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Abstract

Convolutional neural networks (CNNs) have
recently emerged as a popular building block
for natural language processing (NLP). De-
spite their success, most existing CNN mod-
els employed in NLP share the same learned
(and static) set of filters for all input sentences.
In this paper, we consider an approach of us-
ing a small meta network to learn context-
aware convolutional filters for text processing.
The role of meta network is to abstract the
contextual information of a sentence or doc-
ument into a set of input-aware filters. We fur-
ther generalize this framework to model sen-
tence pairs, where a bidirectional filter gen-
eration mechanism is introduced to encapsu-
late co-dependent sentence representations. In
our benchmarks on four different tasks, includ-
ing ontology classification, sentiment analy-
sis, answer sentence selection, and paraphrase
identification, our proposed model, a modified
CNN with context-aware filters, consistently
outperforms the standard CNN and attention-
based CNN baselines. By visualizing the
learned context-aware filters, we further vali-
date and rationalize the effectiveness of pro-
posed framework.

1 Introduction

In the last few years, convolutional neural net-
works (CNNs) have demonstrated remarkable
progress in various natural language process-
ing applications (Collobert et al., 2011), includ-
ing sentence/document classification (Kim, 2014;
Zhang et al., 2015; Wang et al., 2018), text se-
quence matching (Hu et al., 2014; Yin et al., 2016;
Shen et al., 2017), generic text representations
(Gan et al., 2016; Tang et al., 2018), language
modeling (Dauphin et al., 2017), machine trans-
lation (Gehring et al., 2017) and abstractive sen-
tence summarization (Gehring et al., 2017). CNNs
are typically applied to tasks where feature extrac-

tion and a corresponding supervised task are ap-
proached jointly (LeCun et al., 1998). As an en-
coder network for text, CNNs typically convolve
a set of filters, of window size n, with an input-
sentence embedding matrix obtained via word2vec
(Mikolov et al., 2013) or Glove (Pennington et al.,
2014). Different filter sizes n may be used within
the same model, exploiting meaningful semantic
features from different n-gram fragments.

The learned weights of CNN filters, in most
cases, are assumed to be fixed regardless of the in-
put text. As a result, the rich contextual informa-
tion inherent in natural language sequences may
not be fully captured. As demonstrated in Cohen
and Singer (1999), the context of a word tends to
greatly influence its contribution to the final super-
vised tasks. This observation is consistent with the
following intuition: when reading different types
of documents, e.g., academic papers or newspaper
articles, people tend to adopt distinct strategies for
better and more effective understanding, leverag-
ing the fact that the same words or phrases may
have different meaning or imply different things,
depending on context.

Several research efforts have sought to incor-
porate contextual information into CNNs to adap-
tively extract text representations. One common
strategy is the attention mechanism, which is typ-
ically employed on top of a CNN (or Long Short-
Term Memory (LSTM)) layer to guide the extrac-
tion of semantic features. For the embedding of a
single sentence, Lin et al. (2017) proposed a self-
attentive model that attends to different parts of a
sentence and combines them into multiple vector
representations. However, their model needs con-
siderably more parameters to achieve performance
gains over traditional CNNs. To match sentence
pairs, Yin et al. (2016) introduced an attention-
based CNN model, which re-weights the convo-
lution inputs or outputs, to extract interdepen-
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dent sentence representations. Wang et al. (2016);
Wang and Jiang (2017) explore a compare and ag-
gregate framework to directly capture the word-
by-word matching between two paired sentences.
However, these approaches suffer from the prob-
lem of high matching complexity, since a simi-
larity matrix between pairwise words needs to be
computed, and thus it is computationally ineffi-
cient or even prohibitive when applied to long sen-
tences (Mou et al., 2016).

