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Abstract

We introduce the task of cross-lingual decom-
positional semantic parsing: mapping content
provided in a source language into a decom-
positional semantic analysis based on a tar-
get language. We present: (1) a form of de-
compositional semantic analysis designed to
allow systems to target varying levels of struc-
tural complexity (shallow to deep analysis),
(2) an evaluation metric to measure the simi-
larity between system output and reference se-
mantic analysis, (3) an end-to-end model with
a novel annotating mechanism that supports
intra-sentential coreference, and (4) an evalu-
ation dataset on which our model outperforms
strong baselines by at least 1.75 F} score.

1 Introduction

We are concerned here with representing the se-
mantics of multiple natural languages in a sin-
gle semantic analysis. Renewed interest in se-
mantic analysis has led to a surge of proposed
new frameworks, e.g., GMB (Basile et al., 2012),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), and UDS (White et al.,
2016), as well as further calls to attend to existing
efforts, e.g., Episodic Logic (EL) (Schubert and
Hwang, 2000; Schubert, 2000; Hwang and Schu-
bert, 1994; Schubert, 2014), or Discourse Repre-
sentation Theory (Kamp, 1981; Heim, 1988).
Many of these efforts are limited to the analysis
of English, but with a number of exceptions, e.g.,
recent efforts by Bos et al. (2017), ongoing efforts
in Minimal Recursion Semantics (MRS) (Copes-
take et al., 1995), multilingual FrameNet anno-
tation and parsing (Fung and Chen, 2004; Padé
and Lapata, 2005), among others. For many lan-
guages, semantic analysis cannot be performed di-
rectly, owing to a lack of training data. While
there is active work in the community focused on
rapid construction of resources for low resource
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languages (Strassel and Tracey, 2016), it remains
an expensive and perhaps infeasible solution to as-
sume in-language annotated resources for devel-
oping semantic parsing technologies. In contrast,
bitext is easier to get: it occurs often without re-
searcher involvement,! and even when not avail-
able, it may be easier to find bilingual speakers
that can translate a text, than it is to find experts
that will create in-language semantic annotations.
In addition, we are simply further along in being
able to automatically understand English than we
are other languages, resulting from the bias in in-
vestment in English-rooted resources.

Therefore, we propose the task of cross-lingual
decompositional semantic parsing, which aims at
transducing a sentence in the source language
(e.g., Chinese sentence in Fig. 1b) into a de-
compositional semantic analysis derived based on
English, via bitext. The efforts of decomposi-
tional semantics (White et al., 2016) focus on ap-
proaches to annotating meaning based on fine-
grained scalar judgments which reflect the ambi-
guity of language, and the underspecification of
meaning in context. Our contributions include:
(1) A form of decompositional semantic analysis
allowing systems to target varying levels of struc-
tural complexity.

(2) An evaluation metric to measure the similarity
between system and reference semantic analysis.
(3) An encoder-decoder model for cross-lingual
decompositional semantic parsing. With a coref-
erence annotating mechanism, the model solves
intra-sentential coreference explicitly.

(4) The first evaluation dataset for cross-lingual
decompositional semantic parsing.’

Experiments demonstrate our model achieves
38.78% F1, outperforming strong baselines.

"For example, owing to a government decree.
http://decomp.io
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“30 people were reported dead in one block of flats which was hit by a storm surge.”

(b) Chinese sentence with Leipzig gloss.

Figure 1: Input and output of cross-lingual decompositional semantic parsing.

2 Semantic Analysis

The goal of cross-lingual decompositional seman-
tic parsing is to provide a semantic analysis which
can be used for various types of deep and shal-
low processing on the target language side. Many
forms of semantic analysis are potentially suitable
for this goal, e.g., AMR (Banarescu et al., 2013),
UCCA (Abend and Rappoport, 2013), and Uni-
versal Decompositional Semantics (White et al.,
2016). Here we choose Universal Decomposi-
tional Semantics (UDS), but note that our ap-
proach is applicable to other potential graph se-
mantic formalisms.

