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Abstract

Adjectives like warm, hot, and scalding all de-
scribe temperature but differ in intensity. Un-
derstanding these differences between adjec-
tives is a necessary part of reasoning about nat-
ural language. We propose a new paraphrase-
based method to automatically learn the rela-
tive intensity relation that holds between a pair
of scalar adjectives. Our approach analyzes
over 36k adjectival pairs from the Paraphrase
Database under the assumption that, for exam-
ple, paraphrase pair really hot↔ scalding sug-
gests that hot < scalding. We show that com-
bining this paraphrase evidence with existing,
complementary pattern- and lexicon-based ap-
proaches improves the quality of systems for
automatically ordering sets of scalar adjectives
and inferring the polarity of indirect answers to
yes/no questions.

1 Introduction

Semantically similar adjectives are not fully inter-
changeable in context. Although hot and scald-
ing are related, the statement “the coffee was hot”
does not imply the coffee was scalding. Hot and
scalding are scalar adjectives that describe tem-
perature, but they are not interchangeable because
they vary in intensity. A native English speaker
knows that their relative intensities are given by
the ranking hot < scalding. Understanding this
distinction is important for language understand-
ing tasks such as sentiment analysis (Pang et al.,
2008), question answering (de Marneffe et al.,
2010), and textual inference (Dagan et al., 2006).

Existing lexical resources such as WordNet
(Miller, 1995; Fellbaum, 1998) do not include the
relative intensities of adjectives. As a result, there
have been efforts to automate the process of learn-
ing intensity relations (e.g. Sheinman and Toku-
naga (2009), de Melo and Bansal (2013), Wilkin-
son (2017), etc.). Many existing approaches rely

particularly pleased ↔ ecstatic
quite limited ↔ restricted
rather odd ↔ crazy
so silly ↔ dumb
completely mad ↔ crazy

Figure 1: Examples of paraphrases from PPDB of the
form RB JJu↔ JJv which can be used to infer pairwise
intensity relationships (JJu < JJv).

on pattern-based or lexicon-based methods to pre-
dict the intensity ranking of adjectives. Pattern-
based approaches search large corpora for lexical
patterns that indicate an intensity relationship –
for example, “not just X, but Y” implies X < Y.
As with pattern-based approaches for other tasks
(such as hypernym discovery (Hearst, 1992)), they
are precise but have relatively sparse coverage
of comparable adjectives, even when using web-
scale corpora (de Melo and Bansal, 2013; Rup-
penhofer et al., 2014). Lexicon-based approaches
employ resources that map an adjective to a real-
valued number that encodes both intensity and po-
larity (e.g. good might map to 1 and phenomenal
to 5, while bad maps to -1 and awful to -3). They
can also be precise, but may not cover all adjec-
tives of interest.

We propose paraphrases as a new source of ev-
idence for the relative intensity of scalar adjec-
tives. A paraphrase is a pair of words or phrases
with approximately similar meaning, such as re-
ally great↔ phenomenal. Adjectival paraphrases
can be exploited to uncover intensity relation-
ships. A paraphrase pair of the above form, where
one phrase is composed of an intensifying ad-
verb and an adjective (really great) and the other
is a single-word adjective (phenomenal), provides
evidence that great < phenomenal. By drawing
this evidence from large, automatically-generated



paraphrase resources like the Paraphrase Database
(PPDB) 1 (Ganitkevitch et al., 2013; Pavlick et al.,
2015), it is possible to obtain high-coverage pair-
wise adjective intensity predictions at reasonably
high accuracy.

We demonstrate the usefulness of paraphrase
evidence for inferring relative adjective intensity
in two tasks: ordering sets of adjectives along an
intensity scale, and inferring the polarity of indi-
rect answers to yes/no questions. In both cases, we
find that combining the relatively noisy, but high-
coverage, paraphrase evidence with more precise
but low-coverage pattern- or lexicon-based evi-
dence improves overall quality.

2 Related Work

Noting that adding adjective intensity relations to
WordNet (Miller, 1995; Fellbaum, 1998) would be
useful, Sheinman et al. (2013) propose a system
for automatically extracting sets of same-attribute
adjectives from WordNet ‘dumbbells’ – consisting
of two direct antonyms at the poles and satellites
of synonymous/related adjectives incident to each
antonym (Gross and Miller, 1990) – and ordering
them by intensity. The annotations, however, are
not in WordNet as of its latest version (3.1).

Work on adjective intensity generally focuses
on two related tasks: clustering adjectives based
on the attributes they modify, and ranking same-
attribute adjectives by intensity. With respect to
the former, common approaches involve cluster-
ing adjectives by their contexts (Hatzivassiloglou
and McKeown, 1993; Shivade et al., 2015). We do
not focus on the clustering task in this paper, but
concentrate on the ranking task.

