utterance u(t−K+k−1), i.e.,

h
(j)
λ = GRU sλ(u(t−K+k−1)).
Formally, DGIM consists of a GRU network,

GRUg, where the kth global state sk is computed
as:

sk =
⎧⎪⎪⎨⎪⎪⎩

GRUg(h(j)
a ,sk−1), if u

(t−K+k−1) ∈Ha

GRUg(h(j)
b ,sk−1), if u(t−K+k−1) ∈Hb

(5)
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Figure 2: Illustration of ICON. Input conversation is as pre-
sented in Table 1.

4.4 Multi-hop Memory
The overall operation of the GRUg produces a se-
quence of memories M = [s1, ...,sK] ∈ Rdem×K .
These memories incorporate dynamic influences
from each of the K utterances spoken in the his-
tory. They serve as a contextual memory bank
from which selective person-specific information
can be incorporated into test utterance ut to get
discriminative features. To achieve this, a series
of R memory read/write cycles are performed that
are coupled with soft attention for refinement of ut
into a context-aware representation.

The need for multiple hops is inspired by recent
works on memory networks (Kumar et al., 2016;
Weston et al., 2014), which suggests the impor-
tance of multiple read/write iterations for perform-
ing transitive inference. Multiple hops also help
in improving the focus of attention heads which
might miss essential memories in a single hop. At
the rth hop, the computations are as follows:

• Memory Read: An attention mechanism is used
to read the memories from rth memory bank

M (r) (Weston et al., 2014). First, each memory
m

(r)
k ∈M (r) is matched with test utterance u(r)

t

(initially, u(1)
t = ut and M (1) =M ).

This matching generates an attention vector
p
(r)
attn ∈ RK whose kth normalized score rep-

resents the relevance of kth memory cell with
respect to the test utterance. Inner product is
used for the matching as follows:

p
(r)
attn = softmax( (M (r))Tu(r)

t ) (6)

Where, softmax(xi) = exi/∑j exj . These
scores are then used to find a weighted repre-
sentation of the memories as

m(r) =
K

∑
k=1

(p(r)
attn)

k
.(mk) =M (r)p

(r)
attn (7)

This vector denotes the summary of the context
that is person-specific and based on the test ut-
terance. Finally, the representation of the test
utterance is updated by consolidating itself with
the weighted memory m as:

u
(r+1)
t = tanh(m(r) +u

(r)
t ) (8)

• Memory Write: After the read operation at each
hop, memories are updated for the next hop. For
this purpose, a GRU network, GRUm, takes the
rth memory cells M (r) as input and reprocesses
this sequence to generate memories M (r+1), i.e.,
M (r+1) = GRUm(M (r)). Across all hops, this
write operation can be viewed as that of a stacked
recurrent neural network (RNN) where each level
(or hop) improves the representational output of
the RNN. The parameters of GRUm are shared
across all hops.

Final Prediction: We use the (R + 1)th test ut-
terance vector u(R+1)

t and get the final prediction
vector through its affine transformation,

o = softmax(W ou
(R+1)
t + bo) (9)

For classification, dimensions of vector o is the
number of classes C, i.e., o ∈ RC and categorical
cross-entropy loss is used as the cost measure for
training. For regression, o is a scalar (without
softmax normalization) whose scores are used to
calculate the mean squared error cost metric.
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Dataset Fold
No. of No. of Avg. history

Utterances Videos length

IEMOCAP train/val 5810 120 36.54
test 1623 31 39.00

SEMAINE train/val 4368 63 43.61
test 1430 32 45.61

∗val = validation set.

Table 2: Summary of datasets. Note: Avg. history length rep-
resents the expected number of historical utterances available
for any utterance in the dataset.

5 Experiments

5.1 Datasets
We perform experiments on two benchmark
datasets in dialogue-based emotion detection:
IEMOCAP2 (Busso et al., 2008) and SE-
MAINE3 (McKeown et al., 2012).