The reasons for choosing UDS are three-fold:
(1) Compatibility: UDS relates to Robust Min-
imal Recursion Semantics (RMRS) (Copestake,
2007), aiming for a maximal degree of semantic
compatibility. With UDS, shallow analysis, such
as predicate-argument extraction (Zhang et al.,
2017a), can be regarded as producing a seman-
tics which is underspecified and reusable with re-
spect to deeper analysis, such as lexical seman-
tics and inference (White et al., 2016). (2) Ro-
bustness and Speed: There exists a robust frame-
work, PredPatt (White et al., 2016), for auto-
matically creating UDS from raw sentences and
their Universal Dependencies. PredPatt has been

shown to be fast and accurate enough to process
large volumes of text (Zhang et al., 2017c). (3)
Cross-lingual validity: PredPatt is based purely
on non-lexical and linguistically well-founded pat-
terns from Universal Dependencies, which is de-
signed to be cross-linguistically consistent.

There are three forms to represent UDS:
flat, graph, or linearized representations. They
are created for different purposes, and are
inter-convertible. Flat representation relates to
RMRS (Copestake, 2007), and we defer its de-
scription to Appendix A.

2.1 Graph Representation

The graph representation as shown in Fig. la is
developed to improve ease of readability, parser
evaluation, and integration with lexical semantics.
The structure of the graph representation is a tuple
G = (V, E): a set of variables V' (e.g., p1 and x),
and a set of edges F. There are 3 types of edges:
(1) Argument edges describe argument relations
between variable pairs. Deeper analysis such as
Semantic Proto-Role (SPR) properties (Reisinger
et al., 2015) can be attached to argument edges.
SPR analysis can be considered as a scalar re-
gression problem (White et al., 2016), where each
predicate-argument pair is annotated with scalar
values for different SPR properties. (2) Instance
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Figure 2: UDS linearized representation. Deeper analysis such as SPR and factuality is not shown.

edges describe instances of variables in the target
language. The subscript “h” indicates the syntac-
tic head of an instance. (3) Attribute edges are
unary, which describe various attributes of vari-
ables, such as event factuality (Sauri and Puste-
jovsky, 2009) and word senses (Miller, 1995). The
graph representation can be viewed as an under-
specified version of Dependency Minimal Recur-
sion Semantics (DMRS) (Copestake, 2009) due to
the underspecification of scope. Different from
DMRS, the graph representation is linked cleanly
to Universal Dependency syntax via PredPatt.

2.2 Linearized Representation

The linearized representation aims to facilitate
learning of semantic parsers. Recently parsers
based on RNN that make use of linearized rep-
resentation have achieved state-of-the-art perfor-
mance in constituency parsing (Choe and Char-
niak, 2016), logical form prediction (Dong and La-
pata, 2016; Jia and Liang, 2016), and AMR pars-
ing (Barzdins and Gosko, 2016; Peng et al., 2017).
There was also work on predicting linearized
semantic representations before RNN based ap-
proaches (Wong and Mooney, 2006).

Fig. 2 shows an example of UDS linearized
representation. Intra-sentential coreference occurs
when an instance refers to an antecedent, where
we replace the instance with a special symbol “e”
and add a COREF link between “e” and its an-
tecedent. The linearized representation can be
viewed as a sequence of tokens with a list of
COREF links. Brackets, parentheses, and the spe-
cial symbol “e” are all considered as tokens in this
representation. The COREF links are drawn as a vi-
sual convenience, and the actual linearized repre-
sentation achieves this via co-indexing, and is thus
fully linear. We describe the procedure of convert-
ing graph representation to linearized representa-
tion in Appendix B.

3 Related Work

Our work synthesizes two strands of research, se-
mantic analysis and cross-lingual learning.