In this paper, we propose a generic approach to
learn context-aware convolutional filters for nat-
ural language understanding. In contrast to tra-
ditional CNNs, the convolution operation in our
framework does not have a fixed set of filters, and
thus provides the network with stronger model-
ing flexibility and capacity. Specifically, we intro-
duce a meta network to generate a set of context-
aware filters, conditioned on specific input sen-
tences; these filters are adaptively applied to either
the same (Section 3.2) or different (Section 3.3)
text sequences. In this manner, the learned filters
vary from sentence to sentence and allow for more
fine-grained feature abstraction.

Moreover, since the generated filters in our
framework can adapt to different conditional infor-
mation available (labels or paired sentences), they
can be naturally generalized to model sentence
pairs. In this regard, we propose a novel bidirec-
tional filter generation mechanism to allow inter-
actions between sentence pairs while constructing
context-aware representations.

We investigate the effectiveness of our Adap-
tive Context-sensitive CNN (ACNN) framework
on several text processing tasks: ontology classi-
fication, sentiment analysis, answer sentence se-
lection and paraphrase identification. We show
that the proposed methods consistently outper-
forms the standard CNN and attention-based CNN
baselines. Our work provides a new perspective
on how to incorporate contextual information into
text representations, which can be combined with
more sophisticated structures to achieve even bet-
ter performance in the future.

2 Related Work

Learning deep text representations has attracted
much attention recently, since they can potentially
benefit a wide range of NLP applications (Col-
lobert et al., 2011; Kim, 2014; Wang et al., 2017a;
Shen et al., 2018a; Tang and de Sa, 2018; Zhang

et al.,, 2018). CNNs have been extensively in-
vestigated as the encoder networks of natural lan-
guage. Our work is in line with previous efforts
on improving the adaptivity and flexibility of con-
volutional neural networks (Jeon and Kim, 2017;
De Brabandere et al., 2016). Jeon and Kim (2017)
proposed to enhance the transformation modeling
capacity of CNNs by adaptively learning the filter
shapes through backpropagation. De Brabandere
et al. (2016) introduced an architecture to gen-
erate the future frames conditioned on given im-
age(s), by adapting the CNN filter weights to the
motion within previous video frames. Although
CNNs have been widely adopted in a large number
of NLP applications, improving the adaptivity of
vanilla CNN modules has been considerably less
studied. To the best of our knowledge, the work
reported in this paper is the first attempt to develop
more flexible and adjustable CNN architecture for
modeling sentences.

Our use of a meta network to generate pa-
rameters for another network is directly inspired
by the recent success of hypernetworks for text-
generation tasks (Ha et al., 2017), and dynamic
parameter-prediction for video-frame generation
(De Brabandere et al., 2016). In contrast to
these works that focus on generation problems,
our model is based on context-aware CNN fil-
ters and is aimed at abstracting more informa-
tive and predictive sentence features. Most sim-
ilar to our work, Liu et al. (2017) designed a
meta network to generate compositional functions
over tree-structured neural networks for encapsu-
lating sentence features. However, their model is
only suitable for encoding individual sentences,
while our framework can be readily generalized
to capture the interactions between sentence pairs.
Moreover, our framework is based on CNN mod-
els, which is advantageous due to fewer parame-
ters and highly parallelizable computations rela-
tive to sequential-based models.

3 Model

3.1 Basic CNN for text representations

The CNN architectures in (Kim, 2014; Collobert
et al., 2011) are typically utilized for extracting
sentence representations, by a composition of a
convolutional layer and a max-pooling operation
over all resulting feature maps. Let the words of a
sentence of length T' (padded where necessary) be
x1, 2, ... , Tr. The sentence can be represented
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as a matrix X € R%*T, where each column rep-
resents a d-dimensional embedding of the corre-
sponding word.

