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Abstract

Experimental performance on the task of rela-
tion classification has generally improved us-
ing deep neural network architectures. One
major drawback of reported studies is that
individual models have been evaluated on a
very narrow range of datasets, raising ques-
tions about the adaptability of the architec-
tures, while making comparisons between ap-
proaches difficult. In this work, we present a
systematic large-scale analysis of neural rela-
tion classification architectures on six bench-
mark datasets with widely varying characteris-
tics. We propose a novel multi-channel LSTM
model combined with a CNN that takes ad-
vantage of all currently popular linguistic and
architectural features. Our ‘Man for All Sea-
sons’ approach achieves state-of-the-art per-
formance on two datasets. More importantly,
in our view, the model allowed us to obtain
direct insights into the continued challenges
faced by neural language models on this task.
Example data and source code are available
at: https://github.com/aidantee/
MASS.

1 Introduction

Determining the semantic relation between pairs
of named entity mentions, i.e. relation classifica-
tion, is useful in many fact extraction applications,
ranging from identifying adverse drug reactions
(Gurulingappa et al., 2012; Dandala et al., 2017),
extracting drug abuse events (Jenhani et al., 2016),
improving the access to scientific literature (Gabor
et al., 2018), question answering (Lukovnikov
et al., 2017; Das et al., 2017) to major life events
extraction (Li et al., 2014; Cavalin et al., 2016).
With a multitude of possible relation types, it is
critical to understand how systems will behave in
a variety of settings (see Table 1 for an example).

f Contributed equally & Names are in alphabetical order
*Corresponding author

(i) <el>Three-dimensional digital subtraction
angiographic</el> (<e2>3D-DSA</e2>) images
from diagnostic cerebral angiography were obtained ...

(i) The metal <el>ball</el> makes a ding ding ding
<e2>noise</e2> when it swings back and hits the metal
body of the lamp.

Table 1: Examples for different relation types: sen-
tence (i) shows a Synonym-of relation, represented by
an abbreviation pattern, which is very different from
the predicate relation Cause-effect in (ii).

To the best of our knowledge, almost all relation
classification models introduced so far have been
experimentally validated on only a few datasets
- often only one. This is despite the availabil-
ity of established benchmarks. The lack of trans-
parency as well as the possibility of having selec-
tion bias raise a question about the true capability
of state-of-the-art methods for relation classifica-
tion. In addition, despite such a wealth of studies,
it still remains unclear which approach is superior
and which factors set the limits on performance.
For example, heuristic post-processing rules have
been seen to significantly boost relation classifi-
cation performance on several benchmarks; yet,
they cannot be relied upon to generalize across
domains. The novel approach we present in this
paper draws inspiration from neural hybrid mod-
els such as that of Cai et al. (2016). In this work,
we present a large-scale analysis of state-of-the-
art neural network architectures on six benchmark
datasets which represent a variety of language do-
mains and semantic types. As a means of compar-
ison against reported system performance, we pro-
pose a novel multi-channel long short term mem-
ory (Hochreiter and Schmidhuber, 1997, LSTM)
model combined with a Convolutional Neural Net-
work (Kim, 2014, CNN) that takes advantage of
all major linguistic and architectural features cur-
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rently employed. We designate this as a ‘Man for
All SeasonS’ (MASS) model because it incorpo-
rates many popular elements reported by state of
the art systems on individual datasets.

The main contributions of the paper are:

1. We presented a deep neural network model,
in which each component is capable of tak-
ing advantage of a particular type of major
linguistic or architectural feature. The model
is robust and adaptable across different rela-
tion types in various domains without any ar-
chitectural changes.

2. We investigated the impact of different
components and features on the final per-
formance, therefore, providing insights on
which model components and features are
useful for future research.