IEMOCAP is a database consisting of videos of
dyadic conversations between pairs of 10 speakers.
Grouped into five sessions, each pair is assigned
with diverse scenarios for dialogues. Videos are
segmented into utterances with annotations of fine-
grained emotion categories. We consider six such
categories for the classification task: anger, happi-
ness, sadness, neutral, excitement, and frustration.
The training set is curated using the first 8 speakers
from session 1-4 while session 5 is used for testing.

SEMAINE is a video database of human-agent
interactions. Here, users interact with characters
whose responses are based on users’ emotional
state. Specifically, we utilize the AVEC 2012’s fully
continuous sub-challenge (Schuller et al., 2012)
that requires predictions of four continuous affec-
tive dimensions: arousal, expectancy, power, and
valence. The gold annotations are available for ev-
ery 0.2 seconds in each video (Nicolle et al., 2012).
However, to align with our problem statement, we
approximate the utterance-level annotation as the
mean of the continuous values within the spoken
utterance. The sub-challenge provides standard
training and testing splits which has been summa-
rized in Table 2.

5.2 Training Details
20% of the training set is used as validation set
for hyper-parameter tuning. We use the Adam op-
timizer (Kingma and Ba, 2014) for training the
parameters starting with an initial learning rate
of 0.001. Termination of the training-phase is
decided by early-stopping with a patience of 10

2
http://sail.usc.edu/iemocap/

3
http://sspnet.eu/avec2012/

(f1
t , f

2
t , f

3
t ) = (3,4,5) f[h,w,d] = 3 fout = 64

d[t,a] = 100 dv = 512 dem = 100
K = 40 R = 3

Table 3: Hyper-parameter values for the best model.

epochs. The network is subjected to regularization
in the form of Dropout (Srivastava et al., 2014)
and Gradient-clipping for a norm of 40. Finally,
the best hyper-parameters are decided using a grid-
search. Their values are summarized in Table 3.

For multimodal feature extraction, we explore
different designs for the employed CNNs. For text,
we find the single layer CNN to perform at par
with deeper variants. For visual features, however,
a deeper CNN provides better representations. We
also find that contextually conditioned features per-
form better than context-less features. Thus, in
our experiments, we extract video-level contextual
features for utterances from each modality using
the network proposed by Poria et al. 2017b. These
modified features are then used to form the multi-
modal utterance representations using equation 3.

5.3 Baselines
We compare our proposed model with multiple
state-of-the-art networks in multimodal utterance-
level emotion detection.

• memnet (Sukhbaatar et al., 2015) is an end-to-
end memory network. For comparison, we mod-
ify our network to adopt their embedding-based
memory-encoding in the multi-hop stage.

• cLSTM4 (Poria et al., 2017b) classifies utterances
using neighboring utterances (of same speaker)
as context. LSTM is used for this purpose.

• TFN5 (Zadeh et al., 2017) models intra- and inter-
modality dynamics by explicitly aggregating uni-
, bi- and trimodal interactions. Unlike cLSTM,
contextual utterances are not considered.

• MFN (Zadeh et al., 2018a) performs multi-view
learning by using Delta-memory Attention Net-
work, a fusion mechanism to learn cross-view
interactions. Similar to TFN, the modeling is
performed within utterances.

• CMN (Hazarika et al., 2018) models separate
contexts for both speaker and listener to an ut-
terance. These contexts are stored as memories
and combined with test utterance using attention
mechanism.