In the convolutional layer, a set of filters with
weights W € RE*h*d js convolved with ev-
ery window of h words within the sentence,
ie,{T1h, Toptl,- -+, Tr—pi1.17 ), Where K is the
number of output feature maps (and filters). In this
manner, feature maps p for these h-gram text frag-
ments are generated as:

p; = f(W X zjigp—1 +0) (D

where ¢ = 1,2,....,7 — h + 1 and x denotes
the convolution operator at the ith shift location.
Parameter b € R is the bias term and f(-) is
a non-linear function, implemented as a rectified
linear unit (ReLU) in our experiments. The out-
put feature maps of the convolutional layer, i.e.,
p € REX(T=1+1) are then passed to the pooling
layer, which takes the maximum value in every
row of p, forming a K -dimensional vector, z. This
operation attempts to keep the most salient feature
detected by every filter and discard the information
from less fundamental text fragments. Moreover,
the max-over-time nature of the pooling operation
(Collobert et al., 2011) guarantees that the size of
the obtained representation is independent of the
sentence length.

Note that in basic CNN sentence encoders, fil-
ter weights are the same for different inputs, which
may be suboptimal for feature extraction (De Bra-
bandere et al., 2016), especially in the case where
conditional information is available.

3.2 Learning context-sensitive filters

The proposed architecture to learn context-
sensitive filters is composed of two principal mod-
ules: (i) a filter generation module, which pro-
duces a set of filters conditioned on the input sen-
tence; and (ii) an adaptive convolution module,
which applies the generated filters to an input sen-
tence (this sentence may be either the same as or
different from the first input, as discussed further
in Section 3.3). The two modules are jointly differ-
entiable, and the overall architecture can be trained
in an end-to-end manner. Since the generated fil-
ters are sample-specific, our ACNN feature extrac-
tor for text tends to have stronger predictive power
than a basic CNN encoder. The general ACNN
framework is shown schematically in Figure 1.

B y

Context-aware Filters

Convolution
module

Filter generation
module

X

I I go backand try other dishes

Figure 1: The general ACNN framework. Notably, the input
sentences to filter generating module and convolution module
could be different (see Section 3.3).

Filter generation module Instead of utilizing
fixed filter weights W for different inputs (as (1)),
our model generates a set of filters conditioned
on the input sentence X. Given an input X, the
filter-generation module can be implemented, in
principle, as any deep (differentiable) architecture.
However, in order to handle input sentences of
variable length common in natural language, we
design a generic filter generation module to pro-
duce filters with a predefined size.

First, the input X is encapsulated into a fixed-
length vector (code) z with the dimension of [,
via a basic CNN model, where one convolutional
layer is employed along with the pooling opera-
tion (as described in Section 3.1). On top of this
hidden representation z, a deconvolutional layer,
which performs transposed operations of convolu-
tions (Radford et al., 2016), is further applied to
produce a unique set of filters for X (as illustrated
in Figure 1):

z = CNN(X;6,), )
f =DCNN(z;0,) . 3)

where 6, and 0, are the learned parameters in
each layer of the filter-generating module, respec-
tively. Specifically, we convolve z with a filter
of size (fs, I, ks, ky), where fs is the number
of generated filters and the kernel size is (k;, ky).
The output will be a tensor of shape (fs, ks, k).
Since the dimension of hidden representation z is
independent of input-sentence length, this frame-
work guarantees that the generated filters are of
the same shape and size for every sentence. Intu-
itively, the encoding part of filter generation mod-
ule abstracts the information from sentence X into
z. Based on this representation, the deconvolu-
tional up-sampling layer determines a set of fixed-
size, fine-grained filters f for the specific input.
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Adaptive convolution module The adaptive
convolution module takes as inputs the generated
filters f and an input sentence. This sentence and
the input to the filter-generation module may be
identical (as in Figure 1) or different (as in Fig-
ure 2). With the sample-specific filters, the input
sentence is adaptively encoded, again, via a basic
CNN architecture as in Section 3.1, i.e., one con-
volutional and one pooling layer. Notably, there
are no additional parameters in the adaptive con-
volution module (no bias term is employed).

Our ACNN framework can be seen as a gen-
eralization of the basic CNN, which can be rep-
resented as an ACNN by setting the outputs of
the filter-generation module to a constant, regard-
less of the contextual information from input sen-
tence(s). Because of the learning-to-learn (Thrun
and Pratt, 2012) nature of the proposed ACNN
framework, it tends to have greater representa-
tional power than the basic CNN.

