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Abstract

As humans, we often rely on language to learn
language. For example, when corrected in a
conversation, we may learn from that correc-
tion, over time improving our language flu-
ency. Inspired by this observation, we pro-
pose a learning algorithm for training semantic
parsers from supervision (feedback) expressed
in natural language. Our algorithm learns a
semantic parser from users’ corrections such
as “no, what I really meant was before his
job, not after”, by also simultaneously learn-
ing to parse this natural language feedback in
order to leverage it as a form of supervision.
Unlike supervision with gold-standard logical
forms, our method does not require the user to
be familiar with the underlying logical formal-
ism, and unlike supervision from denotation,
it does not require the user to know the correct
answer to their query. This makes our learning
algorithm naturally scalable in settings where
existing conversational logs are available and
can be leveraged as training data. We con-
struct a novel dataset of natural language feed-
back in a conversational setting, and show that
our method is effective at learning a semantic
parser from such natural language supervision.

1 Introduction

Semantic parsing is a problem of mapping a natu-
ral language utterance into a formal meaning rep-
resentation, e.g., an executable logical form (Zelle
and Mooney, 1996). Because the space of all logi-
cal forms is large but constrained by an underlying
structure (i.e., all trees), the problem of learning a
semantic parser is commonly formulated as an in-
stance of structured prediction.

Historically, approaches based on supervised
learning of structured prediction models have
emerged as some of the first and still remain com-
mon in the semantic parsing community (Zettle-

∗Work done while at Carnegie Mellon University.

moyer and Collins, 2005, 2009; Kwiatkowski
et al., 2010). A well recognized practical chal-
lenge in supervised learning of structured mod-
els is that fully annotated structures (e.g., logical
forms) that are needed for training are often highly
labor-intensive to collect. This problem is further
exacerbated in semantic parsing by the fact that
these annotations can only be done by people fa-
miliar with the underlying logical language, mak-
ing it challenging to construct large scale datasets
by non-experts.

Over the years, this practical observation has
spurred many creative solutions to training seman-
tic parsers that are capable of leveraging weaker
forms of supervision, amenable to non-experts.
One such weaker form of supervision relies on
logical form denotations (i.e, the results of a logi-
cal form’s execution) – rather than the logical form
itself, as “supervisory” signal (Clarke et al., 2010;
Liang et al., 2013; Berant et al., 2013; Pasupat and
Liang, 2015; Liang et al., 2016; Krishnamurthy
et al., 2017). In Question Answeing (QA), for
example, this means the annotator needs only to
know the answer to a question, rather than the full
SQL query needed to obtain that answer. Para-
phrasing of utterances already annotated with log-
ical forms is another practical approach to scale up
annotation without requiring experts with a knowl-
edge of the underlying logical formalism (Berant
and Liang, 2014; Wang et al., 2015).

Although these and similar methods do reduce
the difficulty of the annotation task, collecting
even these weaker forms of supervision (e.g., de-
notations and paraphrases) still requires a dedi-
cated annotation event, that occurs outside of the
normal interactions between the end-user and the
semantic parser1. Furthermore, expert knowledge
may still be required, even if the underlying logi-

1although in some cases existing datasets can be leveraged
to extract this information
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Before [September 10th], how many places was
[Brad] employed?

find employment [Brad] had, prior to [September 10th]

Yes, but I also want you to count how many placed Brad 
was employed at.

User Utterance

System NLG

User Feedback

Figure 1: Example (i) user’s original utterance, (ii)
confirmation query generated by inverting the original
parse, (iii) user’s generated feedback towards the con-
firmation query (i.e., original parse) .

cal form does not need to be given by the annotator
(QA denotations, for example, require the annota-
tor to know the correct answer to the question – an
assumption which doesn’t hold for end-users who
asked the question with the goal of obtaining the
answer). In contrast, our goal is to leverage natural
language feedback and corrections that may occur
naturally as part of the continuous interaction with
the non-expert end-user, as training signal to learn
a semantic parser.

The core challenge in leveraging natural lan-
guage feedback as a form of supervision in train-
ing semantic parsers, however, is the challenge of
correctly parsing that feedback to extract the su-
pervisory signal embedded in it. Parsing the feed-
back, just like parsing the original utterance, re-
quires its own semantic parser trained to inter-
pret that feedback. Motivated by this observa-
tion, our main contribution in this work is a semi-
supervised learning algorithm that learns a task
parser (e.g., a question parser) from feedback ut-
terances while simultaneously learning a parser to
interpret the feedback utterances. Our algorithm
relies only on a small number of annotated logical
forms, and can continue learning as more feedback
is collected from interactions with the user.

Because our model learns from supervision that
it simultaneously learns to interpret, we call our
approach learning to learn semantic parsers from
natural language supervision.