Approaches to the task of ranking scalar ad-
jectives by their intensity mostly fall under the
paradigms of pattern-based or lexicon-based ap-
proaches. Pattern-based approaches work by ex-
tracting lexical (Sheinman and Tokunaga, 2009;
de Melo and Bansal, 2013; Sheinman et al., 2013)
or syntactic (Shivade et al., 2015) patterns indica-
tive of an intensity relationship from large corpora.
For example, the patterns “X, but not Y” and “not
just X but Y” provide evidence that X is an adjec-
tive less intense than Y.

Lexicon-based approaches are derived from the
premise that adjectives can provide information
about the sentiment of a text (Hatzivassiloglou and
McKeown, 1993). These methods draw upon a

1www.paraphrase.org

lexicon that maps adjectives to real-valued scores
encoding both sentiment polarity and intensity.
The lexicon might be compiled automatically – for
example, from analyzing adjectives’ appearance in
star-valued product or movie reviews (de Marn-
effe et al., 2010; Rill et al., 2012; Sharma et al.,
2015; Ruppenhofer et al., 2014) – or manually. In
our experiments we utilize the manually-compiled
SO-CAL lexicon (Taboada et al., 2011).

Our paraphrase-based approach to inferring rel-
ative adjective intensity is based on paraphrases
that combine adjectives with adverbial modifiers.
A tangentially related approach is Collex (Rup-
penhofer et al., 2014), which is motivated by the
intuition that adjectives with extreme intensities
are modified by different adverbs from adjectives
with more moderate intensities: extreme adverbs
like absolutely are more likely to modify extreme
adjectives like brilliant than are moderate adverbs
like very. Unlike Collex, which requires pre-
determined sets of ‘end-of-scale’ and ‘normal’ ad-
verbial modifiers, our approach learns the identity
and relative importance of intensifying adverbs.

Relative intensity is just one of several dimen-
sions of gradable adjective semantics. In addi-
tion to intensity scales, a comprehensive model
of scalar adjective semantics might also incorpo-
rate notions of intensity range (Morzycki, 2015),
adjective class (Kamp and Partee, 1995), and
scale membership according to meaning (Hatzi-
vassiloglou and McKeown, 1993). In this paper
we take the position that relative intensity is worth
studying on its own because it is an important
component of adjective semantics, usable directly
for some NLP tasks such as sentiment analysis
(Pang et al., 2008), and as part of a more com-
prehensive model for other tasks like question an-
swering (de Marneffe et al., 2010).

3 Paraphrase-based Intensity Evidence

Adjectival paraphrases provide evidence about the
relative intensity of adjectives. A paraphrase of the
form RB JJu ↔ JJv – where one phrase is com-
prised of an adjective modified by an intensifying
adverb (RB JJu), and the other is a single-word
adjective (JJv) – is evidence that the first adjective
is less intense than the second (JJu < JJv). We
propose a new method for encoding this evidence
and using it to make pairwise adjective intensity
predictions. First, a graph (JJGRAPH) is formed
to represent over 36k adjectival paraphrases hav-

www.paraphrase.org


Round 1 very hard ↔ harder
kinda hard ↔ harder

so hard ↔ harder
pretty hard ↔ harder
⇓

Round 2 very pleasant ↔ delightful
kinda hard ↔ tricky

so wonderful ↔ brilliant
pretty simple ↔ plain

⇓
Round 3 more pleasant ↔ delightful

really hard ↔ tricky
truly wonderful ↔ brilliant
quite simple ↔ plain

Figure 2: Bootstrapping process for identifying inten-
sifying adverbs. The adverbs found in Rounds 1 and 3
are used to build intensifying edges in JJGRAPH.

ing the specified form. Next, data in the graph are
used to make pairwise adjective intensity predic-
tions.

3.1 Identifying Intensifying Adverbs

In JJGRAPH, nodes are adjectives, and each di-
rected edge (JJu −−→

RB
JJv) corresponds to an adjec-

tival paraphrase of the form RB JJu ↔ JJv – for
example, very tall ↔ large – where one ‘phrase’
(JJv) is an adjective and the other (RB JJu) is an
adjectival phrase containing an adverb and adjec-
tive (see Figure 1 for examples).

Adverbs in PPDB can be intensifying or de-
intensifying. An intensifying adverb (e.g. very,
totally) strengthens the adjectives it modifies. In
contrast, a de-intensifying adverb (e.g. slightly,
somewhat) weakens the adjectives it modifies.
Since edges in JJGRAPH ideally point in the di-
rection of increasing intensity, the first step in the
process of creating JJGRAPH is to identify a set of
adverbs that are likely intensifiers to be included
as edges.