3.3 Extension to text sequence matching

Considering the ability of our ACNN framework
to generate context-aware filters, it can be nat-
urally generalized to the task of text sequence
matching. In this section, we will describe the
proposed Adaptive Question Answering (AdaQA)
model in the context of answer sentence selection
task. Note that the corresponding model can be
readily adapted to other sentence matching prob-
lems as well (see Section 5.2).

Given a factual question ¢ (associated with a list
of candidate answers {a,as,...,ay,} and their
corresponding labels y = {y1,v2,...,Ym}), the
goal of the model is to identify the correct answers
from the set of candidates. For¢ =1,2,...,m, if
a; correctly answers ¢, then y; = 1, and other-
wise y; = 0. Therefore, the task can be cast as a
classification problem where, given an unlabeled
question-answer pair (g;,a;), we seek to predict
the judgement y;.

Conventionally, a question ¢ and an answer a
are independently encoded by two basic CNNs
to fixed-length vector representations, denoted h,
and h,, respectively. They are then directly em-
ployed to predict the judgement y. This strategy
could be suboptimal, since no communication (in-
formation sharing) occurs between the question-
answer pair until the top prediction layer. Intu-
itively, while the model is inferring the representa-
tion for a question, if the meaning of the answer is
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Figure 2: Schematic description of Adaptive Question An-
swering (AdaQA) model.

taken into account, those features that are relevant
for final prediction are more likely to be extracted.
So motivated, we propose an adaptive CNN-based
question-answer (AdaQA) model for this problem.
The AdaQA model can be divided into three mod-
ules: filter generation, adaptive convolution, and
matching modules, as depicted schematically in
Figure 2. Assume there is a question-answer pair
to be matched, represented by word-embedding
matrices, i.e. QQ € R7a%d and A € RTe*4 where
d is the embedding dimension and 7 and 7|, are
respective sentence lengths. First, they are passed
to two filter-generation modules, to produce two
sets of filters that encapsulate features of the cor-
responding input sentences. Similar to the setup in
Section 3.2, we also employ a two-step process to
produce the filters. For a question @, the generat-
ing process is:

z, = CNN(Q; 1), 4)
fq =DCNN(z,; 69) (5)

where CNN and DCNN denote the basic CNN unit
and deconvolution layer, respectively, as discussed
in Section 2.1. Parameters 67 and 0 are to be
learned. The same process can be utilized to pro-
duce encodings z, and filters f, for the answer
input, A, with parameters 8¢ and 67, respectively.

The two sets of filter weights are then passed to
adaptive convolution modules, along with @ and
A, to obtain the extracted question and answer
embeddings. That is, the question embedding is
convolved with the filters produced by the answer
and vise versa (¢, and 1, are the bias terms to
be learned). The key idea is to abstract informa-
tion from the answer (or question) that is perti-
nent to the corresponding question (or answer).
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Compared to a Siamese CNN architecture (Brom-
ley et al., 1994), our model selectively encapsu-
lates the most important features for judgement
prediction, removing less vital information. We
then employ the question and answer representa-
tions h, € R, h, € R"" as inputs to the match-
ing module (where nj, is the dimension of ques-
tion/answer embeddings). Following Mou et al.
(2016), the matching function is defined as:

t=[hg;ha;hg — he g © hy) (6)
p(y = 1|hg, hy) = MLP(¢; 7)) (7)

where — and © denote an element-wise sub-
traction and element-wise product, respectively.
[hqa; hy) indicates that h, and h; are stacked as
column vectors. The resulting matching vector
t € R* is then sent through an MLP layer (with
sigmoid activation function and parameters 1’ to
be learned) to model the desired conditional dis-
tribution p(y; = 1|hy, he).