2 Problem Formulation

Formally, the setting proposed in this work can be
modelled as follows: (i) the user poses a natural
language input ui (e.g., a question) to the system,
(ii) the system parses the user’s utterance ui, pro-
ducing a logical form ŷi, (iii) the system commu-
nicates ŷi to the user in natural language in the
form of a confirmation (i.e., “did you mean . . . ”),
(iv) in response to the system’s confirmation, the
user generates a feedback utterance fi, which may

be a correction of ŷi expressed in natural language.
The observed variables in a single interaction are
the task utterance ui, the predicted task logical
form ŷi and the user’s feedback fi; the true logical
form yi is hidden. See Figure 1 for an illustration.

A key observation that we make from the above
formulation is that learning from such interactions
can be effectively done in an offline (i.e., non-
interactive) setting, using only the logs of past in-
teractions with the user. Our aim is to formulate
a model that can learn a task semantic parser (i.e.,
one parsing the original utterance u) from such in-
teraction logs, without access to the true logical
forms (or denotations) of the users’ requests.

2.1 Modelling conversational logs

Formally, we propose to learn a semantic parser
from conversational logs represented as follows:

D = {(ui, ŷi, fi)}i,...,N

where ui is the user’s task utterance (e.g., a ques-
tion), ŷi is the system’s original parse (logical
form) of that utterance, fi is the user’s natural lan-
guage feedback towards that original parse and N
is the number of dialog turns in the log. Note that
the original parse ŷi of utterance ui could come
from any semantic parser that was deployed at the
time the data was logged – there are no assump-
tions made on the source of how ŷi was produced.

Contrast this with the traditional learning set-
tings for semantic parsers, where the user (or an-
notator) provides the correct logical form yi or the
execution of the correct logical form JyiK (deno-
tation) (Table 1). In our setting, instead of the
correct logical form yi, we only have access to
the logical form produced by whatever semantic
parser was interacting with the user at the time the
data was collected, i.e., ŷi is not necessarily the
correct logical form (though it could be). In this
work, however, we focus only on corrective feed-
back (i.e., cases where ŷ 6= y) as our main objec-
tive is to evaluate the ability to interpret rich natu-
ral language feedback (which is only given when
the original parse is incorrect). Our key hypothesis
in this work is that although we do not observe yi
directly, combining ŷi with the user’s feedback fi
should be sufficient to get a better estimate of the
correct logical form (closer to yi), which we can
then leverage as a “training example” to improve
the task parser (and the feedback parser).
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Supervision Dataset
Full logical forms {(ui, yi)}i,...,N
Denotations {(ui, JyiK)}i,...,N
Binary feedback {(ui, Jŷi = yiK)}i,...,N
NL feedback (this work) {(ui, ŷi, fi)}i,...,N

Table 1: Different types of supervision used in litera-
ture for training semantic parsers, and the correspond-
ing data needed for each type of supervision. Notation
used in the table: u corresponds to user utterance (lan-
guage), y corresponds to a gold-standard logical form
parse of u, ŷ corresponds to a predicted logical form,
J·K is the result of executing an expression inside the
brackets and f is the user’s feedback expressed in nat-
ural language in the context of an utterance and a pre-
dicted logical form.

3 Natural Language Supervision

3.1 Learning problem formulation
In this section, we propose a learning algorithm for
training a semantic parser from natural language
feedback. We will use the terms task parser and
feedback parser to refer to the two distinct parsers
used for parsing the user’s original task utterance
(e.g., question) and parsing the user’s follow-up
feedback utterance respectively. Our learning al-
gorithm does not assume any specific underlying
model for the two parsers aside from the require-
ment that each parser specifies a probability distri-
bution over logical forms given the utterance (for
the task parser) and the utterance plus feedback
(for the feedback parser):

Task Parser: P (y | u; θt)
Feedback Parser: P (y | u, f, ŷ; θf )

where θt and θf parametrize the task and feedback
parsers respectively. Note that the key distinction
between the task and feedback parser models is
that in addition to the user’s original task utterance
u, the feedback parser also has access to the user’s
feedback utterance f , and the original parser’s pre-
diction ŷ. We now introduce a joint model that
combines task and feedback parsers in a way that
encourages the two models to agree:

P (y | u, f, ŷ; θt, θf ) =
1

Z
P (y | u; θt)︸ ︷︷ ︸

task parser

P (y | u, f, ŷ; θf )︸ ︷︷ ︸
feedback parser

At training time, our objective is to maximize the
above joint likelihood by optimizing the parser pa-
rameters θt and θf of the task and feedback parsers
respectively. The intuition behind optimizing the
joint objective is that it encourages the “weaker”
model that does not have access to the feedback

utterance to agree with the “stronger” model that
does (i.e., using the feedback parser’s prediction as
a noisy “label” to bootstrap the task parser), while
conversely encouraging a more “complex” model
to agree with a “simpler” model (i.e., using the
simpler task parser model as a “regularizer” for the
more complex feedback parser; note that the feed-
back parser generally has higher model complex-
ity compared to the task parser because it incorpo-
rates additional parameters to account for process-
ing the feedback input).2 Note the feedback parser
output is not simply the meaning of the feed-
back utterance in isolation, but instead the revised
semantic interpretation of the original utterance,
guided by the feedback utterance. In this sense,
the task faced by the feedback parser is to both de-
termine the meaning of the feedback, and to apply
that feedback to repair the original interpretation
of ui. Note that this model is closely related to
co-training (Blum and Mitchell, 1998) (and more
generally multi-view learning (Xu et al., 2013))
and is also a special case of a product-of-experts
(PoE) model (Hinton, 1999).