2 Related Works

We focus here on supervised approaches to re-
lation classification. Alternatives include hand
built patterns (Aone and Ramos-Santacruz, 2000),
unsupervised approaches (Yan et al., 2009) and
distantly supervised approaches (Mintz et al.,
2009). Traditional supervised and kernel-based
approaches have made use of a full range of lin-
guistic features (Miwa et al., 2010) such as or-
thography, character n-grams, chunking as well as
vertex and edge walks over the dependency graph.
Hand crafting and modeling with such complex
feature sets remains a challenge although perfor-
mance tends to increase with the amount of syn-
tactic information (Bunescu and Mooney, 2005).
Recent successes in deep learning have stimu-
lated interest in applying neural architectures to
the task. Convolutional Neural Networks (CNNs)
(Nguyen and Grishman, 2015) were among early
approaches to be applied. Following in this direc-
tion, (Lee et al., 2017) achieved state of the art
performance on the SciencelE task of SemEval
2017. Other recent variations of CNN architec-
tures include a CNN with an attention mechanism
in Shen and Huang (2016) and a CNN combined
with maximum entropy in Gu et al. (2017). Var-
ious auxiliary information has been reported to
improve the performance of CNNs, such as the
document graph (Verga et al., 2018) and position
embeddings (Shen and Huang, 2016; Lee et al.,
2017; Verga et al., 2018). Recurrent Neural Net-
works (RNNs) are another approach to capturing
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Figure 1: The statistics of corpora used in our exper-
iments. Three aspects are considered: the distribution
of relation types, the distribution of Out-Of-Vocabulary
(OOV) in the test set and the distribution of new entity
pairs (NP) that appeared in the test set but never ap-
peared in the training data.

relations and naturally good at modeling long dis-
tance relations within sequential language data.
Approaches include Mehryary et al. (2016) with
the original RNN and Li et al. (2017); Ammar
etal. (2017); Zhou et al. (2018) with RNNs having
LSTM units which are used to extend the range of
context. Apart from sentences themselves, RNN-
based models often take as input information ex-
tracted from dependency trees, such as shortest
dependency paths (SDP) (Mehryary et al., 2016;
Ammar et al., 2017), or even whole trees (Li et al.,
2017). Since RNNs and CNNs each have their
own distinct advantages, a few models have com-
bined both in a single neural architecture (Cai
et al., 2016; Zhang et al., 2018).

3 Materials and Methods

3.1 Gold Standard Corpora

As noted above, our experiments used six well-
known benchmark corpora from different do-
mains, which have been used to evaluate vari-
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% of Cross-

#  Corpus Domain TIAA Size Entity  Relation . Directed  Undirected ~ SDP length
negatives  sentence

SemEval (SemEval . 8000 o

1 2010 - Task 8) Generic 0.74 @717 - 9 174 % — v - 3.8 (13)
DDI-2013 (SemEval . . D: 0.84 730 o

2 DDiExraction2013)  Blomedicdl o6 (175 4 4 85.3% - - v 9-0(66)
CDR (BioCreative5 . . 1000 o

3 CDR 2015) Biomedical (500) 2 1 61.4 % v v - 6.8 (24)
BB3 (BioNLPST . . 95

4 BB-Event 2016) Biomedical 047 1) 3 1 61.4 % v v - 7.5(25)
SciencelE (SemEval — 0.45- 400 o

5 SciencelE 2017) Scientific 085 (100) 3 2 88.5% - v v 6.5 (22)

. . 1000 .
6  Phenebank Biomedical  0.56 (500) 9 5 77.0 % v v v 6.2 (26)

Table 2: Characteristics of the six corpora used in this study. Domain: the domain of the corpus; IAA: the Inter-
annotator Agreement score; Size: training set size (test set size in the brackets) in terms of the number of sentences
(SemEval) or documents (all other corpora); Entity: the number of entity types; Relation: the number of relation
types; % of negative: the distribution of positive and negative instances; Cross-sentence: if there are cross-sentence
relations; Directed: if there are directed relations in the corpus; Undirected: if there are undirected relations in the
corpus; SDP length: the averaged (max in brackets) length of the SDPs in the corpus.

ous state-of-the-art relation classification systems.
SemEval is a generic domain benchmark dataset
(Hendrickx et al., 2009). The next four cho-
sen corpora are from various biomedical domains:
the DDI-2013 corpus (Herrero-Zazo et al., 2013;
Segura-Bedmar et al., 2014), the CDR corpus (Li
etal., 2016), the BB3 corpus (Deléger et al., 2016),
and the Phenebank corpus. Finally, SciencelE
corpus contains scientific journal articles from
three sub-domains (Augenstein et al., 2017). Inter-
annotator agreement (IAA) as measured with Co-
hens kappa on these corpora indicates high vari-
ability in the range of [0.45, 0.74], i.e. moderate to
substantial agreement (McHugh, 2012).