The semantic analysis targeted in this work is
akin to that of Hobbs (2003), but our eventual goal

is to transduce texts from arbitrary human lan-
guages into a “...broad, language-like, inference-
enabling [semantic representation] in the spirit
of Montague...” (Schubert, 2015). Unlike efforts
such as by Schubert and colleagues that directly
target such an analysis, we are pursuing a strat-
egy that incrementally increases the complexity of
the target analysis in accordance with our ability to
fashion models capable of producing it.> Embrac-
ing underspecification in the name of tractability
is exemplified by MRS (Copestake et al., 2005;
Copestake, 2009), the so-called slacker semantics,
and we draw inspiration from that work. Anal-
yses such as AMR (Banarescu et al., 2013) also
make use of underspecification, but usually this is
only implicit: certain aspects of meaning are sim-
ply not annotated. Unlike AMR, but akin to de-
cisions made in PropBank (Palmer et al., 2005)
(which forms the majority of the AMR ontologi-
cal backbone), we target an analysis with a close
correspondence to natural language syntax. Un-
like interlingua (Mitamura et al., 1991; Dorr and
Habash, 2002) that maps the source language into
an intermediate analysis, and then maps it into the
target language, we are not concerned with gen-
erating text from the semantic analysis. Substan-
tial prior work on semantic analyses exists, includ-
ing HPSG-based analyses (Copestake et al., 2005),
CCG-based analyses (Steedman, 2000; Baldridge
and Kruijff, 2002; Bos et al., 2004), and Universal
Dependencies based analyses (White et al., 2016;
Reddy et al., 2017). See (Schubert, 2015; Abend
and Rappoport, 2017) for further discussion.
Cross-lingual learning has previously been ap-
plied to various NLP tasks. Yarowsky et al.
(2001); Pad6 and Lapata (2009); Evang and
Bos (2016); Faruqui and Kumar (2015) focused
on projecting existing annotations on source-
language text to the target language. Zeman and
Resnik (2008); Ganchev et al. (2009); McDon-
ald et al. (2011); Naseem et al. (2012); Wang and
Manning (2014) enabled model transfer by shar-

3E.g., in Fig. 1a we recognize “by a storm surge” as an
initial structural unit, with multiple potential analysis, which
may be further refined based on the capabilities of a given
cross-lingual semantic parser.
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ing features or model parameters for different lan-
guages. Sudo et al. (2004); Zhang et al. (2017a,b);
Mei et al. (2018) worked on cross-lingual informa-
tion extraction and demonstrated the advantages of
end-to-end learning. In this work, we explore end-
to-end cross-lingual learning.

4 Evaluation Metric S

UDS can be represented in three forms. Evalu-
ating such forms is crucial to the development of
parsing algorithms. However, there is no method
directly available for evaluation. Related meth-
ods come from semantic parsing, whose results
are mainly evaluated in three ways: (1) task cor-
rectness (Tang and Mooney, 2001), which evalu-
ates on a specific NLP task that uses the parsing
results; (2) whole-parse correctness (Zettlemoyer
and Collins, 2005), which counts the number of
parsing results that are completely correct; and (3)
Smatch (Cai and Knight, 2013), which computes
the number of exactly matched edges between two
semantic structures.

Nevertheless, our task needs an evaluation met-
ric that can be used regardless of specific tasks
or domains, and is able to differentiate two UDS
graph representations with similar instances, SPR
analysis, or attributes. We design an evaluation
metric S that computes the similarity between two
graph representations.

As described in Section 2.1, the graph repre-
sentation is a tuple G = (V, E)). For two graphs
G = (V4, E1) and Go = (Va, E3), we define the
score S as the maximum soft edge matching score
between G; and Go:

S(gl,gz) = nI{lEa}\)El [ Z fT(egl)’ng))]

(egw ,egj))eP

where m is a mapping from variables in V; to vari-
ables in V5. Given a mapping m, P is a set of edge
pairs: for each pair (egl), ey )), variables(s) in egz)

are mapped to variables(s) in egj ) via m. fr com-

putes the matching score for a pair of edges be-
longing to type 7' € {ARG, INST, ATTR}. The
matching score is normalized to [0, 1].
The precision and recall are computed by
S(G1,G2)/|E1|, and S(G1,Ga)/|E2| respectively.
In this work, farg = fartr = e MAE, where
MAE computes the mean absolute error between

two set of scores s; and so: » ;" |s§i) - sg)|/n.

finst = BLEU (Papineni et al., 2002) which com-
pute the BLEU score of an instance pair.*

Finding an optimal variable mapping m that
yields the highest S is NP-complete. We instead
adopt a strategy used in Smatch (Cai and Knight,
2013) that does a hill-climbing search with smart
initialization plus 4 random restarts, and has been
shown to give the best trade-off between accuracy
and speed. Smatch for evaluating semantic struc-
tures can be considered as a special case of S,
where fr = J, the Kronecker delta.