3.2 Learning

The problem of maximizing the joint-likelihood
P (y | u, f, ŷ; θt, θf ) can be approached as a stan-
dard problem of maximum likelihood estimation
in the presence of latent variables (i.e., unob-
served logical form y), suggesting the application
of the Expectation Maximization (EM) algorithm
for learning parameters θt and θf . The direct ap-
plication of EM in our setting, however, is faced
with a complication in the E-step. Because the
hidden variables (logical forms y) are structured,
computing the posterior over the space of all log-
ical forms and taking the expectation of the log-
likelihood with respect to that posterior is gener-
ally intractable (unless we assume certain factor-
ized forms for the logical form likelihood).

Instead, we propose to approximate the E-step
by replacing the expectation of the log joint-
likelihood with its point estimate, using the maxi-
mum a posteriori (MAP) estimate of the posterior
over logical forms y to obtain that estimate (this
is sometimes referred to as “hard-EM”). Obtain-
ing the MAP estimate of the posterior over log-

2Note that in practice, to avoid locally optimal degenerate
solutions (e.g., where the feedback parser learns to trivially
agree with the task parser by learning to ignore the feedback),
some amount of labeled logical forms would be required to
pre-train both models.
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ical forms may itself be a difficult optimization
problem, and the specific algorithm for obtaining
it would depend on the internal models of the task
and the feedback parser.

As an alternative, we propose a simple, MCMC
based algorithm for approximating the MAP esti-
mate of the posterior over logical forms, that does
not require access to the internals of the parser
models, i.e., allowing us to conveniently treat both
parsers as “black boxes”. The only assumption
that we make is that it’s easy to sample logi-
cal forms from the individual parsers (though not
necessarily from the joint model), as well as to
compute the likelihoods of those sampled logical
forms under at least one of the models.

We use Metropolis Hastings to sample from
the posterior over logical forms, using one of the
parser models as the proposal distribution. Specif-
ically, if we choose the feedback parser as the pro-
posal distribution, and initialize the Markov Chain
with a logical form sampled from the task parser,
it can be shown that the acceptance probability r
for the first sample conveniently simplifies to the
following expression:

r = min

(
1,
P (ŷf | u, θt)
P (ŷt | u, θt)

)
(1)

where ŷt and ŷf are logical forms sampled from
the task and feedback parsers respectively. In-
tuitively the above expression compares the like-
lihood of the logical form proposed by the task
parser to the likelihood of the logical form pro-
posed by the feedback parser, but with both likeli-
hoods computed under the same task parser model
(making the comparison fair). The proposed parse
is then accepted with a probability proportional to
that ratio. See Algorithm 2 for details.

Finally, given this MAP estimate of y, we can
perform optimization over the parser parameters
θt and θf using a single step with stochastic gradi-
ent descent before re-estimating the latent logical
form y. We also approximate the gradients of each
parser model by ignoring the gradient terms asso-
ciated with the log of the normalizer Z. 3

3.3 Task Parser Model
Our task parser model is implemented based
on existing attention-based encoder-decoder mod-

3We have experimented with a sampling based approxi-
mation of the true gradients with contrastive divergence (Hin-
ton, 2002), however, found that our approximation works suf-
ficiently well empirically. See Algorithm 1 for more details
of the complete algorithm.

Algorithm 1: Semantic Parser Training from Natural
Language Supervision

Input : D = {(ui, ŷi, fi)}1,...,N
Output : Task parser parameters θt; Feedback parser

parameters θf
Parameter: Number of training epochs T
for t = 1 to T do

for i = 1 to N do
ŷfi ← MH-MAP (ui, ŷi, fi, θt, θf ) ;
∇θt ← ∇ logP (ŷfi | ui; θt) ;
∇θf ← ∇ logP (ŷfi | ui, fi, ŷi; θf ) ;
θt ← SGD (θt,∇θt) ;
θf ← SGD (θf ,∇θf ) ;

end
end

Algorithm 2: Metropolis Hastings-based MAP estima-
tion of latent semantic parse

Input : u, ŷ, f , θt, θf
Output : latent parse ŷf

Parameter: Number of sampling iterations N
Function MH-MAP(u, ŷ, f , θt, θf):

samples← [ ]
// sample parse from task parser
Sample ŷt ∼ P (y | u, θt)
ŷcurr ← ŷt
for i = 1 to N do

// sample parse from feedback parser
Sample ŷf ∼ P (y | u, f, ŷ, θf )
r ← min

(
1,

P (ŷf |u,θt)
P (ŷcurr|u,θt)