For this purpose, we generate a set R of likely
intensifying adverbs within PPDB using a boot-
strapping approach (Figure 2). The process starts
with a small seed set of adjective pairs having a
known intensity relationship. The seeds are pairs
(ju, jv) from PPDB-XXL2 such that ju is a base-
form adjective (e.g. hard), and jv is its compar-
ative or superlative form (e.g. harder or hard-
est). Using the seeds, we identify intensifying ad-

2PPDB comes in six increasingly large sizes from S to
XXXL; larger collections have wider coverage but lower pre-
cision. Our work uses XXL.

verbs by finding adjectival paraphrases in PPDB
of the form (riju ↔ jv); because ju < jv, ad-
verb ri is inferred to be intensifying (Round 1).
All such ri are added to initial adverb set R1.
The process continues by extracting paraphrases
(riju′ ↔ jv′) with ri ∈ R1, indicating additional
adjective pairs (ju′ , jv′) with intensity direction in-
ferred by ri (Round 2). Finally, the adjective pairs
extracted in this second iteration are used to iden-
tify additional intensifying adverbs R3, which are
added to the final set R = R1 ∪R3 (Round 3).

In all, this process generates a set of 610 ad-
verbs. Examination of the set shows that the
process does capture many intensifying adverbs
like very and abundantly, and excludes many de-
intensifying adverbs appearing in PPDB like far
less and not as. However, due to the noise in-
herent in PPDB itself and in the bootstrapping
process, there are also a few de-intensifying ad-
verbs included in R (e.g. hardly, kind of ) as well
as adverbs that are neither intensifying nor de-
intensifying (e.g. ecologically). It will be impor-
tant to take this noise into consideration when us-
ing JJGRAPH to make pairwise intensity predic-
tions.

3.2 Building JJGRAPH

JJGRAPH is built by extracting all 36,756 adjecti-
val paraphrases in PPDB of the specified form RB
JJu ↔ JJv, where the adverb belongs to R. The
resulting graph has 3,704 unique adjective nodes.
JJGRAPH is a multigraph, as there are frequently
multiple intensifying relationships between pairs
of adjectives. For example, the paraphrases pretty
hard ↔ tricky and really hard ↔ tricky are both
present in PPDB. There can also be contradictory
or cyclic edges in JJGRAPH, as in the example
depicted in the JJGRAPH subgraph in Figure 3,
where the adverb really connects tasty to lovely
and vice versa. Self-edges are allowed (e.g. really
hard↔ hard).

3.3 Pairwise Intensity Prediction
Examining the directed adverb edges between two
adjectives ju and jv in JJGRAPH provides evi-
dence about the relative intensity relationship be-
tween them. However, it has just been noted
that JJGRAPH is noisy, containing both contra-
dictory/cyclic edges and adverbs that are not uni-
formly intensifying. Rather than try to eliminate
cycles, or manually annotate each adverb with a
weight corresponding to its intensity and polarity



Figure 3: A subgraph of JJGRAPH, depicting its di-
rected graph structure.

(Ruppenhofer et al., 2015; Taboada et al., 2011),
we aim to learn these weights automatically in the
process of predicting pairwise intensity.

Given adjective pair (ju, jv), we build a clas-
sifier that outputs a score from 0 to 1 indicating
the predicted likelihood that ju< jv. Its binary
features correspond to adverb edges from ju to
jv and from jv to ju in JJGRAPH. The feature
space includes only adverbs from R that appear at
least 10 times in JJGRAPH, resulting in features
for m = 259 unique adverbs in each direction (i.e.
from ju to jv and vice versa) for 2m = 518 binary
features total. Note that while all adverb features
correspond to predicted intensifiers from R, there
are some features that are actually de-intensifying
due to the noise inherent in the bootstrapping pro-
cess (Section 3.1).

We train the classifier on all 36.7k edges in JJ-
GRAPH, based on a simplifying assumption that
all adverbs in R are indeed intensifiers. For each
adjective pair (ju, jv) with one or more direct
edges from ju to jv, a positive training instance
for pair (ju, jv) and a negative training instance
for pair (jv, ju) are added to the training set. A
logistic regression classifier is trained on the data,
using elastic net regularization and 10-fold cross
validation to tune parameters.