4
http://github.com/senticnet/

contextual-sentiment-analysis
5
http://github.com/A2Zadeh/TensorFusionNetwork

http://sail.usc.edu/iemocap/
http://sspnet.eu/avec2012/
http://github.com/senticnet/contextual-sentiment-analysis
http://github.com/senticnet/contextual-sentiment-analysis
http://github.com/A2Zadeh/TensorFusionNetwork
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Models IEMOCAP: Emotion Categories
Happy Sad Neutral Angry Excited Frustrated Avg.

acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1

memnet 24.4 33.0 60.4 69.3 56.8 55.0 67.1 66.1 65.2 62.3 68.4 63.0 59.9 59.5
cLSTM 25.5 35.6 58.6 69.2 56.5 53.5 70.0 66.3 58.8 61.1 67.4 62.4 59.8 59.0
TFN 23.2 33.7 58.0 68.6 56.6 55.1 69.1 64.2 63.1 62.4 65.5 61.2 58.8 58.5
MFN 24.0 34.1 65.6 70.5 55.5 52.1 72.3† 66.8 64.3 62.1 67.9 62.5 60.1 59.9
CMN 25.7 32.6 66.5 72.9 53.9 56.2 67.6 64.6 69.9 67.9 71.7 63.1 61.9 61.4
ICON 23.6 32.8 70.6† 74.4† 59.9 60.6† 68.2 68.2 72.2† 68.4 71.9 66.2† 64.0† 63.5†

Table 4: Performance of ICON on the IEMOCAP dataset. † represents statistical significance over state-of-the-art scores under
the paired-t test (p < 0.05).

Models
SEMAINE

DV DA DP DE
MAE r MAE r MAE r MAE r

memnet .20 .16 .21 .24 .21 .23 8.97 .05
cLSTM .18 .14 .21 .23 .20 .25 8.90 -.04
TFN .21 .01 .22 .10 .21 .12 9.19 .12
MFN .19 .14 .20 .25 .18 .26 8.60 .15
CMN .18 .23 .20 .30 .18 .26 8.89 -.02
ICON .18 .24 .19 .31 .18 .27 8.45 0.24

Table 5: Performance on the SEMAINE dataset. Note: MAE
= Mean Absolute Error, r = Pearson’s correlation coefficient,
DV = Valence, DA = Activation/Arousal, DP = Power, DE =
Anticipation/Expectation.

6 Results

Tables 4 and 5 present the results on the IEMO-
CAP and SEMAINE testing sets, respectively. In
Table 4, we evaluate the mean classification per-
formance using Weighted Accuracy (acc.) and
F1-Score (F1) on the discrete emotion categories.
ICON performs better than the compared models
with significant performance increase in emotions
(∼2.1% acc.). For each emotion, ICON outper-
forms all the compared models except for happi-
ness emotion. However, its performance is still at
par with cLSTM without a significant gap. Also,
ICON manages to correctly identify the relatively
similar excitement emotion by a large margin.

In Table 5, evaluations of the four continuous
labels from SEMAINE are performed using Mean
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Figure 3: Trends in the performance of ICON on IEMOCAP
dataset with varying R (hops) and K (Context-window size).

Modality IEMOCAP SEMAINE
Emotions DV DA DP DE

acc. F1 r r r r

T 58.3 57.9 .237 .297 .260 .225
A 50.7 50.9 .021 .082 .250 .035
V 41.2 39.8 .001 .068 .251 .001
A+V 52.0 51.2 .031 .122 .283 .050
T+A 63.8 63.2 .237 .310 .272 .242
T+V 61.4 61.2 .238 .293 .268 .239
T+A+V 64.0 63.5 .243 .312 .279 .244

Table 6: Comparison of the performance of ICON on both
IEMOCAP and SEMAINE considering different modality
combinations. Note: T=Text, A=Audio, V=Video

Absolute Error (MAE) and Pearson’s Correlation
Coefficient (r). In all the labels, ICON attains im-
proved performance over its counterparts, suggest-
ing the efficacy of its context-modeling scheme.

Hyperparameters: We plot the performance
trends of ICON on the IEMOCAP dataset concern-
ing the two main hyperparameters, R (number of
hops) and K (context-window size). For R, the
performance initially improves showing the im-
portance of multiple hops in the memories. How-
ever, with a further increase, the hopping recur-
rence deepens and causes the vanishing gradient
problem. This leads to decrease in performance.
The best performance is obtained at R = 3. For
K, similar trends are observed where performance
improvement is seen by increasing the number of
historical utterances. The best results are obtained
forK = 40 which also aligns with the average num-
ber of historical utterances in the dataset (Table 2).
Further increase in context does not provide rele-
vant information and rather leads to performance
degradation due to model confusion.