)
Sample accept ∼ Bernoulli(r)
if accept then

pt ← P (ŷf | u, θt)
pf ← P (ŷf | u, f, ŷ, θf )
samples[ŷf ]← pt · pf
ŷcurr ← ŷf

end
end
ŷf ← argmax samples
return ŷf

els (Bahdanau et al., 2014; Luong et al., 2015).
The encoder takes in an utterance (tokenized) u
and computes a context-sensitive embedding hi
for each token ui using a bidirectional Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), where hi is computed as the
concatenation of the hidden states at position i
output by the forward LSTM and the backward
LSTM. The decoder generates the output logical
form y one token at a time using another LSTM.
At each time step j, it generates yj based on the
current LSTM hidden state sj , a summary of the
input context cj , and attention scores aji, which
are used for attention-based copying as in (Jia and
Liang, 2016). Specifically,

p(yj = w,w ∈ Vout|u, y1:j−1) ∝ exp (Wo[sj ; cj ])
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p(yj = ui|u, y1:j−1) ∝ exp (aji)

where yj = w denotes that yj is chosen from the
output vocabulary Vout; yj = ui denotes that yj
is a copy of ui; aji = sTj Wahi is an attention
score on the input word ui; cj =

∑
i αihi, αi ∝

exp (aji) is a context vector that summarizes the
encoder states; andWo andWa are matrix parame-
ters to be learned. After generating yj , the decoder
LSTM updates its hidden state sj+1 by taking as
input the concatenation of the embedding vector
for yj and the context vector cj .

An important problem in semantic parsing for
conversation is resolving references of people and
things mentioned in the dialog context. Instead of
treating coreference resolution as a separate prob-
lem, we propose a simple way to resolve it as a part
of semantic parsing. For each input utterance, we
record a list of previously-occurring entity men-
tionsm = {m1, ...,mL}. We consider entity men-
tions of four types: persons, organizations, times,
and topics. The encoder now takes in an utterance
u concatenated with m4, and the decoder can gen-
erate a referenced mention through copying.

The top parts of Figure 7 and Figure 8 visualize
the attention mechanism of the task parser, where
the decoder attends to both the utterance and the
conversational context during decoding. Note that
the conversational context is only useful when the
utterance contains reference mentions.

3.4 Feedback Parser Model

Our feedback parser model is an extension of the
encoder-decoder model in the previous section.
The encoder consists of two bidirectional LSTMs:
one encodes the input utterance u along with the
history of entity mentionsm and the other encodes
the user feedback f . At each time step j during
decoding, the decoder computes attention scores
over each word ui in utterance u as well as each
feedback word fk based on the decoder hidden
state sj , the context embedding bk output by the
feedback encoder, and a learnable weight matrix
We: ejk = sTj Webk. The input context vector cj
in the previous section is updated by adding a con-
text vector that attends to both the utterance and
the feedback:

c′j =
∑
i

αihi +
∑
k

βkbk

4The mentions are ordered based on their types and each
mention is wrapped by special boundary symbols [ and ].

where αi ∝ exp(aji) and βk ∝ exp(ejk). Ac-
cordingly, the decoder is allowed to copy words
from the feedback:

p(yj = fk|u, f, y1:j−1) ∝ exp (ejk)

The bottom parts of Figure 7 and Figure 8 vi-
sualize the attention mechanism of the feedback
parser, where the decoder attends to the utterance,
the conversational context, and the feedback dur-
ing decoding.

Note that our feedback model does not explic-
itly incorporate the original logical form ŷ that the
user was generating their feedback towards. We
experimented with a number of ways to incorpo-
rate ŷ in the feedback parser model, but found it
most effective to instead use it during MAP infer-
ence for the latent parse y. In sampling a logical
form in Algorithm 2, we simply reject the sample
if the sampled logical form matches ŷ.

4 Dataset

In this work we focus on the problem of semantic
parsing in a conversational setting and construct a
new dataset for this task. Note that a parser is re-
quired to resolve references to the conversational
context during parsing, which in turn may further
amplify ambiguity and propagate errors to the fi-
nal logical form. Conveniently, the same conver-
sational setting also offers a natural channel for
correcting such errors via natural language feed-
back users can express as part of the conversation.

4.1 Dataset construction
We choose conversational search in the domain of
email and biographical research as a setting for our
dataset. Large enterprises produce large amounts
of text during daily operations, e.g., emails, re-
ports, and meeting memos. There is an increasing
need for systems that allow users to quickly find
information over text through search. Unlike reg-
ular tasks like booking airline tickets, search tasks
often involve many facets, some of which may or
may not be known to the users when the search be-
gins. For example, knowing where a person works
may triggers a followup question about whether
the person communicates with someone internally
about certain topic. Such search tasks will often
be handled most naturally through dialog.