The model parameters output by the training
process are in a feature weights vector w ∈ R2m

(with no bias term) which can be used to generate
a paraphrase-based score for each adjective pair:

scorepp(ju, jv) =
1

1 + exp−wxuv
− 0.5 (1)

where xuv is the binary feature vector for adjec-
tive pair (ju, jv). The decision boundary 0.5 is
subtracted from the sigmoid activation function so
that pairs predicted to have the directed relation
ju< jv will have a positive score, and those pre-
dicted to have the opposite directional relation will
have a negative score.

4 Other Intensity Evidence

Our experiments compare the proposed para-
phrase approach with existing pattern- and
lexicon-based approaches.

4.1 Pattern-based Evidence
We experiment with the pattern-based approach of
de Melo and Bansal (2013). Given a pair of adjec-
tives to be ranked by their intensity, de Melo and
Bansal (2013) cull intensity patterns from Google
n-Grams (Brants and Franz, 2009) as evidence of
their intensity order. Specifically, they identify 8
types of weak-strong patterns (e.g. “X, but not Y”)
and 7 types of strong-weak patterns (e.g. “not X,
but still Y”) that are used as evidence about the di-
rectionality of the intensity relationship between
adjectives. Given an adjective pair (ju, jv), an
overall pattern-based weak-strong score is calcu-
lated:

scorepat(ju, jv) =
(Wu − Su)− (Wv − Sv)

count(ju) · count(jv)
(2)

where Wu and Su quantify the pattern evidence
for the weak-strong and strong-weak intensity re-
lations respectively for the pair (ju, jv), and Wv

and Sv quantify the pattern evidence for the pair
(jv, ju). Wu and Su are calculated as:

Wu =
1

P1

∑
p1∈Pws

count(p1(ju, jv))

Su =
1

P2

∑
p2∈Psw

count(p2(ju, jv))
(3)

Wv and Sv are calculated similarly by swapping
the positions of ju and jv. For example, given
pair (good, great), Wu might incorporate evidence
from patterns “good, but not great” and “not only
good but great”, while Sv might incorporate evi-
dence from the pattern “not great, just good”. Pws

denotes the set of weak-strong patterns, Psw de-
notes the set of strong-weak patterns, and P1 and
P2 give the total counts of all occurrences of any
pattern in Pws and Psw respectively. The score is
normalized by the frequencies of ju and jv in or-
der to avoid bias due to high-frequency adjectives.
As with the paraphrase-based scoring mechanism
(Equation 1), scores output by this method can be
positive or negative, with positive scores being in-
dicative of a weak-strong relationship from ju to
jv. Note that score(ju, jv) = −score(jv, ju).



4.2 Lexicon-based Evidence

We use the manually-compiled SO-CAL3 lexicon
as our third, lexicon-based method for inferring
intensity. The SO-CAL lexicon assigns an inte-
ger weight in the range [−5, 5] to 2,826 adjectives.
The sign of the weight encodes sentiment polar-
ity (positive or negative), and the value encodes
intensity (e.g. atrocious, with a weight of -5, is
more intense than unlikable, with a weight of -3).
SO-CAL is used to derive a pairwise intensity pre-
diction for adjectives (ju,jv) as follows:

scoresocal(ju, jv) = |L(jv)| − |L(ju)|,
iff sign(ju) = sign(jv)

(4)

where L(jv) gives the lexicon weight for jv. Note
that scoresocal is computed only for adjectives
having the same polarity direction in the lexicon;
otherwise the score is undefined. This is because
adjectives belonging to different half scales, such
as freezing and steaming, are frequently incom-
parable in terms of intensity (de Marneffe et al.,
2010).

4.3 Combining Evidence

While the pattern-based and lexicon-based pair-
wise intensity scores are known to be precise
but low-coverage (de Melo and Bansal, 2013;
Ruppenhofer et al., 2015), we expect that the
paraphrase-based score will produce higher cov-
erage at lower accuracy. Thus we also experiment
with scoring methods that combine two or three
score types. When combining two metrics x and
y to generate a score for a pair (ju, jv), we simply
use the first metric x if it can be reliably calculated
for the pair, and back off to metric y otherwise.
More formally, the combined score for metrics x
and y is given by:

scorex+y(ju, jv) = αx · gx(scorex(ju, jv))

+ (1− αx) · gy(scorey(ju, jv))

(5)

where αx ∈ {0, 1} is a binary indicator corre-
sponding to the condition that scorex can be re-
liably calculated for the adjective pair, and gx(·) is
a scaling function (see below). If αx = 1, then
scorex is used. Otherwise, if αx = 0, then we de-
fault to scorey. When combining three metrics x,
y, and z, the combined score is given by:

3https://github.com/sfu-discourse-lab/
SO-CAL

scorex+y+z(ju, jv) = αx · gx(scorex(ju, jv))