As shown in Table 2, each of these corpora is
distinct in many respects. CDR and BB3 were
only annotated with one relation type, whilst other
corpora have several relation types. In all corpora
except SemEval, negative instances must be auto-
matically generated by pairing all the entities ap-
pearing in the same sentences that have not been
annotated as positives. As there are a large number
of such entities, the number of possible negatives
accounts for a large percentage of set of instances,
i.e. upto 80% of the total in DDI-2013, Scien-
celE and Phenebank. Further, the small percent-
age of positive examples includes several types,
causing a severe imbalance in the data (He and
Garcia, 2009) (see Figure 1 for further details).

Another challenge for relation classification is
in modeling the order of entities in a directed re-
lation type (Lee et al., 2017). In the six corpora,

several relations are directed and order-sensitive,
such as the Cause-Effect relation in SemEval and
Hyponym-of in SciencelE. Such relations require
the model to predict both relation types and the
entity order correctly. In contrast, for undirected
relations, such as Synonym-of in SciencelE and
Associated in Phenebank, both directions can be
accepted.

An interesting factor is that the length of the
SDP in SemEval is considerably shorter than in
the other corpora. The mean and maximum
length SDP values for CDR, BB3, SciencelE and
Phenebank are quite similar, i.e. ~ 7 and 22 — 26
tokens. DDI-2013 contains very complex sen-
tences, with an averaged SDP length of 9 and the
longest SDP of 66 token.

Figure 1 shows the Out-Of-Vocabulary (OOV)
ratios in six corpora, which are quite large, ranging
from 23% to 57%. More interesting is the percent-
age of entities (or nominal) pairs in the test set that
have never appeared in the training set (NP: 79%
on CDR and more than 93% on SemEval, DDI-
2013, SciencelE and Phenebank). These two char-
acteristics indicate the importance of understand-
ing the mechanisms by which neural networks can
generalize, i.e. make accurate predictions on novel
instances.

3.2 Model Architecture

Our ‘Man for All SeasonS’ (MASS) model com-
prises an embeddings layer, multi-channel bi-
directional Long Short-Term Memory (BLSTM)
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Figure 2: The architecture of MASS model for rela-
tion classification. An embeddings layer is followed by
multi-channel bi-directional LSTM layers, two parallel
CNNss and three softmax classifiers. The model’s input
makes use of words and dependencies along the SDP
going from the first entity to the second one using both
forwards and backwards sequences.

layers, two parallel Convolutional Neural Network
(CNN) layers and three softmax classifiers. The
MASS model’s architecture is depicted in Fig-
ure 2. MASS makes use of words and depen-
dencies along the SDP going from the first en-
tity to the second one using both forwards and
backwards sequences. As is standard practice (Xu
etal., 2015; Cai et al., 2016; Mehryary et al., 2016;
Panyam et al., 2018) an entity pair is classified as
having a relation if and only if the SDP between
them is classified as having that relation.

3.2.1 Embeddings layer

Despite the presence of inter-sentential relations in
the six corpora we make the simplifying assump-
tion that relations occur only between entities (or
nominals) in the same sentence. We model each
such sentence using a dependency path. In order
to classify novel dependency paths we represent a
dependency relation d; as a vector D; that is the
concatenation of two vectors as follow:

D; = Dtyp; ® Ddir;

where Dtyp is the undirected dependency vector,
expressing the dependency type among 63 labels

and, Ddir is the orientation of the dependency
vector i.e. from left-to-right or vice versa in the
order of the SDP. Both are initialized randomly.