5 Model

We formulate the task of cross-lingual decompo-
sitional semantic parsing as a joint problem of
sequence-to-sequence learning, coreference res-
olution and decompositional semantic analysis.
The input is a sentence X in the source language,
e.g., the Chinese sentence in Fig. 1b. The out-
put is a UDS linearized representation (Y, C, D)
based on the target language: Y is a sequence of
tokens; C is a set of COREF links; and D is a set of
scores for decompositional analysis, such as SPR
and factuality.

The goal is to learn a conditional probability
distribution P(Y, C, D|X') whose most likely con-
figuration, given the input sentence, outputs the
true UDS linearized representation with decom-
positional analysis. While the standard encoder-
decoder framework shows the state-of-the-art per-
formance in sequence-to-sequence learning (Choe
and Charniak, 2016; Jia and Liang, 2016; Barzdins
and Gosko, 2016), it cannot directly solve intra-
sentential conference and decompositional seman-
tic analyses in our task. To achieve this goal,
we propose an encoder-decoder architecture in-
corporated with a coreference annotating mech-
anism® and decompositional analysis. As illus-
trated in Fig. 3, Encoder transforms the input se-
quence into hidden states; Decoder reads the hid-
den states, and then at each time step generates
a token and creates its COREF link; Decomposi-
tional Analysis, based on the decoder output, per-
forms SPR analysis for predicate-argument pairs,
and factuality analysis for predicates.

*Future work could consider, e.g., a modified BLEU that
considers Levenshtein distance between tokens for a more ro-
bust partial-scoring in the face of transliteration errors.

SSimilar coreference mechanism has been proposed by Ji
et al. (2017).
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Figure 3: Illustration of the model architecture.

5.1 Encoder

The encoder employs a bidirectional recurrent
neural network (Schuster and Paliwal, 1997) with
LSTM units (Hochreiter and Schmidhuber, 1997).
It encodes the input X = x1,... ,xN6 into a se-
quence of hidden states h = hq,...,hy. Each
hidden state h; is a concatenation of a left-to-right
hidden state E} and a right-to-left hidden state %z

5.2 Decoder

Given the encoder hidden states, the decoder pre-
dicts the linearized representation (as shown in
Fig. 2) according to the conditional probability
P(Y,C | X) which is decomposed as a product
of the decoding probabilities at each time step ¢:

M

PY,C|X)= Hp(ytyct | y<tsc<t, X) (1)
t=1

where y; is the decoded token at time step ¢, and
¢; is the source of the COREF link for y, i.e., the
antecedent of y;. The set of possible antecedents
of y¢ is A(t) = {€,y1,...,9—1}: a dummy an-
tecedent € and all preceding tokens. € represents a
scenario, where the token is not a special symbol

TPl

¢, and it refers to none of the preceding tokens.

SFor simplicity, we use X (and Y) to represent both to-
kens as well as their word embeddings.

y<¢ and c.¢ are the preceding tokens and their an-
tecedents. We omit y; and c.; from the notation
when the context is unambiguous.