+ (1− αx) · scorey+z(ju, jv)

(6)

The criteria for having αx = 1 varies depend-
ing on the metric type. For pattern-based evi-
dence (x=‘pat’), αx = 1 when adjectives ju and
jv appear together in any of the intensity patterns
culled from Google n-grams (e.g. a pattern like
“ju, but not jv” exists). For lexicon-based evi-
dence (x=‘socal’), αx = 1 when both ju and jv
are in the SO-CAL vocabulary, and have the same
polarity (i.e. are both positive or both negative).
For paraphrase-based evidence (x=‘pp’), αx = 1
when ju and jv have one or more edges directly
connecting them in JJGRAPH.

Since the metrics to be combined may have dif-
ferent ranges, we use a scaling function gx(·) to
make the scores output by each metric directly
comparable:

gx(w) = sign(w) ·
(

log(|w|)− µx

σx
+ γ

)
(7)

where µx and σx are the estimated population
mean and standard deviation of log(scorex) (es-
timated over all adjective pairs in the dataset), and
γ is an offset that ensures positive scores remain
positive, and negative scores remain negative. In
our experiments we set γ = 5.

5 Ranking Adjective Sets by Intensity

The first experimental application for the differ-
ent paraphrase evidence is an existing model for
predicting a global intensity ordering within a set
of adjectives. Global ranking models are useful
for inferring intensity comparisons between adjec-
tives for which there is no explicit evidence. For
example, in ranking three adjectives like warm,
hot, and scalding, there may be direct evidence
indicating warm < hot and hot < scalding, but
no way of directly comparing warm to scalding.
Global ranking models infer that warm< scalding
based on evidence from the other adjective pairs in
the scale.

5.1 Global Ranking Model
We adopt the mixed-integer linear programming
(MILP) approach of de Melo and Bansal (2013)
for generating a global intensity ranking. This
model takes a set of adjectives A = {a1, . . . , an}

https://github.com/sfu-discourse-lab/SO-CAL
https://github.com/sfu-discourse-lab/SO-CAL


Dataset # of
Scales

Min/Max/Mean
Scale Size

# of Unordered
(unequal) Pairs

Example Scale

deMelo 87 3 / 8 / 3.90 524 (466) {clean} < {spotless, immaculate}
Crowd 79 2 / 8 / 3.18 293 (250) {low} < {limited} < {scarce}
Wilkinson 21 2 / 5 / 2.81 61 (61) {dry} < {arid} < {parched}

Table 1: Characteristics of the scalar adjective datasets used for evaluation. The deMelo scale example shows an
instance of an equally-intense pair (spotless, immaculate).

and directed, pairwise adjective intensity scores
score(ai, aj) as input, and assigns each adjective
ai a place along a linear scale xi ∈ [0, 1]. The ad-
jectives’ assigned values define the global order-
ing. If the predicted weights used as input are in-
consistent, containing cycles, the model resolves
these by choosing the globally optimal solution.

Recall that all pairwise scoring metrics produce
a positive score for adjective pair (ju, jv) when it
is likely that ju< jv, and a negative score other-
wise. Consequently, the MILP approach should
result in xu < xv when score(ju, jv) is positive,
and xu > xv otherwise. This goal is achieved by
maximizing the objective function:∑

u,v

sign(xv − xu) · score(ju, jv) (8)

de Melo and Bansal (2013) propose a MILP for-
mulation for maximizing this objective, which
we utilize in our experiments. Note that while
de Melo and Bansal (2013) incorporate synonymy
evidence from WordNet in their ranking method,
we do not implement this part of the model.

5.2 Experiments
We experiment with using each of the paraphrase-,
pattern-, and lexicon-based pairwise scores as in-
put to the global ranking model in isolation. To
examine how the scoring methods perform when
used in combination, we also test all possible or-
dered combinations of 2 and 3 scores.

Experiments are run over three distinct test sets
(Table 1). Each dataset contains ordered sets of
scalar adjectives belonging to the same scale. In
general, scalar adjectives describing the same at-
tribute can be ordered along a full scale (e.g. freez-
ing to sweltering), or a half scale (warm to swel-
tering); all three test sets group adjectives into half
scales. The three datasets are described here, and
their characteristics are given in Table 1.
deMelo (de Melo and Bansal, 2013)4. 87 adjective