For word representation, we take advantage of
four types of information, including:

o FastText pre-trained embeddings (Bo-
janowski et al., 2017) are the 300-
dimensional vectors that represent words
as the sum of the skip-gram vector and
character m-gram vectors to incorporate
sub-word information.

o WordNet embeddings are in the form of one-
hot vectors that determine which sets in the
45 standard WordNet super-senses the tokens
belong to.

o Character embeddings are denoted by C,
containing 76 entries for 26 letters in upper-
case and lowercase forms, punctuation, and
numbers. Each character ¢; € C is randomly
initialized. They will be used to generate the
token’s character-based embeddings.

e POS tag embeddings capture (dis)similari-
ties between grammatical properties of words
and their lexical-syntactic roles within a sen-
tence. We randomly initialized these vec-
tors values for the 56 POS tags in OntoNotes
v5.0.

Note that all initializations are generated by
looking up the corresponding lookup table. The
character and POS tag embeddings lookup ta-
bles were randomly constructed according to the
Glorot uniform initializer (Glorot and Bengio,
2010) and then treated as the model’s parameters
to be learned in the training phase.

3.2.2 Multi-channel Bi-LSTM

For a given linguistic feature type, LSTM net-
works (Hochreiter and Schmidhuber, 1997) are
employed to capture long-distance dependencies
along two directions, namely the forward and
backward Bi-directional LSTM (BLSTM).

For the dependencies, BLSTMs take as in-
put a sequence of dependency embeddings D;,
then gives output are the hidden states for depen-
dencies between adjacent tokens w; and w;y1 as
fwDEP;; 1 and bwDEPj; 4 1.

Apart from the dependencies between tokens
in SDPs, our model exploits four linguistic em-
beddings relating to words for representing the
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Figure 3: The multi-channel LSTM for word represen-
tation. Each token in the SDP is represented by us-
ing four word-related embeddings, including FastText
word embedding, WordNet embedding, POS tag em-
bedding and the character embedding. These four types
of word-related information are fed into eight separate
LSTMs, independently from each other during recur-
rent propagation.

words. These four types of word-related infor-
mation are fed into eight separate LSTMs (four
for each direction) independently from each other
during recurrent propagation. These four BLSTM
channels are illustrated in Figure 3. The mor-
phological surface information is represented with
character-based embedding using a BLSTM, in
which the forward and backward LSTM hidden
states are jointly concatenated (Ling et al., 2015;
Dang et al., 2018). For other layers, the LSTM
hidden states are concatenated separately as the
forward and the backward vector to form two fi-
nal embeddings for each token as follows:

fwW; = fwFT; ® fuWN; ® Char; ® fwPOS;
bwW; = bwFT; ® bwW N; @& Char; ® bwPOS;

3.2.3 CNN with dependency unit

Similar to Cai et al. (2016), the Convolutional
Neural Networks (CNNs) in our model utilize
Dependency Units (DU) to model the SDP. DU
has the form of [w; — dj;y1 — wi41], in which
w;, w;4q are two adjacent tokens and dj;4q is
the dependency between them. As a result, the
low-dimensional forward and backward represen-
tation vectors of DUj are created by concatenat-
ing the corresponding final embeddings of tokens
wj, wj1 and the LSTM hidden state of the depen-
dency d;;1. Formally, we have:

waUj = waj ©® waE]Djj+1 (&) waj+1
bwDU; = bwW; @ bwDEP;; 1 ® bwW, 4

The forward and backward SDP representation
matrices fwS and bw.S are created by stacking the

fwDU and bwDU vectors. We then apply two
parallel CNNs to fw.S and bw S to capture the con-
text features (C'F};) around each dependency unit
DU in the SDP as follows. These CNNs are de-
signed similarly to the original CNN for sentence
classification (Kim, 2014).

JwCF; = f(Wegnn - fwDUj 4+ bonn)

bwCFj = f (Wegny - bwDU; + boy )

where Weonn and Welc N are the weight ma-
trices for the CNNs, bo vy and b/C ~ N are the bias
terms for the hidden state vectors and f and f are
the non-linear activation functions.

The n—max pooling (Boureau et al., 2010)
layer gathers the most useful global information GG
over the whole SDP (Collobert et al., 2011) from
the context features of dependency units, which is
defined as follows (in this work, we use 1—max
pooling).

fwG = %@f{waFj

bwG = rcrll%ic bwC'F;

where max is an element-wise function, and & is
the number of dependency units in the SDP.