Figure 1 shows example dialog turns containing
the user’s utterance (question) u, system’s confir-
mation of the original parse ŷ, and the user’s feed-
back f . To simplify and scale data collection, we
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decouple the dialog turns and collect feedback for
each dialog turn in isolation. We do that by show-
ing a worker on Mechanial Turk the original utter-
ance u, the system’s natural language confirmation
generated by inverting the original logical form
ŷ, and the dialog context summarized in a table.
See Figure 2 for a screenshot of the Mechanical
Turk interface. The dialog context is summarized
by the entities (of types person, organization, time
and topic) that were mentioned earlier in the con-
versation and could be referenced in the original
question u shown on the screen5. The worker is
then asked to type their feedback given (u, ŷ) and
the dialog context displayed on the screen. Turkers
are instructed to write a natural language feedback
utterance that they might otherwise say in a real
conversation when attempting to correct another
person’s incorrect understanding of their question.

We recognize that our data collection process
results in only an approximation of a true multi-
turn conversation, however we find that this ap-
proach to data collection offers a convenient trade-
off for collecting a large number of controlled and
diverse context-grounded interactions. Qualita-
tively we find that turkers are generally able to
imagine themselves in the hypothetical ongoing
dialog, and are able to generate realistic contextual
feedback utterances using only the context sum-
mary table provided to them.

The initial dataset of questions paired with orig-
inal logical form parses {ui, ŷi}1,...,N that we use
to solicit feedback from turkers, is prepared of-
fline. In this separate offline task we collect a
dataset of 3556 natural language questions, anno-
tated with gold standard logical forms, in the same
domain of email and biographical research. We
parse each utterance in this dataset with a float-
ing grammar-based semantic parser trained using
a structured perceptron algorithm (implemented in
SEMPRE (Berant et al., 2013)) on a subset of the
questions. We then construct the dataset for feed-
back collection by sampling the logical form ŷ
from the first three candidate parses in the beam
produced by the grammar-based parser. We use
this grammar-based parser intentionally as a very
different model from the one that we would ulti-
mately train (LSTM-based parser) on the conver-
sational logs produced by the original parser.

We retain 1285 out of the 3556 annotated ques-

5zero or more of the context entities may actually be ref-
erenced in the original utterance

Figure 2: Screenshot of the Mechanical Turk web in-
terface used to collect natural language feedback.

tions to form a test set. The rest 2271 questions we
pair with between one and three predicted parses ŷ
sampled from the beam produced by the grammar-
based parser, and present each pair of original ut-
terance and predicted logical form (ui, ŷi) to a
turker who then generates a feedback utterance
fi. In total, we collect 4321 question/original
parse/feedback triples (ui, ŷi, fi) (averaging ap-
proximately 1.9 feedback utterances per question).

5 Experiments

The key hypothesis that we aim to evaluate in our
experiments is whether natural language feedback
is an effective form of supervision for training a
semantic parser. To achieve this goal, we control
and measure the effect that the number of feedback
utterances used during training has on the resulting
performance of the task semantic parser on a held-
out test set. Across all our experiments we also use
a small seed training set (300 questions) that con-
tains gold-standard logical forms to pre-train the
task and feedback parsers. The number of “unla-
beled” questions6 (i.e., questions not labeled with
gold standard logical forms but that have natural
language feedback) ranges from 300, 500, 1000 to
1700 representing different experimental settings.
For each experimental setting, we rerun the exper-
iment 10 times, re-sampling the questions in both
the training and unlabeled sets, and report the aver-
aged results. The test-set remains fixed across all
experiments and contains 1285 questions labeled
with gold-standard logical forms. The implemen-
tation details for the task parser and the feedback
parser are included in the appendix.

6Note that from hereon we will refer to the portion of the
data that contains natural language feedback as the only form
of supervision as “unlabeled data”, to emphasize that it is not
labeled with gold standard logical forms (in contrast to the
seed training set).
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5.1 Models and evaluation metrics

In our evaluations, we compare the following four
models:

• MH (full model) Joint model described in Sec-
tion 3 and in Algorithm 1 (using Metropolis
Hastings-based MAP inference described in Al-
gorithm 2).

• MH (no feedback) Same as the full model, ex-
cept we ignore the feedback f and the origi-
nal logical form ŷ information in the feedback
model. Effectively, this reduces the model of
the feedback parser to that of the task parser.
Because during training, both models would be
initialized differently, we may still expect the re-
sulting model averaging effects to aid learning.

• MH (no feedback + reject ŷ) Same as the
above baseline without feedback, but we in-
corporate the knowledge of the original logical
form ŷ during training. We incorporate ŷ using
the same method as described in Section ??.

• Self-training Latent logical form inference is
performed using only the task parser (using
beam search). Feedback utterance f and orig-
inal logical form ŷ are ignored. Task parser pa-
rameters θt are updated in the same way as in
Algorithm 1.

Note that all models are exposed to the same train-
ing seed set, and differ only in the way they take
advantage of the unlabeled data. We perform two
types of evaluations of each model:

• Generalization performance we use the
learned task parser to make predictions on held-
out data. This type of evaluation tests the ability
of the parser trained with natural language feed-
back to generalize to unseen utterances.