4http://demelo.org/gdm/intensity/

sets are extracted from WordNet ‘dumbbell’ struc-
tures (Gross and Miller, 1990), and partitioned
into half-scale sets based on their pattern-based
evidence in the Google N-Grams corpus (Brants
and Franz, 2009). Sets are manually annotated for
intensity relations (<, >, and =).
Wilkinson (Wilkinson and Oates, 2016). Twelve
adjective sets are generated by presenting crowd
workers with small seed sets (e.g. huge, small, mi-
croscopic), and eliciting similar adjectives. Sets
are automatically cleaned for consistency, and
then annotated for intensity by crowd workers.
While the original dataset contains full scales, we
manually sub-divide these into 21 half-scales for
use in this study. Details on the modification from
full- to half-scales are in the Supplemental Mate-
rial.
Crowd. We also crowdsourced a new set of adjec-
tive scales with high coverage of the PPDB vocab-
ulary. In a three-step process, we first asked crowd
workers whether pairs of adjectives describe the
same attribute (e.g. temperature) and therefore
should belong along the same scale. Second, sets
of same-scale adjectives were refined over multi-
ple rounds. Finally, workers ranked the adjectives
in each set by intensity. The final dataset includes
293 adjective pairs along 79 scales.

We measure the agreement between the gold
standard ranking of adjectives along each scale
and the predicted ranking using three commonly-
used metrics:
Pairwise accuracy. For each pair of adjectives
along the same scale, we compare the predicted
ordering of the pair after global ranking (<, >, or
=) to the gold-standard ordering of the pair, and
report overall accuracy of the pairwise predictions.
Kendall’s tau (τb). This metric computes the
rank correlation between the predicted (rP (J))
and gold-standard (rG(J)) ranking permutations
of each adjective scale J , incorporating a correc-
tion for ties. Values for τb range from −1 to 1,
with extreme values indicating a perfect negative

http://demelo.org/gdm/intensity/


Score Accuracy
(before ranking)

Global Ranking Results

Test Set Score Type Coverage Pairwise
Acc.

Pairwise
Acc.

Avg. τb ρ Example Predicted Scale

deMelo
scorepat 0.48 0.844 0.650 0.633 0.583 {clean} < {spotless, immaculate}*
scorepp 0.33 0.458 0.307 0.071 0.090 {immaculate, clean} < {spotless}
scoresocal 0.28 0.546 0.246 0.110 0.019 {clean} < {spotless} < {immaculate}
scorepat+socal 0.61 0.757 0.653 0.609 0.533 {clean} < {spotless} < {immaculate}
scorepat+socal+pp 0.70 0.722 0.644 0.564 0.482 {clean} < {spotless} < {immaculate}

Crowd
scorepat 0.11 0.784 0.321 0.203 0.221 {limited, low, scarce}
scorepp 0.74 0.676 0.597†† 0.437† 0.405 {low} < {limited} < {scarce}*
scoresocal 0.35 0.757 0.421 0.342 0.293 {limited, low, scarce}
scoresocal+pp 0.81 0.687 0.621†† 0.470†† 0.465 {low} < {limited} < {scarce}*
scoresocal+pat+pp 0.82 0.694 0.639†† 0.495†† 0.480 {low} < {limited} < {scarce}*

Wilkinson
scorepat 0.44 0.852 0.475 0.441 0.435 {quick} < {speedy, fast}
scorepp 0.80 0.753 0.639 0.419 0.450 {quick} < {fast} < {speedy}*
scoresocal 0.31 0.895 0.312 0.317 0.422 {fast} < {speedy} < {quick}
scorepat+pp 0.89 0.833 0.738†† 0.605 0.564 {quick} < {fast} < {speedy}*
scorepat+socal+pp 0.89 0.833 0.754†† 0.638 0.611 {quick} < {fast} < {speedy}*

††: p ≤ .01 †: p ≤ .05

Table 2: Pairwise relation prediction and global ranking results for each score type in isolation, and for the best-
scoring combinations of 2 and 3 score types on each dataset. For the global ranking accuracy and average τb
results, we denote with the † symbol scores for metrics incorporating paraphrase-based evidence that significantly
out-perform both scorepat and scoresocal under the paired Student’s t-test, using the Anderson-Darling test to
confirm that scores conform to a normal distribution (Fisher, 1935; Anderson and Darling, 1954; Dror et al.,
2018). Example output is also given, with correct rankings starred.

or positive correlation, and a value of 0 indicating
no correlation between predicted and gold rank-
ings. We report τb as a weighted average over
scales in each dataset, where weights correspond
to the number of adjective pairs in each scale.
Spearman’s rho (ρ). We report the Spearman’s
ρ rank correlation coefficient between predicted
(rP (J)) and gold-standard (rG(J)) ranking per-
mutations. For each dataset, we calculate this met-
ric just once by treating each adjective in a partic-
ular scale as a single data point, and calculating an
overall ρ for all adjectives from all scales.