The decoding probability at each time step ¢ is
decomposed as

P(yt, ct) = P(ye) P(etlyt) ()

where P(y;) is the token generation probability,
and P(c¢|y) is the antecedent probability.
Token Generation: The probability distribution
of the generated token y; is defined as

P(y;) = softmax(FFNNg (s, at)) 3)

where FFNN, is a two-layer feed-forward neural
network over the decoder hidden state s; and the
attention-weighted vector a;. s; is computed by

St = RNN(y—1, S¢—1), “4)

where RNN is a recurrent neural network using
LSTM. a; is computed by the attention mechanism
(Bahdanau et al., 2014; Luong et al., 2015),

N
ay = Z atihi, ®)

- exp (s (Wahi +ba)))
C exp (s] (Wahj + ba))

(6)

where W, is a transform matrix and b, is a bias.
Coref Link: The probability of y, referring to the
preceding token yy, i.e., ¢; = yg, is defined as

exp (SCORE(Y¢, Yi))
y, e A(t) OXP (SCORE(yy, yi))’
(7

P(cy = yrlye) = Z

SCORE (Y, yr) is a pairwise score for a COREF link
from yy, to y;, defined as:

SCORE(Yt, Yr) = 5c(ye) + sp(yr) + sa(yt, )
(8)

There are three factors in this pairwise score,
which is akin to Lee et al. (2017): (1) sc(ye)s
whether y; should refer to a preceding instance;
(2) sp(yr), whether y;, shoud be a candidate
source of such a coreference; and (3) s, (yt, Yk),
whether yy, is an antecedent of ;.

Fig. 4 shows the details of the scoring architec-
ture. At the core of the three factors are vector
representations 7y (y;) for each token y;, which is
described in detail in the following section. Given
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Figure 4: Scoring architecture in the copy mech-
anism between a preceding token ¥, and the cur-
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the currently considered token y; and a preceding
token yj, the scoring functions above are com-
puted via standard feed-foward neural networks:

Sc(yt) =we - FENNe((y1)) ©)
5p(yYr) =wp - FENNp ((yx)) (10)

Sa(Ye, Yk) =wa - FENNa ([v(w1), v(y),
Y(yt) o v(yr)]) (11)

where - denotes dot product, o denotes element-
wise multiplication, and FFNN denotes a two-layer
feed-foward neural network over the input. The in-
put of FFNN,, is a concatenation of vector represen-
tations (y;) and 7y (yx ), and their explicit element-
wise similarity v(y¢) o v(yk).

Token representations: To accurately predict
COREF link scores as well as decompositional
analysis (which is described in the following sec-
tion), we consider three types of information in
each token representation (y;): (1) the token it-
self y¢, (2) on the decoder side, the preceding con-
text y¢, and (3) on the encoder side, the input se-
quence X = x1,...,TN.

The lexical information of the token itself y;
is represented by its word embedding e;. The
preceding context y.; is encoded by the decoder
RNN in Equation (4). We use the decoder hidden
state s; to represent the preceding context informa-
tion. The encoder-side context is represented by
an attention-weighted weight a; defined in Equa-
tion (6). All the above information is concatenated
to produce the final token representation y(y;):

Y(yt) = let, st, g (12)

5.3 Decompositional Analyses

The decompositional analyses DD contains scores
for Semantic Proto-Role (SPR) properties Dspg,
and scores for event factuality Dgacr.

SPR: Given a predicate-argument pair (y;, y;), we
denote the score for SPR property p as Dé%}’{zj ),
As shown in Fig. 3, we concatenate the token rep-
resentations of predicate and argument head to-
kens y(y;) and (y;) as the input to a SPR mod-
ule. We employ the state-of-the-art SPR module

in Rudinger et al. (2018a), defined as:

D) = Wepr, ReLU(Wanarealy (4:). 7(87)])
(13)
where Whareq 1s the weight matrix shared across
all properties. WgpR, is the weight matrix for SPR
property p. Then, the log-likelihood of the score of

SPR property p is defined as the negative Lo loss,

_ (yisyj) y“y]) 2
ie., ‘DSPRP SPRP .

Factuality: We consider predicting event factual-
ity as a scalar regression problem (White et al.,
2016), and denote the factuality score of predicate
Yk as Dl(:i’gT. As shown in Fig. 3, we take the to-
ken representation of predicate head token ~y(yx)
as the input to the state-of-the-art factuality mod-

ule (Rudinger et al., 2018c):

DUEL = VaReLU (Viy(yi) + by) + ba,  (14)

where V7 and Vs are weight matrices, and b; and
by are biases. The log-likelihood of factuality
score is defined as negative of the Huber loss (Hu-
ber, 1964) with § = 1.