• Unlabeled data performance we use the
learned task parser to make predictions on the
unlabeled data that was used in training it. Note
that for each experimental condition, we per-
form this evaluation only on the portion of
the unlabeled data that was used during train-
ing. This ensures that this evaluation tests
the model’s ability to “recover” correct logical
forms from the questions that have natural lan-
guage feedback associated with them.

6 Results

6.1 Generalization performance
Figure 3a shows test accuracy as a function of
the number of unlabeled questions (i.e., ques-
tions containing only feedback supervision with-
out gold standard logical forms) used during train-
ing, across all four models. As expected, using
more unlabeled data generally improves general-
ization performance. The self-training baseline
is the only exception, where performance starts
to deteriorate as the ratio of unlabeled to labeled
questions increases beyond a certain point. This
behavior is not necessarily surprising – when the
unlabeled examples significantly outnumber the
labeled examples, the model may more easily veer
away to local optima without being strongly regu-
larized by the loss on the small number of labeled
examples.

Interestingly, the MH (no feedback) baseline
is very similar to self-training, but has a signifi-
cant performance advantage that does not deterio-
rate with more unlabeled examples. Recall that the
MH (no feedback) model modifies the full model
described in Algorithm 1 by ignoring the feedback
f and the original logical form ŷ in the feedback
parser model P (y | u, ŷ, f ; θf ). This has the ef-
fect of reducing the model of the feedback parser
into the model of the task parser P (y | u; θt). The
training on unlabeled data proceeds otherwise in
the same way as described in Algorithm 1. As a
result, the principle behind the MH (no feedback)
model is the same as that behind self-training, i.e.,
a single model learns from its own predictions.
However, different initializations of the two copies
of the task parser, and the combined model averag-
ing appears to improve the robustness of the model
sufficiently to keep it from diverging as the amount
of unlabeled data is increased.

The MH (no feedback + reject ŷ) baseline also
does not observe the feedback utterance f , but
incorporates the knowledge of the original parse
ŷ. As described in Section ??, this knowledge is
incorporated during MAP inference of the latent
parse, by rejecting any logical form samples that
match ŷ. As expected, incorporating the knowl-
edge of ŷ improves the performance of this base-
line over the one that does not.

Finally, the full model that incorporates both,
the feedback utterance f and the original logical
form ŷ outperforms the baselines that incorporate
only some of that information. The performance
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gain over these baselines grows as more ques-
tions with natural language feedback supervision
are made available during training. Note that both
this and the MH (no feedback + reject ŷ) model
incorporate the knowledge of the original logical
form ŷ, however, the performance gain from in-
corporating the knowledge of ŷ without the feed-
back is relatively small, indicating that the gains
from the model that observes feedback is primar-
ily from its ability to interpret it.

6.2 Performance on unlabeled data
Figure 3b shows accuracy on the unlabeled data,
as a function of the number of unlabeled ques-
tions used during training, across all four models.
The questions used in evaluating the model’s ac-
curacy on unlabeled data are the same unlabeled
questions used during training in each experimen-
tal condition. The general trend and the relation-
ship between baselines is consistent with the gen-
eralization performance on held-out data in Fig-
ure 3a. One of the main observations is that accu-
racy on unlabeled training examples remains rela-
tively flat, but consistently high (> 80%), across
all models regardless of the amount of unlabeled
questions used in training (within the range that
we experimented with). This suggests that while
the models are able to accurately recover the un-
derlying logical forms of the unlabeled questions
regardless of the amount of unlabeled data (within
our experimental range), the resulting generaliza-
tion performance of the learned models is signif-
icantly affected by the amount of unlabeled data
(more is better).

6.3 Effect of feedback complexity on
performance

Figure 4 reports parsing accuracy on unlabeled
questions as a function of the number of correc-
tions expressed in the feedback utterance paired
with that question. Our main observation is that
the performance of the full model (i.e., the joint
model that uses natural language feedback) deteri-
orates for questions that are paired with more com-
plex feedback (i.e., feedback containing more cor-
rections). Perhaps surprisingly, however, is that
all models (including those that do not incorporate
feedback) deteriorate in performance for questions
paired with more complex feedback. This is ex-
plained by the fact that more complex feedback
is generally provided for more difficult-to-parse
questions. In Figure 4, we overlay the parsing per-

formance with the statistics on the average length
of the target logical form (number of predicates).

A more important take-away from the results in
Figure 4, is that the model that takes advantage of
natural language feedback gains an even greater
advantage over models that do not use feedback
when parsing more difficult questions. This means
that the model is able to take advantage of more
complex feedback (i.e., with more corrections)
even for more difficult to parse questions.
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Figure 3: (a) Parsing accuracy on held-out questions
as a function of the number of unlabeled questions
used during training. (b) Parsing accuracy on unla-
beled questions as a function of the number of unla-
beled questions used during training. In both panels,
all parsers were initialized using 300 labeled examples
consisting of questions and their corresponding logical
form.