Notably, we share the weights of filter gener-
ating networks for both the question and answer,
so that the model adaptivity for answer selection
can be improved without an excessive increase in
the number of parameters. All three modules in
AdaQA model are jointly trained end-to-end. Note
that the AdaQA model proposed can be readily
adapted to other sentence matching tasks, such as
paraphrase identification (see Section 5.2).

3.4 Connections to attention mechanism

The adaptive context-aware filter generation
mechanism proposed here bears close resem-
blance to attention mechanism (Yin et al., 2016;
Bahdanau et al., 2015; Xiong et al., 2017) widely
adopted in the NLP community, in the sense that
both methods intend to incorporate rich contextual
information into text representations. However, at-
tention is typically operated on top of the hidden
units preprocessed by CNN or LSTM layers, and
assigns different weights to each unit according to
a context vector. By contrast, in our context-aware
filter generation mechanism, the contextual infor-
mation is inherently encoded into the convolu-
tional filters, which directly interact with the input
sentence during the convolution encoding opera-
tion. Notably, according to our experiments, the
proposed filter generation module can be readily
combined with (standard) attention mechanisms
to further enhance the modeling expressiveness of
CNN encoder.

Dataset # train/ test average #w  vocabulary
Yelp P. 560k/ 38k 138 25,709
DBpedia 560k/ 70k 56 21,666
WikiQA 20,360/ 2,352 7126 10,000
SelQA 66,438/ 19,435 8/24 20,000
Quora 390k/ 5,000 13/13 20,000

Table 1: Dataset statistics.

4 Experimental Setup

Datasets We investigate the effectiveness of the
proposed ACNN framework on both document
classification and text sequence matching tasks.
Specifically, we consider two large-scale docu-
ment classification datasets: Yelp Reviews Polar-
ity, and DBPedia ontology datasets (Zhang et al.,
2015). For Yelp reviews, we seek to predict a
binary label (positive or negative) regarding one
review about a restaurant. DBpedia is extracted
from Wikipedia by crowd-sourcing and is catego-
rized into 14 non-overlapping ontology classes, in-
cluding Company, Athlete, Natural Place, etc. We
sample 15% of the training data as the validation
set, to select hyperparameters for our models and
perform early stopping. For sentence matching,
we evaluate the AdaQA model on two datasets for
open-domain question answering: WikiQA (Yang
et al.,, 2015) and SelQA (Jurczyk et al., 2016).
Given a question, the task is to rank the corre-
sponding candidate answers, which, in the case of
WikiQA, are sentences extracted from the sum-
mary section of a related Wikipedia article. To
facilitate comparison with existing results (Yin
et al., 2016; Yang et al., 2015; Shen et al., 2018b),
we truncate the candidate answers to a maximum
length of 40 tokens for all experiments on the
WikiQA dataset. We also consider the task of
paraphrase identification with the Quora Question
Pairs dataset, with the same data splits as in (Wang
et al., 2017b). A summary of all datasets is pre-
sented in Table 1.

Training Details For the document classifica-
tion experiments, we randomly initialize the word
embeddings uniformly within [—0.001, 0.001] and
update them during training. For the generated
filters, we set the window size as h = 5, with
K = 100 feature maps (the dimension of z is
set as 100). For direct comparison, we employ
the same filter shape/size settings as in our ba-
sic CNN implementation. A one-layer architec-
ture is utilized for both the CNN baseline and the
ACNN model, since we did not observe significant

1843



performance gains with a multilayer architecture.
The minibatch size is set as 128, and a dropout
rate of 0.2 is utilized on the embedding layer. We
observed that a larger dropout rate (e.g., 0.5) will
hurt performance on document classifications and
make training significantly slower.