We assume conditional independence among
decompositional analysis:

px,v,0)= [ Tl Dé%lf? 1X,Y,0)
(y’MyJ) p
[[ PO Ix,y.0) (15
Yk

5.4 Learning

Given the input sentence X, the output sequence
of tokens Y, and the COREF links C, and the de-
compositional analysis D, the objective is to min-
imize the below negative log-likelihood:

L =—logP(Y,C,D|X)

M
== [u1log P(y;) + pzlog P(ctlys)]—
t=1

pzlog P(D]|X,Y, C)

To increase the convergence rate, we pretrain
the model by setting the weights 4y = 1 and
w2 = p3 = 0 to only optimize the token gener-
ation accuracy. After the model converges, we set
po = p3 = 1 and lower p; = 0.1.
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6 Experiments

S metric
— BLEUnsT | MAEspr | MAEERAcT
Precision Recall Fl1
Pipeline 35.08 30.10 32.39 15.03 N/A N/A
Variant (a) 39.31 3293 35.84 16.74 0.75 1.11
Variant (b) 42.76 33.20 37.38 17.71 0.74 1.14
Variant (c) 41.74 33.28 37.03 18.01 0.80 1.14
Our model 45.33 33.88 38.78 19.61 0.71 1.06
Table 1: Evaluation of results on the test set.
(In-domain test results are shown in Appendix D.)
No. sents Source
We now describe the evaluation data, baselines, Train 1,879,172 GALE
and experimental results. Hyperparameter settings Validation 10,000 GALE
are reported in Appendix C. In-domain Test 10,000 GALE
Test 270 UD Treebank

6.1 Data

We choose Chinese as the source language and En-
glish as the target language. For test, we selected
270 sentences from the Universal Dependencies
(UD) English Treebank (Silveira et al., 2014) test
set, which have human-annotated SPR (White
etal., 2016) and factuality (Rudinger et al., 2018c¢)
analyses. We then created linearized represen-
tations for these sentences using PredPatt based
on their gold UD syntax. Meanwhile, the Chi-
nese translations of these sentences were created
by crowdworkers on Amazon Mechanical Turk.
The test dataset will be released upon publica-
tion. For training, we first collected about 1.8M
Chinese-English sentence bitexts from the GALE
project (Cohen, 2007), then tokenized Chinese
sentences with Stanford Word Segmenter (Chang
et al., 2008). We created linearized representa-
tions for English sentences using PredPatt based
on automatic UD syntax generated by SyntaxNet
Parser (Andor et al., 2016), and added SPR and
factuality annotations using the state-of-the-art
models (Rudinger et al., 2018b,c) trained on SPR
v2.x and It-happened v2.0 respectively.” We hold
out 20K training sentences for validation and in-
domain test. Table 2 reports the dataset statistics.

6.2 Variants

We evaluate our model described in Section 5 and
three variants: (a) We replace the coreference an-
notating mechanism by randomly choosing an an-

"Both datasets are available at http: //decomp . net

Table 2: Statistics of the evaluation data.

tecedent from all preceding instances. (b) We pre-
process the data by replacing the special symbol
“e” with the syntactic head of its antecedent. Dur-
ing training and testing, we replace the corefer-
ence annotating mechanism with a heuristic that
solves coreference by randomly choosing an an-
tecedent among preceding instances which have
the same syntactic head. (¢) We remove the
decoder-side information in the token representa-
tion y(y;) defined in Equation (12) and only keep
the encoder-side information a;. We also include
a Pipeline approach where Chinese sentences are
first translated into English by a neural machine
translation system (Klein et al., 2017) and are then
annotated by a UD parser (Andor et al., 2016). The
UDS linearized representation of Pipeline are cre-
ated by PredPatt based the automatic UD parses.