3.2.4 Softmax classifiers

Following (Cai et al., 2016), relation classifica-
tion based on fwsS and bwS simultaneously can
strengthen the model’s ability to judge the direc-
tion of relations. We, therefore, use two directed
softmax classifiers, one for each direction of the
relation, with linear transformation to estimate the
probability that each of fw.S and bwS belongs to a
directed relation (the direction taken into account).
Formally we have:

p(fw) = softmax(Wy - fwG + by)
p(bw) = softma:c(W]/c -bwG + blf)

where W and W} are the transformation matrices

and by and b/f are the bias vectors.
These two distributions are then combined to
get the final distribution with a priority weight c:

p=a-p(fw)+(1—a) plbw)

We also use the undirected softmax to predict
undirected distribution p(ud). This softmax is
only used in the training objective function, which
is the penalized cross-entropy of three softmax
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classifiers. Our undirected softmax is quite simi-
lar to the idea of coarse-grain softmax used in Cai
et al. (2016); Zhou et al. (2018).

p(ud) = softma;r(W}' [fwG @ bwG] + b/})

where W}’ is the transformation matrix and b’f is
the bias vector.

3.3 Additional Techniques

Mehryary et al. (2016) demonstrated that random
initialization can, to some extent, have an impact
on the model’s performance on unseen data, i.e,
individual trained models may perform substan-
tially better (or worse) than the averaged results.

Further, an ensemble mechanism, was found
to reduce variability whilst yielding better perfor-
mance than the averaging mechanism. Two simple
but effective ensemble methods include strict ma-
jority vote (Mehryary et al., 2016) and weighted
sum over results (Ammar et al., 2017; Lim et al.,
2018; Verga et al., 2018). Since the former brings
better results in our experiments, our ensemble
system runs the model for 20 times and uses the
strict majority vote to obtain the final results.

For dealing with the imbalanced data problem,
we apply an under-sampling technique (Yen and
Lee, 2006) during pre-processing for the DDI-
2013 and Phenebank corpora. For a fair compari-
son we also apply some simple rules that was used
by comparison models as the pre/post-processing
step for DDI-2013 (following Zhou et al. (2018)),
BCR (following Gu et al. (2017)) and SciencelE
(following Lee et al. (2017)) (for further details,
see Appendix A).

Finally, we use several techniques to overcome
over-fitting, including: max-norm regularization
for Gradient descent (Qin et al., 2016); adding
Gaussian noise (Quan et al., 2016) with mean
0.001 to the input embeddings; applying dropout
(Srivastava et al., 2014) at 0.5 after all embedding
layers, LSTM layers and CNN layers; and using
early stopping technique (Caruana et al., 2000).

4 Results and Discussion

For each benchmark dataset we adopt the official
task evaluations for system with F'1 score, pre-
cision P and recall R. All official evaluations
only considered the actual relations (excluding the
Other relation and negatives) and worked on the
abstract level (excepted SemEval). For a clearer

Model Source of information F1

SVM .

(Rink and Harabagiu, 2010) Rich features 822

CNN + Attention Position, WordNet, 85.9

Shen and Huang (2016) words around nominals !

BLSTM + CNN NER, WordNet

(Cai et al., 2016) w/o inversed SDP* 83.8
v w/ inversed SDP 86.3

BLSTM + CNN + attention Position embedding 837

(Zhang et al., 2018)

WordNet, Character embeds 85.0

WordNet, Character embeds 859
(+ Inversed SDP) 85.4
+ Ensemble 86.3

Baseline model

MASS model

Table 3: Comparison of our system with top perform-
ing systems on the SemEval 2010 corpus. The official
evaluation is based on the macro-averaged F1. Since
most of the comparative models did not report their P
and R, we only report our F1 for comparison. All deep
learning models use word embedding and POS tag in-
formation. *We report results for our implementation
of Cai et al.’s system, without using the inversed SDP.

comparison, we also report both averaged and en-
semble results, in which, the averaged results are
calculated over 20 different runs. Both results
of the MASS model with and without applying
pre/post-processing rules are also reported.