Multimodality: We investigate the importance
of multimodal features for our task. Table 6
presents the results for different combinations of
modes used by ICON on IEMOCAP. As seen, the
trimodal network provides the best performance
which is preceded by the bimodal variants. Among
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ICON variants IEMOCAP SEMAINE
Emotions DV DA DP DE

history DGIM hop acc. F1 r r r r

1. - - - 58.0 57.6 .10 .14 .10 .01
2. self 3 - 60.7 60.2 .17 .23 .15 .13
3. dual 3 - 61.2 60.7 .19 .24 .19 .20
4. self - 3 61.9 61.3 .19 .23 .22 .20
5. dual - 3 63.1 62.4 .21 .25 .26 .22
6. self 3 3 62.2 61.7 .20 .28 .21 .22
7. dual 3 3 64.0 63.5 .24 .31 .27 .24

Table 7: Ablation study for components of ICON.

unimodals, language modality performs the best,
reaffirming its significance in multimodal systems.
Interestingly, the audio and visual modality, on
their own, do not provide good performance, but
when used with text, complementary data is shared
to improve overall performance.

6.1 Ablation Study
To check the importance of the modules present
in ICON, we perform an ablation study where we
remove constituent components and evaluate the
model’s performance. Table 7 provides the results
on this study. In the first variant, none of the his-
tories and the associated context-modeling is used.
This provides the worst relative performance.

Self vs Dual History: We evaluate the scenarios
where only self-history of the speaker is considered
(variants 2, 4, and 6). Compared to the dual-history
variants (variants 3, 5, and 7), these models provide
lesser performance. Reasons involve the provision
of partial information from the conversational his-
tories. Similar trends can be seen for the cLSTM
model in Table 4 which works in the same regime.

DGIM vs no-DGIM: Variants 4 and 5 do not
contain the DGIM. In variant 5, separate memory
banks are created for both histories (Ma = H∗

a

and Mb = H∗

b ). Memory hops are also separately
performed without parameter sharing. Absence of
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Figure 4: Distribution of top-attention by ICON on correctly
classified instances in the testing set.

DGIM prevents the storage of dynamic influences
between speakers at each historical time step and
leads to performance deterioration.

Multi-hop vs No-hop: Variants 2 and 3 repre-
sent cases where multi-hop is omitted, i.e., R = 1.
Performance for them are poorer than variants hav-
ing multi-hop mechanism (variants 4-7). Also, re-
moval of multi-hop leads to worse performance
than the removal of DGIM. This suggests that
multi-hop is more crucial than the latter. However,
best performance is achieved by variant 6 which
contains all the proposed modules in its pipeline.

6.2 Dependency on distant history

For all the test utterances of IEMOCAP correctly
classified by ICON, we analyze the global memo-
ries receiving the highest attention. First, we divide
the conversational history (context-length K = 40)
into three regions: long, short, and medium. Fig-
ure 4 provides a summary of how much the model
attends each of these regions. The short region (la-
beled green) covering 10 utterances, corresponds
to conversational history just preceding the test
utterance. Utterances which occur more than 30
time steps behind the current test utterance are con-
sidered part of the long region (labeled red). Re-
maining utterances in between fall on the medium
region (labeled blue).

The distribution of top-valued attention scores
across the histories reveal interesting insights.
Most of the correctly classified instances focus on
the immediate or short history. In other words, 63%
of the time, at least one of the top-5 attention value
belongs to a memory in the short-history range.
A significant share is also present for distant his-
tory (22%). This result indicates the presence of
long-term emotional dependencies and the need to
consider histories far away from the current test
utterance.