For the sentence matching tasks, we initialized
the word embeddings with 50-dimensional Glove
(Pennington et al., 2014) word vectors pretrained
from Wikipedia 2014 and Gigaword 5 (Penning-
ton et al., 2014) for all model variants. As for
the filters, we set the window size as h = b5,
with K = 300 feature maps. As described in
Section 3.3, the vector ¢, output from the match-
ing module, is fed to the prediction layer, imple-
mented as a one-layer MLP followed by the sig-
moid function. We use Adam (Kingma and Ba,
2014) to train the models, with a learning rate of
3 x 10~%. Dropout (Srivastava et al., 2014), with
a rate of 0.5, is employed on the word embed-
ding layer. The hyperparameters are selected by
choosing the best model on the validation set. All
models are implemented with TensorFlow (Abadi
et al., 2016) and are trained using one NVIDIA
GeForce GTX TITAN X GPU with 12GB mem-
ory.

Baselines For document classification, we con-
sider several baseline models: (¢) ngrams (Zhang
et al.,, 2015), a bag-of-means method based
on TFIDF representations built by choosing the
500,000 most frequent n-grams (up to 5-grams)
from the training set and use their correspond-
ing counts as features; (¢¢) small/large word CNN
(Zhang et al., 2015): 6 layer word-based convo-
lutional networks, with 256/1024 features at each
layer, denoted as small/large, respectively; (i%)
deep CNN (Conneau et al., 2016): deep con-
volutional neural networks with 9/17/29 layers.
To evaluate the effectiveness of proposed AdaQA
model, we compare it with several CNN-based
sequence matching baselines, including Vanilla
CNN (Jurczyk et al., 2016; Santos et al., 2017), at-
tentive pooling networks (dos Santos et al., 2016),
and ABCNN (Yin et al., 2016) (where an attention
mechanism is employed over the two sentence rep-
resentations).

Evaluation Metrics For document categoriza-
tion and paraphrase identification tasks, we em-
ploy the percentage of correct predictions on the
test set to evaluate and compare different models.

Model Yelp P. | DBpedia
CNN-based Baseline Models
ngrams”™ 4.36 1.37
ngrams TFIDF* 4.56 1.31
Small word CNN* 5.54 1.85
Large word CNN* 4.39 1.72
Self-attentive Embedding * 3.92 1.14
Deep CNN (9 layer)® 4.88 1.35
Deep CNN (17 layer)® 4.50 1.40
Deep CNN (29 layer)" 4.28 1.29
Our Implementations

S-CNN 14.48 22.35
S-ACNN 6.41 5.16
M-CNN 4.58 1.66
M-ACNN 3.89 1.07

Table 2: Test error rates on document classification tasks (in
percentages). S-model indicates that the model has one single
convolutional filter, while M-model indicates that the model
has multiple convolutional filters. Results marked with * are
reported by (Zhang et al., 2015), } are reported by (Conneau
et al., 2016), and I are reported by (Lin et al., 2017).

For the answer sentence selection task, mean av-
erage precision (MAP) and mean reciprocal rank
(MRR) are utilized as the corresponding evalua-
tion metrics.

5 Experimental Results

5.1 Document Classification

To explicitly explore whether our ACNN model
can leverage the input-aware filter weights for bet-
ter sentence representation, we perform a compar-
ison between the basic CNN and ACNN models
with only a single filter, which are denoted as S-
CNN, S-ACNN, respectively (this setting may not
yield best overall performance, since only a sin-
gle filter is used, but it allows us to isolate the im-
pact of adaptivity). As illustrated in Table 2, S-
ACNN significantly outperforms S-CNN on both
datasets, demonstrating the advantage of the filter-
generation module in our ACNN framework. As
a result, with only one convolutional filter and
thus very limited modeling capacity, our S-ACNN
model tends to be much more expressive than the
basic CNN model, due to the flexibility of apply-
ing different filters to different sentences.