We compare the performance of the MASS
model against three types of competitors: (i) A
baseline model is used to verify the effectiveness
of the multi-channel LSTM, in which we concate-
nate all embedding vectors used in MASS directly.
(ii) The first ranked in the original challenges. (iii)
Recent models with state-of-the-art results. The
comparative results are shown in Tables 3 - 8.

In all corpora, the MASS model’s results are
always better than the baseline model. This is
because directly concatenating many vectors with
various value ranges seems to be causing informa-
tion interference, and we cannot take advantages
of each sequence of information separately any-
more.

In SemEval2010 corpus (see Table 3), the
macro-averaged F'1 of the original model is 85.9%
with the standard deviation of 20 runs is 0.33. This
result outperforms all comparative models but Cai
et al. (2016) which fed the inversed SDP to enrich
the training data (we also tried feeding inversed
SDP to the model, but the result became worse
since this technique may be unsuitable for our
model). Applying ensemble procedure boosts F'1
for 0.45%, outperforming all comparative models.
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Model Source of information P R F1 Model Source of information P R F1  IntraF
2-phase classification Heterogeneous set of feature, 1 .
Hybrid kernel SVM!  rule-based negative filtering 64.6 65.6 65.1 VERSE (SVM) Rich features 51.0 61.5 558 634
. i i 2
é\[])ll\l/?;e classification Rich features 736 701 718 TurkuNLP (RNN) 623 448 52.1 620
DET-BLSTM Dynamic ext dep tree, 563 580 571 B
BLSTM + Attention  Position-aware attention (Lietal., 2017) distance embeddings - ’ :

758 703 73.0

(Zhou et al., 2018) + Pre-processing

WordNet, Character embeds  51.6 529 522

WordNet, Character embeds  54.0 56.3 55.1
+ Ensemble 56.5 573 56.0
+ Pre-processing 57.0 565 56.7

Baseline model

MASS model

Table 4: Results on the DDI-2013 corpus. The of-
ficial evaluation is the micro-averaged P, R and FI
at abstract-level. Note that all deep learning mod-
els use word embedding and POS tag information.
LChowdhury and Lavelli (2013). 2Raihani and Laach-
foubi (2017).

For dealing with DDI-2013 (see Table 4)- an
imbalanced data, comparative models often con-
sider it as two sub-tasks, i.e. detection and classi-
fication. Chowdhury and Lavelli (2013); Raihani
and Laachfoubi (2017) applied a two-phrase clas-
sification, in which one classifier detects positive
instance and the other then classifies them. Zhou
et al. (2018) used a binary softmax together with
a multi-class softmax. Obviously, our model en-
counters a serious problem with imbalanced data.
Since we treat the RE problem as a multi-class
classification, in which, negative is also consid-
ered as a class, our results are much lower than
comparative models. We applied negative under-
sampling technique and the pre-processing rules
from Zhou et al. (2018) to remove some neg-
atives, however the rules improved performance
only slightly (0.3%).

Since our system just extracts the relations

Model Source of information P R F1
CNN + ME! Contextual of whole sentence 59.7 57.5 57.2
(Gu et al., 2017) + Cross-sentence 60.9 59.5 60.2
” + Post processing 557 68.1 613
ASM?
(Panyam et al., 2018) Dependency graph 49.0 674 56.8
BRAN? Position, multi-head att 556 70.8 62.1
(Verga et al., 2018) + Data 64.0 69.2 66.2
reactal, + Ensemble 633 67.1 65.1

WordNet, character embeds 56.6 54.1 553

WordNet, character embeds 589 549 569
+ Ensemble 56.8 579 573
+ Post-processing 52.8 71.1 60.6

Baseline model

MASS model

Table 5: Results on the CDR corpus. The official eval-
uation is reported at abstract-leve. All deep learning
models use word embedding and POS tag information.
LCNN + Maximum Entropy. 2Approximate Subgraph
Matching. 3CNN + attention at abstract-level graph.