Do you want  
my jacket? [hap]PA:

C
on

ve
rs

at
io

n Its after eleven.  
Lets just go home. [ang]PB:

Are you kidding?  
We just got here! [fru]PA:

There is no point 
in coming here [ang]PB:

Figure 5: As a conversation develops, different speakers
induce different affective bias which reflects in the memory
selection for generation of the summaries.
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low

high

u14

0 Tell them this 
is ridiculous! 

[angry]

We will have your 
problem solved. 

[neutral]

They have never 
worked for me. [angry]

u1 u14

u15

Hop 1

Hop 2

Hop 3

Fine, fine. First off, my 
bill’s wrong. [frustrated]

Test utterance

u11u8

It won’t listen 
to me. [angry]

u6 u17

0 You wouldn’t have 
heard about it. [neutral]

Nice point of view I 
must say. [angry]

And what of it?

[neutral]

u1 u17

u18

Hop 1

Hop 2

Hop 3

I am bored of this 
conversation. [frustrated]

Test utterance

u16

You let him kiss 
you. [angry]

u11 u12

a) Self-Emotional Influence b) Inter-speaker Influence

Figure 6: Case studies for emotional influence. 20 memories in the history which are nearest to test utterance, i.e. k ∈ [21,40]
are visualized from the trained ICON.

6.3 Dynamic Modeling of Global Memories:

ICON holds the capability to model dynamic in-
teractions between speakers. The memories by its
DGIM (§4.3) are used to create summaries condi-
tioned on the test utterance. Consequently, these
summaries contain characteristics that are specific
to the affective state of the current speaker (of the
test utterance).

Figure 5 presents a sample slice of conversa-
tion from the dataset. As seen, summary selec-
tion for Person A varies from Person B. Such dif-
ferences arise due to person-specific characteris-
tics and unique affective interpretations of the con-
versation. Apart from the inter-speaker variance,
the emotional state of a speaker also varies across
turns.

6.4 Case Studies

To understand ICON’s behavior while processing
the global memories through multi-hop, we man-
ually explore the utterances in the testing set of
IEMOCAP. Figure 6 presents two cases which pro-
vide traces of self and inter-personal emotional
influences and were correctly classified by ICON.
Both the figures show the trend where multiple
hops gradually improve the focus of attention mech-
anism on relevant memories.

In Figure 6a, person Pa registers a complaint to
an operator Pb. Throughout the dialogue, Pa main-
tains an angry demeanor while Pb remains calm
and neutral (u14). While classifying utterance u15,
ICON focuses more on the histories uttered by Pa
(u6, u8, and u11). This demonstrates ICON’s abil-
ity to model self-emotional influences. It should be
noted that emotion of Pa here also depends on the
utterances of Pb but compared to self-utterances,
this dependency is much less. Figure 6b presents
another scenario where a couple argue over an al-
leged affair.

A man (Pb) is angry over this fact and questions
his partner (Pa) asking for details. The woman
tries to behave unperturbed by providing neutral
responses (u12, u16) but is eventually affected by
Pb’s continuous anger and expresses a frustrated
response (u18). These characteristics are captured
by the attention mechanism applied on the global
memories (generated by DGIM), which finds con-
textual information from histories that are relevant
to the test utterance u18. This example displays
the role of inter-speaker influences and how ICON
processes such dependencies.

7 Conclusion

In this paper, we presented ICON, a multimodal
framework for emotion detection in conversations.
ICON capitalizes on modeling contextual infor-
mation that incorporates self and inter-speaker in-
fluences. We accomplish this by using an RNN-
based memory network with multi-hop attention
modeling. Experiments show that ICON outper-
forms state-of-the-art models on multiple bench-
mark datasets. Extensive evaluations and case stud-
ies demonstrate the effectiveness of our proposed
model. Additionally, the ability to visualize the
attentions brings a sense of interpretability to the
model, as it allows us to investigate which utter-
ances in the conversational history provide impor-
tant emotional cues for the current emotional state
of the speaker.

In the future, we plan to test ICON on other
relevant dialogue-based applications and also use
it for empathetic dialogue generation.
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