5.3 Experimental Results

The results of the global ordering experiment, re-
ported in Table 2, are organized as follows: Score
Accuracy pertains to performance of the scoring
methods alone – prior to global ranking – while
Global Ranking Results pertains to performance
of each scoring method as used in the global
ranking algorithm. Within Score Accuracy there
are two metrics. Coverage gives the percent of
unique same-scale adjective pairs from the test
set that can be directly scored using the given
method. For scorepat, covered pairs are all those
that appear together in any recognized pattern;

for scorepp, covered pairs are those directly con-
nected in JJGRAPH by one or more direct edges;
for scoresocal, covered pairs are all those for which
both adjectives are in the SO-CAL lexicon and
the metric is defined. Pairwise Accuracy gives
the accuracy of the scoring method (before global
ranking) on just the covered pairs, meaning that
the subset of pairs scored by each method varies.
Within Global Ranking Results, we report pair-
wise accuracy, weighted average τb, and ρ calcu-
lated over all pairs after ranking – including both
pairs that are covered by the scoring method, and
those whose pairwise intensity relationship has
been inferred by the ranking algorithm.

The results indicate that the pairwise score
accuracies (before ranking) for scorepat and
scoresocal are higher than those of scorepp for all
datasets, but that their coverage is relatively lim-
ited. The one exception is the deMelo dataset,
where scorepat has high coverage because the
dataset was compiled specifically by finding ad-
jective pairs that matched lexical patterns in the
corpus. For all datasets, highest coverage is
achieved using one of the combined metrics that
incorporates paraphrase-based evidence.

The impact of these trends is visible on the



Global Ranking Results. When using pairwise
intensity scores to compute the global ranking,
higher coverage by a metric drives better results,
as long as the metric’s accuracy is reasonably
high. Thus the paraphrase-based scorepp, with
its high coverage, gets better global ranking re-
sults than the other single-method scores for two
of the three datasets. Further, we find that boost-
ing coverage with a combined metric that incor-
porates paraphrase evidence produces the highest
post-ranking pairwise accuracy scores overall for
all three datasets, and the highest average τb and
ρ on the Crowd and Wilkinson datasets. We con-
clude that incorporating paraphrase evidence can
improve the quality of this model for ordering ad-
jectives along a scale because it gives high cover-
age with reasonably high quality.

The performance trends on the deMelo dataset
differ from those on the Crowd and Wilkinson
datasets. In particular, scorepp and scoresocal have
substantially lower pre-ranking pairwise accuracy
on the pairs they cover in the deMelo dataset
than they do for Crowd and Wilkinson: scorepp
has an accuracy of just 0.458 on covered pairs
in the deMelo dataset, compared with 0.676 and
0.753 on the Crowd and Wilkinson datasets, and
score differences for scoresocal are similar. The
near-random prediction accuracies of scorepp and
scoresocal on deMelo before ranking lead to near-
zero correlation values on this dataset after global
ranking. To explore possible reasons for these re-
sults, we assessed the level of human agreement
with each dataset in terms of pairwise accuracy.
For each test set, we asked five crowd workers
to classify the intensity direction for each adjec-
tive pair (ju, jv) in all scales as less than (<),
greater than (>), or equal (=). We found that
humans agreed with the ‘gold standard’ direction
65% of the time on the Bansal dataset, versus 70%
of the time on the Crowd and Wilkinson datasets.
It is possible that the more difficult nature of the
Bansal dataset, coupled with its method of compi-
lation (i.e. favoring adjective pairs that co-occur
with pre-defined intensity patterns), lead to the
lower coverage and lower accuracy of scorepp and
scoresocal on this dataset.

6 Indirect Question Answering

The second task that we address is answering indi-
rect yes or no questions. de Marneffe et al. (2010)
observed that answers to such polar questions fre-

quently omit an explicit yes or no response. In
some cases the implied answer depends on the rel-
ative intensity of adjective modifiers in the ques-
tion and answer. For example, in the exchange:

Q: Was he a successful ruler?
A: Oh, a tremendous ruler.

the implied answer is yes, which is inferred be-
cause successful≤ tremendous in terms of relative
intensity. Conversely, in the exchange:

Q: Does it have a large impact?
A: It has a medium-sized impact.

the implied answer is no because large>medium-
sized.

de Marneffe et al. (2010) compiled an evalua-
tion set for this task by extracting 123 examples of
such indirect question-answer pairs (IQAP) from
dialogue corpora. In each exchange, the implied
answer (annotated by crowd workers to be yes
or no5) depends on the relative intensity relation-
ship between modifiers in the question and answer
texts. In their original paper, the authors utilize an
automatically-compiled lexicon to make a polarity
prediction for each IQAP.