Baseline model WordNet, Char embds 60.8 47.2 53.1 62.5

WordNet, Char embds 59.8 51.3 552 64.6
+ Ensemble 59.2 522 555 648

MASS model

Table 6: Results on the BB3 corpus. The official eval-
uation is reported at both abstract- and intra sentence
levels. All deep learning models use word embedding
and POS tag information. !'Lever and Jones (2016).
2Mehryary et al. (2016)

within a sentence, for CDR (see Table 5)- a cor-
pus where 30% instances are cross-sentence re-
lations, it is reasonable to explain why our recall
is much lower than the comparative systems that
can extract cross-sentences relations (Gu et al.,
2017; Verga et al., 2018). Our results are still ex-
tremely encouraging since the F'1 is better than
other models which do not extract cross-sentences
relations (Gu et al., 2017; Panyam et al., 2018).
For a clearer comparison, we also try applying
post-processing rules used by Gu et al. (2017), and
they help to increase the F'1 by 3.3%. Our F'1
is just a little lower than the combined model of
CNN and ME which extracts cross-sentence re-
lations (Gu et al., 2017). The results for BRAN
(Verga et al., 2018) however are much better than
our MASS model. It is a a strong competitor
on this benchmark that is designed to focus on
cross-sentence relation classification by creating
the document-level graph and is also trained using
auxiliary data.

In the BB3 corpus (see Table 6), the original
system outperforms all previously reported results
at intra-sentence F'. Using ensemble procedure,
our results increase, but not much and still lower
than the DT-BLSTM model, which is based on
Dynamic Extended Tree (Li et al., 2017).

In the SciencelE corpus (see Table 7), our re-
sults are only outperformed by one competitor.
The reason may come from the characteristic of
Hyponym-of and Synonym-of relations. Neither
of these relations is expressed frequently by the
linguistic information of tokens appearing in the
SDP. In many cases, they are represented by dif-
ferent patterns with the same SDP. Therefore, our
conclusion is that maybe the use of SDP does not
match the SciencelE corpus. The system from
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Model

NTNU-2 (SVM)
(Barik and Marsi, 2017)

MIT (CNN)

Source of information F1

Rich features 50.0

Relative position, NER

(Lee et al., 2017) + Post-processing 64.5
S2_rel (BLSTM) Semisupervised, language model 54.1
(Ammar et al., 2017) + Ensemble 55.2
Baseline model WordNet, character embeds 48.7
‘WordNet, character embeds 54.6
+ Ensemble 56.4
MASS model + Post- processing (Lee et al., 2017)  60.3
+ Post- processing (rules ++) 73.0

Table 7: Results on the SciencelE corpus. The offi-
cial evaluation is based on the micro-averaged F1 at
abstract-level. Since most of comparative models did
not report their P and R, we only report our F1 for com-
parison. All deep learning models use word embedding
and POS tag information.

MIT (Lee et al., 2017) fed the whole sentence
with the relative position as input, therefore it may
catch many useful patterns which did not appear
in the SDP. To test this hypothesis, we apply the
post-processing rules used in Lee et al. (2017) and
boosted F'1 by 3.8%. In addition, when we ap-
plied some more simple linguistic rules to identify
synonyms and hyponyms, the results improved be-
yond expectations by 16.6%, totally outperformed
all other models.

For Phenebank (see Table 8), since this new
corpus did not have an official evaluation, we
report all possible MASS results. The micro-
averaged results are much better than the macro-
averaged. It is reasonable since Phenebank is an
extremely imbalanced corpus, in which we can
expect poor accuracy for rare classes, which to-
gether account for about 1% of positive data
(and positive data only account for 23% of the
whole corpus). The micro-averaged and macro-
averaged results of the proposed model are always
better than the baseline model, in both abstract and
sentence-level. Interestingly, the ensemble model
boosts the micro-averaged results (1.33% of F'1 at
sentence-level and 0.88% of F'1 at abstract-level),
but brings lower macro-averaged F'1 (decreased
0.51% and 0.77% of F'1 at sentence- and abstract-
level respectively).