7 Related Work

Early semantic parsing systems map natural lan-
guage to logical forms using inductive logical
programming (Zelle and Mooney, 1996). Mod-
ern systems apply statistical models to learn from
pairs of sentences and logical forms (Zettlemoyer
and Collins, 2005, 2009; Kwiatkowski et al.,
2010). As hand-labeled logical forms are very
costly to obtain, different forms of weak super-
vision have been explored. Example works in-
clude learning from pairs of sentences and an-
swers by querying a database (Clarke et al., 2010;



1684

1 2 3

Number of corrections expressed in feedback utterance

7.2

7.4

7.6

7.8

8.0

8.2

8.4

A
ve

ra
ge

nu
m

b
er

of
pr

ed
ic

at
es

in
lo

gi
ca

l
fo

rm

Avg. number of predicates in logical form

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

U
nl

ab
el

ed
ac

cu
ra

cy

MH (full model)

MH (no feedback + reject ŷ)
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Figure 4: Parsing accuracy on unlabeled questions, par-
titioned by feedback complexity (i.e., number of cor-
rections expressed in a single feedback utterance).

Liang et al., 2013; Berant et al., 2013; Pasupat
and Liang, 2015; Liang et al., 2016; Krishna-
murthy et al., 2017); learning from indirect super-
vision from a large-scale knowledge base (Reddy
et al., 2014; Krishnamurthy and Mitchell, 2012);
learning from conversations of systems asking
for and confirming information (Artzi and Zettle-
moyer, 2011; Thomason et al., 2015; Padmakumar
et al., 2017); and learning from interactions with
a simulated world environment (Branavan et al.,
2009; Artzi and Zettlemoyer, 2013; Goldwasser
and Roth, 2014; Misra et al., 2015). The supervi-
sion used in these methods is mostly in the form of
binary feedback, partial logical forms (e.g., slots)
or execution results. In this paper, we explore a
new form of supervision – natural language feed-
back. We demonstrate that such feedback not only
provides rich and expressive supervisory signals
for learning but also can be easily collected via
crowd-sourcing. Recent work (Iyer et al., 2017)
trains an online language-to-SQL parser from user
feedback. Unlike our work, their collected feed-
back is structured and is used for acquiring more
labeled data during training. Our model jointly
learns from questions and feedback and can be
trained with limited labeled data.

There has been a growing interest on machine
learning from natural language instructions. Much
work has been done in the setting where an au-
tonomous agent learns to complete a task in an
environment, for example, learning to play games
by utilizing text manuals (Branavan et al., 2012;
Eisenstein et al., 2009; Narasimhan et al., 2015)
and guiding policy learning using high-level hu-
man advice (Kuhlmann et al., 2004; Squire et al.,
2015; Harrison et al., 2017). Recently, natural lan-
guage explanations have been used to augment la-

beled examples for concept learning (Srivastava
et al., 2017) and to help induce programs that solve
algebraic word problems (Ling et al., 2017). Our
work is similar in that natural language is used as
additional supervision during learning, however,
our natural language annotations consist of user
feedback on system predictions instead of expla-
nations of the training data.

8 Conclusion and Future Work

In this work, we proposed a novel task of learning
a semantic parser directly from end-users’ open-
ended natural language feedback during a conver-
sation. The key advantage of being able to learn
from natural language feedback is that it opens the
door to learning continuously through natural in-
teractions with the user, but it also presents a chal-
lenge of how to interpret such feedback. In this
work we introduced an effective approach that si-
multaneously learns two parsers: one parser that
interprets natural language questions and a second
parser that also interprets natural language feed-
back regarding errors made by the first parser.

Our work is, however, limited to interpreting
feedback contained in a single utterance. A natural
generalization of learning from natural language
feedback is to view it as part of an integrated dia-
log system capable of both interpreting feedback
and asking appropriate questions to solicit this
feedback (e.g., connecting to the work by (Pad-
makumar et al., 2017)). We hope that the prob-
lem we introduce in this work, together with the
dataset that we release, inspires the community to
develop models that can learn language (e.g., se-
mantic parsers) through flexible natural language
conversation with end users.
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Figure 5: A histogram of the number of corrections
expressed in a natural language feedback utterance in
our data (0 corrections means that the user affirmed the
original parse as correct). We partition the feedback ut-
terances according to whether the original parse ŷ that
the feedback was provided towards is known to be cor-
rect (i.e., matches the gold standard logical form parse).

A Analysis of natural language feedback

The dataset we collect creates a unique opportu-
nity to study the nature and the limitations of the
corrective feedback that users generate in response
to an incorrect parse. One of our hypotheses stated
in Section 1 is that natural language affords users
to express richer feedback than for example possi-
ble with binary (correct/incorrect) mechanism, by
allowing users to explicitly refer to and fix what
they see as incorrect with the original prediction.
In this section we analyze the feedback utterances
in our dataset to gain deeper insight into the types
of feedback users generate, and the possible limi-
tations of natural language as a source of supervi-
sion for semantic parsers.