6.1 Predicting Answer Polarity

Our goal is to see whether paraphrase-based
scores are useful for predicting the polarity of an-
swers in the IQAP dataset. As before, we com-
pare the quality of predictions made using the
paraphrase-based evidence with predictions made
using pattern-based, lexicon-based, and combined
scoring metrics.

To use the pairwise scores for inference, we em-
ploy a decision procedure nearly identical to that
of de Marneffe et al. (2010). If jq and ja are
scorable (i.e. have a scorable intensity relationship
along the same half-scale), then jq≤ ja implies
the answer is yes (first example above), and jq>
ja implies the answer is no (second example). If
the pair of adjectives is not scorable, then the pre-
dicted answer is no, as the pair could be antonyms
or completely unrelated. If either jq or ja is miss-
ing from the scoring vocabulary, the adjectives are
impossible to compare and therefore the predic-
tion is uncertain. The full decision procedure is
given in Figure 4.

5The original dataset contains two additional examples
where the answer is annotated as uncertain, but de Marneffe
et al. (2010) exclude them from the results and so do we.



Given: A dialogue exchange consisting of a polar ques-
tion and answer, where the answer depends on the rel-
ative intensities of distinct modifiers jq and ja in the
question and answer respectively:

1. if jq or ja are missing from the score vocabulary,
predict “UNCERTAIN”

2. else, if score(JJq, JJa) is undefined, predict
“NO”

3. else, if score(JJq, JJa) ≥ 0, predict “YES”

4. else, predict “NO”

5. If the question or answer contains negation, map
a “YES” answer to “NO and a “NO” answer to
“YES”

Figure 4: Decision procedure for using pairwise inten-
sity scores for predicting polarity of an IQAP instance,
based on de Marneffe et al. (2010).

6.2 Experiments
The decision procedure in Figure 4 is carried out
for the 123 IQAP instances in the dataset, vary-
ing the score type. We report the accuracy, and
macro-averaged precision, recall, and F1-score of
the 85 yes and 38 no instances, in Table 3 along-
side the percent of instances with adjectives out
of vocabulary. Only the combined scores for the
two best-scoring combinations, scoresocal+pp and
scoresocal+pat+pp, are reported.

Method %OOV Acc. P R F

all-“YES” .00 .691 .346 .500 .409

deMarneffe (2010) .02 .610 .597 .594 .596

scoresocal .33 .504 .710 .481 .574
scorepp .09 .496 .568 .533 .550
scorepat .07 .407 .524 .491 .507

scoresocal+pp .09 .634 .690 .663 .676
scoresocal+pat+pp .06 .642 .684 .683 .684

Table 3: Accuracy and macro-averaged precision (P),
recall (R), and F1-score (F) over yes and no responses
on 123 question-answer pairs. The percent of pairs hav-
ing one or both adjectives out of the score vocabulary
is listed as %OOV.

The simplest baseline of predicting all answers
to be “YES” gets highest accuracy in this imbal-
anced test set, but all score types perform better
than the all-“YES” baseline in terms of precision
and F1-score. Bouyed by its high precision, the
scoresocal – which is derived from a manually-
compiled lexicon – scored higher than scorepp
and scorepat. But it mis-predicted 33% of pairs

as uncertain because of its limited overlap with
the IQAP vocabulary. Meanwhile, scorepp had
relatively high coverage and a mid-level F-score,
while scorepat scored poorly on this dataset due
to its sparsity; while all modifiers in the IQAP
dataset are in the Google N-grams vocabulary,
most do not have observed patterns and there-
fore return predictions of “NO” (item 2 in Fig-
ure 4). As in the global ranking experiments, the
paraphrase-based evidence is complementary to
the lexicon-based evidence, and thus the combined
scoresocal+pp and scoresocal+pat+pp produce signifi-
cantly better accuracy than any score in isolation
(McNemar’s test, p < .01), and also out-perform
the original expected ranking method of de Marn-
effe et al. (2010) (although they do not beat the
best-reported score on this dataset, F-score=0.706
(Kim and de Marneffe, 2013)).

7 Conclusion

We have proposed adjectival paraphrases as
a new source of evidence for predicting in-
tensity relationships between scalar adjectives.
While paraphrase-based intensity evidence pro-
duces pairwise predictions that are less precise
than those produced by pattern- or lexicon-based
evidence, the coverage is substantially higher.
Thus paraphrases can be successfully used as a
complementary source of information for reason-
ing about adjective intensity.
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