We further experiment on both ACNN and CNN
models with multiple filters. The corresponding
document categorization accuracies are presented
in Table 2. Although we only use one convolu-
tion layer for our ACNN model, it already out-
performs other CNN baseline methods with much
deeper architectures. Moreover, our method ex-
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Model | MAP | MRR

CNN-based Baseline Models
bigram CNN + Cnt* 0.6520 | 0.6652
Attentive Pooling Network | 0.6886 | 0.6957
ABCNN 0.6921 | 0.7127

Our Implementations

CNN 0.6752 | 0.6890
ACNN (self-adaptive) 0.6897 | 0.7032
AdaQA (one-way) 0.7005 | 0.7161
AdaQA (two-way) 0.7107 | 0.7304
AdaQA (two-way) + att. 0.7325 | 0.7428

Table 3: Results of our models on WikiQA dataset, com-
pared with previous CNN-based methods.

hibits higher accuracy than n-grams, which is a
very strong baseline as shown in (Zhang et al.,
2015). We attribute the superior performance
of the ACNN framework to its stronger (adap-
tive) feature-extraction ability. Moreover, our M-
ACNN also achieves slightly better performance
than self-attentive sentence embeddings proposed
in Lin et al. (2017), which requires significant
more parameters than our method.

Effect of number of filters To further demon-
strate that the performance gains in document cat-
egorization experiments originates from the im-
proved adaptivity of our ACNN framework, we
implement the basic CNN model with different
numbers of filter sizes, ranging from 1 to 1000.
As illustrated in Figure 3(a), when the filter size
is larger than 100, the test accuracy of the stan-
dard CNN model does not show any noticeable
improvement with more filters. More importantly,
even with a filter size of 1000, the classification
accuracy of the CNN is worse than that of the
ACNN model with the filter number restricted to
100. Given these observations, we believe that the
boosted categorization accuracy does come from
the improved flexibility and thus better feature ex-
traction of our ACNN framework.

5.2 Answer Sentence Selection

To elucidate the role of different parts (modules) in
our AdaQA model, we implement several model
variants for comparison: (i) a “vanilla” CNN
model that independently encodes two sentence
representations for matching; (if) a self-adaptive
ACNN-based model where the question/answer
sentence generates adaptive filters only to con-
volve with the input itself; (iii) a one-way ACNN
model where only the answer sentence represen-
tation is extracted with adaptive filters, which

Model | MAP | MRR

CNN-based Baseline Models
CNN: baseline™ 0.8320 | 0.8420
CNN: average + word™ | 0.8400 | 0.8494
CNN: aver + emb™ 0.8466 | 0.8568
CNN: hinge_loss* 0.8758 | 0.8812
CNN-DAN* 0.8655 | 0.8730

Our Implementations

CNN 0.8644 | 0.8720
ACNN (self-adaptive) 0.8739 | 0.8801
AdaQA (one-way) 0.8823 | 0.8889
AdaQA (two-way) 0.8914 | 0.8983
AdaQA (two-way) + att. | 0.9021 | 0.9103

Table 4: Results of our models on SelQA dataset, compared
with previous CNN-based methods. Results marked with *
are from (Jurczyk et al., 2016), and marked with I are from
(Santos et al., 2017).

are generated conditioned on the question; (iv)
a two-way AdaQA model as described in Sec-
tion 2.4, where both sentences are adaptively en-
coded, with filters generated conditioned on the
other sequence; (v) considering that the proposed
filter generation mechanism is complementary to
the attention layer typically employed in sequence
matching tasks (see Section 3.4), we experiment
with another model variant that combines the pro-
posed context-aware filter generation mechanism
with the multi-perspective attention layer intro-
duced in (Wang et al., 2017b).

Tables 3 and 4 show experimental results of
our models on WikiQA and SelQA datasets, along
with other state-of-the-art methods. Note that the
self-adaptive ACNN model variant, which gen-
erates filters only for the input itself (without
any interactions before the top matching module),
slightly outperforms the vanilla CNN Siamese
model. Combined with the results in document
categorization experiments, we believe that our
ACNN framework, in its simplest form, can be uti-
lized as a powerful feature extractor for transform-
ing natural language sentences into fixed-length
vectors. More importantly, our two-way AdaQA
model exhibits superior results compared with the
one-way variant as well as other CNN-based base-
line models on the WikiQA dataset. This obser-
vation indicates that the bidirectional filter gener-
ation mechanism is strongly associated with the
performance gains. While combined with the
multi-perspective attention layers, adopted after
the ACNN encoding layer, our two-way AdaQA
model achieves even better performance. This
suggests that the proposed strategy is complemen-
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Figure 3: Comprehensive study of the proposed ACNN framework, including (a) the number of filters (Yelp dataset), and (b)
performance vs question types (WikiQA dataset), and (c) ¢-SNE visualization of learned filter weights (DBpedia dataset).