Figure 5 breaks down the collected feedback by
the number of corrections expressed in the feed-
back utterance. The number of corrections ranges
from 0 (no corrections, i.e., worker considers the
original parse ŷ to be the correct parse of u) to
more than 3 corrections.7 The number of correc-
tions is self-annotated by the workers who write
the feedback – we instruct workers to count a cor-
rection constrained to a single predicate or a single
entity as a single correction, and tally all such cor-
rections in their feedback utterance after they have

7Note that in cases where the user indicates that they made
0 corrections, the feedback utterance that they write is often
a variation of a confirmation such as “that’s right” or “that’s
correct”
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Figure 6: Analysis of noise in feedback utterances con-
tained in our dataset. Feedback false positives refers
to feedback that incorrectly identifies the wrong origi-
nal parse ŷ as correct. Feedback false negatives refers
to feedback that incorrectly identifies a correct original
parse ŷ as wrong. Users are more likely to generate
false positives (i.e., miss the error) in their feedback
for parses of more complex utterances (as measured by
the number of predicates in the gold-standard logical
form).

written it8. Because we also know the ground truth
of whether the original parse ŷ (i.e., parse that the
user provided feedback towards) was correct (i.e.,
ŷ matches gold standard parse y), we can partition
the number of corrections by whether the origi-
nal parse ŷ was correct (green bars in Figure 5)
or incorrect (red bars), allowing us to evaluate the
accuracy of some of the feedback.

From Figure 5, we observe that users provide
feedback that ranges in the number of corrections,
with the majority of feedback utterances making
one correction to the original logical form ŷ (only
4 feedback utterances expressed more than 3 cor-
rections). Although we do not have gold-standard
annotation for the true number of errors in the
original logical form ŷ, we can nevertheless ob-
tain some estimate of the noise in natural language
feedback by analyzing cases where we know that
the original logical form ŷ was correct, yet the user
generated feedback with at least one correction.
We will refer to such feedback instances as feed-
back false negatives. Similarly, cases where the
original logical form ŷ is incorrect, yet the user
provided no corrections in their feedback, we re-
fer to as feedback false positives. The number of
feedback false negatives and false positives can be

8we give these instructions to workers in an easy to un-
derstand explanation without invoking technical jargon
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obtained directly from Figure 5. Generally, we ob-
serve that users are more likely to provide more
false negatives (≈ 4% of all feedback) than false
positives (≈ 1%) in the feedback they generate.

It is also instructive to consider what factors
may contribute to the observed noise in user gener-
ated natural language feedback. Our hypothesis is
that more complex queries (i.e., longer utterances
and longer logical forms) may result in a greater
cognitive load to identify and correct the error(s)
in the original parse ŷ. In Figure 6 we investigate
this hypothesis by decomposing the percentage of
feedback false positives and false negatives as a
function of the number of predicates in the gold
standard logical form (i.e., one that the user is try-
ing to recover by making corrections in the origi-
nal logical form ŷ). Our main observation is that
users tend to generate more false positives (i.e.,
incorrectly identify an originally incorrect logical
form ŷ as correct) when the target logical form is
longer (i.e., the query utterance u is more com-
plex). The number of false negatives (i.e., incor-
rectly identifying a correct logical form as incor-
rect) is relatively unaffected by the complexity of
the query (i.e., number of predicates in the tar-
get logical form). One conclusion that we can
draw from this analysis is that we can expect user-
generated feedback to miss errors in more com-
plex queries, and models that learn from users’
natural language feedback need to have a degree
of robustness to such noise.

B Implementation Details

We tokenize user utterances (questions) and feed-
back using the Stanford CoreNLP package. In all
experiments, we use 300-dimensional word em-
beddings, initialized with word vectors trained us-
ing the Paraphrase Database PPDB (Wieting et al.,
2015), and we use 128 hidden units for LSTMs.
All parameters are initialized uniformly at ran-
dom. We train all the models using Adam with
initial learning rate 10−4 and apply L2 gradient
norm clipping with a threshold of 10. In all the
experiments, we pre-train the task parser and the
feedback parser for 20 epochs, and then switch
to semi-supervised training for 10 epochs. Pre-
training takes roughly 30 minutes and the semi-
supervised training process takes up to 7 hours on
a Titan X GPU.
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Figure 7: Visualization of the attention mechanism in the task parser (top) and the feedback parser (bottom) for
parsing the same utterance. We partition the input to the parser into three groups: the original utterance u being
parsed (blue), the conversational context (green) and the feedback utterance f (red). This example was parsed
incorrectly before incorporating feedback, but parsed correctly after its incorporation.
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Figure 8: Visualization of the attention mechanism in the task parser (top) and the feedback parser (bottom) for
parsing the same utterance. We partition the input to the parser into three groups: the original utterance u being
parsed (blue), the conversational context (green) and the feedback utterance f (red). This example was parsed
incorrectly before incorporating feedback, but parsed correctly after its incorporation.