4.1 Components and Information resources

We study the contribution of each model’s compo-
nent and information sources to the system perfor-
mance by ablating each of them in turn from the
model and afterwards evaluating the model on all
corpora. We compare these experimental results

Baseline Averaged Ensemble
Moo, P 458 43.6 442
av:;:)e 4 R 39.2 426 41.1
Sentence g F 422 43.1 426
level Mieo. P 565 532 55.4
| R 56.2 62.3 62.3
g F 56.4 573 587
Macn P 45.8 43.6 442
avz;"; 4 R 273 29.7 28.4
Abstract 8 F 343 353 34.6
level i p 56.5 532 55.5
‘cr“" 4 R 375 416 416
averaged g 45.1 467 475

Table 8: Experimental results on the Phenebank corpus
for the MASS model.

with the full system’s results and then illustrate
the changes of F1 in Figure 4. The changes of F'1
show that all model’s components and information
sources help the system to boost its performance
(in terms of the increments in F'1) in all corpora.
The contribution, however, varies among compo-
nents, information types and among corpora.

Among information sources, FastText embed-
ding (F'T) often has the most important con-
tribution, while using WordNet (W NN) brings
quite small improvements. Some examples
clearly demonstrate that the impact of information
sources varies greatly between benchmarks. The
dependency embedding (D EP) and type embed-
ding (Dtyp) have a very strong influence over the
results in DDI-2013 and SciencelE corpora but not
much in other corpora. Furthermore, POS tag in-
formation (POS) plays a very important role in
the BB3 corpus, surpassing F'I', while its contri-
bution in other corpora is not significant.

Also, the impact of model components shows
relatively inconsistent across corpora. The base-
line models always have lower F'1 than MASS.
This demonstrates the advantage of using a multi-
channel LSTM to represent various linguistic in-
formation.  Furthermore, the contributions of
multi-channel LSTM and CNN are quite balanced.
Interestingly, the undirected softmax always bene-
fits the result although it was only used to calculate
the penalty in the training step.

These experiments prove the effectiveness of
using various information as well as architectural
components. More importantly, these results show
that our proposed MASS model can automatically
adjust to each corpus, highlighting the flexibility
of the MASS model which is able to adapt to var-
ious datasets with many different characteristics.
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Figure 4: Ablation test results for various compo-
nents and information sources: FastText (FT), WordNet
(WN), Character-based (Char), POS tag, Dependency
(DEP), dependency type (Dtyp) and dependency direc-
tion embedding (Ddir). Results are calculated based on
the averaged F1 over 20 different runs. Baseline: Con-
catenating all embedding vectors to represent the words
instead of using multi-channel LSTM. CNN: Using the
final LSTM hidden states instead of CNN. udSfm: Re-
moving the undirected softmax

4.2 Error Analysis

We studied model outputs to analyze system er-
rors that defined the limitations of the model as
well as to prioritize future directions. Many er-
rors seem attributable to the parser. In some cases,
we cannot generate the SDP, and in some cases
where we have the SDP, information on the SDP
is still insufficient or redundant to make the cor-
rect prediction. The directionality of relations is
also challenging; in some cases the relation is pre-
dicted correctly but in the wrong direction. Other

errors can be attributed to the limitations of our
model, including (a) the inability to extract cross-
sentence relations (accounting for 30% in CDR,
BB3 and Phenebank), (b) the over-fitting problem
(leading to wrong prediction - F'P) and (c) lim-
ited generalisation power in predicting new rela-
tions (F' V). Finally, we found some errors caused
by the imperfect annotation. This problem may
come from the different annotations assigned in-
dependently by two annotators (see IAA column
in Table 2). We illustrate the above issues using
realistic examples in Appendix C.

5 Conclusions

In this paper, we have presented a novel well-
balanced relation classification model that con-
sists of several deep learning components applied
to the Dependency Unit of Shortest Dependency
Path. We evaluated our model on six bench-
mark datasets, comparing the results with 15 re-
cent state-of-the-art models. Experiments were
also carried out to verify the rationality and im-
pact of various model components and informa-
tion sources. Experimental results demonstrated
the robustness and adaptability of our system to
classify different relation types in various domains
without any architectural changes.

One existing issue with our model lies in its
sensitiveness to class imbalance. This limitation
resulted in significantly low performance on the
DDI-2013 corpus (compared to state-of-the-art re-
sults). Our experiments also highlighted the ex-
isting challenges for neural relation classification
models, including cross-sentence relations and im-
balanced data. We aim to address these problems
in future work.
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