6.3 Results

Table 1 reports the experimental results on the test
set. Results on the in-domain test set are simi-
lar and shown in Appendix D. In Table 1, S met-
ric (defined in Section 4) measures the similarity
between predicted and reference graph represen-
tations. Based on the optimal variable mapping
provided by the S metric, we are able to eval-
uate our model and the variants in different as-
pects: BLEUjnsT measures the BLEU score of
all matched instance edges; MAEgpr measures the
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mean absolute error of SPR property scores of all
matched argument edges; and MAEgscT measures
the mean absolute error of factuality scores of all
matched attribute edges.

Overall, our proposed model outperforms the
variants in every aspect. Variants (a) and (b) use
simple heuristics to solve coreference, and achieve
reasonable results: they both employ sequence-to-
sequence models to predict graph representations,
which can be considered a replica of state-of-
the-art approaches for structured prediction (Choe
and Charniak, 2016; Barzdins and Gosko, 2016;
Peng et al., 2017). Compared to our model which
employs the coreference annotating mechanism,
these two variants suffer notable loss in the pre-
cision of S metric. As a result, their performance
drops on the other metrics. Variant (c) only uses
the encoder-side information for token representa-
tion, resulting in significant loss in MAEgpr and
MAEgact. In the pipeline approach, each compo-
nent is trained independently. During test, resid-
ual errors from each component are propagated
through the pipeline. As expected, it shows a sig-
nificant performance drop.

Precision Recall F1
Variant (a) 10.38 31.23 15.58
Variant (b) 88.42 50.59 64.36
Variant (c) 84.12 35.99 5041
Our model 96.63 97.62 97.12

Table 3: Coreference evaluation (MUC) based on
forced decoding.

Coreference occurs 589 times in the test set. To
evaluate the coreference accuracy of our model,
we force the decoder to generate the reference tar-
get sequence, and only predict coreference via the
copy mechanism, or its variants. In Table 3, we
report the precision, recall, and F for the stan-
dard MUC using the official coreference scorer
of the CoNLL-2011/2012 shared tasks (Pradhan
et al., 2014). Since coreference in our setup oc-
curs at the sentence level, our model achieves high
performance. Variant (a) randomly choosing an-
tecedents performs poorly, whereas variant (b),
which solves coreference only based on syntactic
heads, achieves a relatively high score. Variant (c)
demonstrates that only using encoder-side infor-
mation in the coreference annotating mechanism
leads a significant performance drop.

Our Monolingual

Model SOTA
awareness 0.852 0.879
change location 0.491 0.492
change possession 0.448 0.488
changed 0.307 0.352
change state 0.362 0.373
existed after 0.426 0.478
existed before 0.602 0.618
existed during 0.336 0.358
instigation 0.597 0.59
partitive 0.317 0.359
sentient 0.849 0.88
volition 0.818 0.837
was for benefit 0.566 0.578
was used 0.268 0.203

Table 4: Pearson coefficient of each SPR property.

Since our model and the state-of-the-art mono-
lingual SPR model (Rudinger et al., 2018c) use
the same test set, we are able to compare the per-
formance of our model against the monolingual
model by forcing the decoder and the coreference
mechanism to create the reference graph repre-
sentation and only predicting the SPR property
scores. Table 4 shows the Pearson coefficient of
each SPR property. While our model only has the
access to the sentence in the source language dur-
ing the encoding stage,® the performance is com-
parable to the state-of-the-art monolingual model.

7 Conclusions

We introduce the task of cross-lingual decomposi-
tional semantic parsing, which maps content pro-
vided in a source language into decompositional
analysis based on a target language. We present:
UDS graph/linearized representations as the tar-
get semantic interface, the S metric for evalua-
tion, and the Chinese-English decompositional se-
mantic parsing dataset. We propose an end-to-
end learning approach with a coreference anno-
tating mechanism which outperforms three strong
baselines. We separately evaluate the coreference
mechanism and SPR prediction, showing promis-
ing results. The representations for cross-lingual
decompositional semantics, the evaluation metric,
and the evaluation dataset provided in this work

8The state-of-the-art monolingual SPR model directly en-
codes the sentence in the target language.
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will be beneficial to the increasing interests in se-
mantic analysis and cross-lingual applications.
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