Model Accuracy
Siamese-CNN 0.7960
Multi-Perspective-CNN 0. 8138
AdaQA (two-way) 0.8516
AdaQA (two-way) + att. 0.8794

Table 5: Results on the Quora Question Pairs dataset.

tary, in terms of the incorporation of rich contex-
tual information, to the standard attention mech-
anism. The same trend is also observed on the
SelQA dataset (as shown in Table 4), which is a
much larger dataset than WikiQA.

Notably, our model yields significantly bet-
ter results than an attentive pooling network and
ABCNN (attention-based CNN) baselines. We at-
tribute the improvement to two potential advan-
tages of our AdaQA model: (i) for the two pre-
vious baseline methods, the interaction between
question and answer takes place either before or
after convolution. However, in our AdaQA model,
the communication between two sentences is in-
herent in the convolution operation, and thus can
provide the abstracted features with more flexibil-
ity; (ii) the bidirectional filter generation mecha-
nism in our AdaQA model generates co-dependent
representations for the question and candidate an-
swer, which could enable the model to recover
from initial local maxima corresponding to incor-
rect predictions (Xiong et al., 2017).

Paragraph Identification Considering that the
proposed AdaQA model can be readily general-
ized to other text sequence matching problems,
we further evaluate the proposed framework on
the paraphrase identification task with the Quora
question pairs dataset. To ensure a fair compari-
son, we employ the same data splits as in (Wang
et al., 2017b). As illustrated in Table 5, our two-
way AdaQA model again exhibits superior perfor-
mances compared with basic CNN models (as re-
ported in (Wang et al., 2017b)).

5.3 Discussion

Reasoning ability To associate the improved
answer sentence selection results with the reason-
ing capabilities of our AdaQA model, we further
categorize the questions in the WikiQA test set
into 5 types containing: ‘What’, “Where’, ‘How’,
‘When’ or ‘Who’. We then calculate the MAP
scores of the basic CNN and our AdaQA model
on different question types. Similar to the find-
ings in (Miao et al., 2016), we observe that the
‘How’ question is the hardest to answer, with the
lowest MAP scores. However, our AdaQA model
improves most over the basic CNN on the ‘How’
type question, see Figure 3(b). Further compar-
ing our results with NASM in (Miao et al., 2016),
our AdaQA model (with a MAP score of 0.579)
outperforms their reported ‘How’ question MAP
scores (0.524) by a large margin, indicating that
the adaptive convolutional filter-generation mech-
anism improves the model’s ability to read and
reason over natural language sentences.

Filter visualization To better understand what
information has been encoded into our context-
aware filters, we visualize one of the filters for
sentences within the test set (on the DBpedia
dataset) with ¢-SNE. The corresponding results are
shown in Figure 3(c). It can be observed that the
filters for documents with the same label (ontol-
ogy) are grouped into clusters, indicating that for
different types of document, ACNN has leveraged
distinct convolutional filters for better feature ex-
traction.

6 Conclusions

We presented a context-aware convolutional filter-
generation mechanism, introducing a meta net-
work to adaptively produce a set of input-aware
filters. In this manner, the filter weights vary from
sample to sample, providing the CNN encoder net-
work with more modeling flexibility and capacity.
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This framework is further generalized to model
question-answer sentence pairs, leveraging a two-
way feature abstraction process. We evaluate our
models on several document-categorization and
sentence matching benchmarks, and they consis-
tently outperform the standard CNN and attention-
based CNN baselines, demonstrating the effective-
ness of our framework.
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