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Abstract

Building a semantic parser quickly in a new
domain is a fundamental challenge for conver-
sational interfaces, as current semantic parsers
require expensive supervision and lack the
ability to generalize to new domains. In this
paper, we introduce a zero-shot approach to
semantic parsing that can parse utterances in
unseen domains while only being trained on
examples in other source domains. First,
we map an utterance to an abstract, domain-
independent, logical form that represents the
structure of the logical form, but contains
slots instead of KB constants. Then, we re-
place slots with KB constants via lexical align-
ment scores and global inference. Our model
reaches an average accuracy of 53.4% on 7
domains in the OVERNIGHT dataset, substan-
tially better than other zero-shot baselines, and
performs as good as a parser trained on over
30% of the target domain examples.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage utterances into executable logical forms, is
a key paradigm in developing conversational inter-
faces (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Kwiatkowski et al., 2011; Berant
and Liang, 2015). The recent success of conver-
sational interfaces such as Amazon Alexa, Google
Assistant, Apple Siri, and Microsoft Cortana has
led to soaring interest in developing methodolo-
gies for training semantic parsers quickly in any
new domain and from little data.

Prior work focused on alleviating data collec-
tion by training from weak supervision (Clarke
et al., 2010; Liang et al., 2011; Kwiatkowski et al.,
2013; Artzi and Zettlemoyer, 2013), or develop-
ing protocols for fast data collection through para-
phrasing (Berant and Liang, 2014; Wang et al.,
2015) or a human-in-the-loop (Iyer et al., 2017).

What QA related papers were published during 2018?

What ENT ADJ NOUN were VERB during DATE?
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c1 slocal(related,c1)
Author 0.57

Field 0.5

Venue 0.34

c3 slocal(papers,c3)
Article 0.88

Venue 0.43

Person 0.15

Field.QA ⊓ Type.Article ⊓ PubYear.2018

Figure 1: A test utterance is delexicalized (1) and
mapped to its abstract logical form (2). Slots (“$” vari-
ables) are then aligned to the abstract utterance (3), and
are filled with the top assignment in terms of local and
global scores (4). Logical forms throughout this paper
are in λ-DCS (Liang, 2013).

However, all these approaches rely on supervised
training data in the target domain and ignore data
collected previously for other domains.

In this paper, we propose an alternative, zero-
shot approach to semantic parsing, where no la-
beled or unlabeled examples are provided in the
target domain, but annotated examples from other
domains are available. This is a challenging setup
as in semantic parsing each dataset is associated
with its own knowledge-base (KB) and thus all
target domain KB constants (relations and entities)
are unobserved at training time. Moreover, this is a
natural use-case as more and more conversational
interfaces are developed in multiple domains.

Our approach is motivated by recent work
(Herzig and Berant, 2017; Su and Yan, 2017; Fan
et al., 2017; Richardson et al., 2018) that showed
that while the lexicon and KB constants in dif-
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ferent domains vary, the structure of language
composition repeats across domains. Therefore,
we propose that by abstracting away the domain-
specific lexical items of an utterance, we can learn
to map the structure of an abstract utterance to
an abstract logical form that does not include any
domain-specific KB constants, using data from
other domains only.

Figure 1 illustrates this approach. A test ut-
terance in the target domain is delexicalized and
mapped to an abstract, domain-independent repre-
sentation, where some content words are replaced
by abstract tokens (step 1). Then, a structure-
mapping model maps this representation into an
abstract logical form that contains slots instead of
KB constants (step 2). A major technical chal-
lenge at this point is to replace slots in the ab-
stract logical form with KB constants from the tar-
get domain. We show that it is possible to learn a
domain-independent lexical alignment model that
aligns each slot to a word in the original utterance
(step 3). This alignment, combined with a global
inference procedure (step 4) allows one to find the
best assignment of KB constants and produce a fi-
nal logical form. Importantly, both of our models
are trained from data in other domains only.

We show that our zero-shot framework parses 7
different unseen domains from the OVERNIGHT

dataset with an average denotation accuracy of
53.4%. This result dramatically outperforms
several natural baselines, and achieves the same
result as training a parser on over 30% of the
fully supervised target domain examples. To
our knowledge, this work is the first to train a
zero-shot semantic parser that can handle unseen
domains. All our code is available at https:
//github.com/jonathanherzig/
zero-shot-semantic-parsing.

2 Background

Neural Semantic Parsing Sequence-to-
sequence models (Sutskever et al., 2014) were
recently proposed for semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016). In this
setting, a sequence of input language tokens
x1, . . . , xm is mapped to a sequence of output
logical tokens z1, . . . , zn. We briefly review the
model by Jia and Liang (2016), which we use as
part of our framework, and also as a baseline.

The encoder is a BiLSTM (Hochreiter and
Schmidhuber, 1997) that converts x1, . . . , xm into

a sequence of context sensitive states. The
attention-based decoder (Bahdanau et al., 2015;
Luong et al., 2015) is an LSTM language model
additionally conditioned on the encoder states.
Formally, the decoder is defined by:

p(zj = w | x, z1:j−1) ∝ exp(U [sj , cj ]),

sj+1 = LSTM([φ(out)(zj), cj ], sj),

where sj are decoder states, U and the embed-
ding function φ(out) are the decoder parameters,
and the context vector, cj , is the result of global
attention (Luong et al., 2015). We also employ
attention-based copying (Jia and Liang, 2016), but
omit details for brevity.

Semantic Parsing over Multiple KBs Re-
cently, Herzig and Berant (2017), Su and Yan
(2017) and Fan et al. (2017) proposed to exploit
structural regularities in language across differ-
ent domains. These works pooled together ex-
amples from multiple datasets in different do-
mains, each corresponding to a separate KB, and
trained a single sequence-to-sequence model over
all examples, sharing parameters across domains.
They showed that this substantially improves pars-
ing accuracy. While these works implicitly cap-
ture linguistic regularities across domains, they
rely on annotated data in the target domain. We,
conversely, explicitly decouple structure mapping
from the assignment of KB constants, and thus can
tackle the zero-shot setting where no target do-
main examples are available. This is the focus of
the next section.

3 Zero-Shot Semantic Parsing

3.1 Overview
Following the empirical success of sharing struc-
tural information between different semantic pars-
ing domains, we propose in this paper to take a
more radical approach and to explicitly decouple
semantic parsing into a structure mapping model
and a lexicon mapping model. We now provide
an overview of our approach and explain how this
decoupling facilitates zero-shot semantic parsing.

We assume access to D different source do-
mains, where for every domain d we receive a
KB Kd, and a training set of pairs of utterances
and logical forms {(xi, zi)}Nd

i=1. We further as-
sume a lexicon L that maps each KB constant
in Kd to a short phrase that describes it (e.g.,
L(PubYear)→“publication year”), as in Wang

https://github.com/jonathanherzig/zero-shot-semantic-parsing
https://github.com/jonathanherzig/zero-shot-semantic-parsing
https://github.com/jonathanherzig/zero-shot-semantic-parsing
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Unsupervised aligner Delexicalizer

Aligner learner

Training examples from D source domains

Noisy alignments

Restaurant with best rating

argmax(Type.Rest,Rating)
…

{NOUN with best NOUN,
argmax(Type.$ENT_TYPE,$REL)}
…

Abstract examples

Structure mapper learner

Aligner Structure mapper

{“Restaurant with best rating”, argmax(Type.Rest,Rating)}
{“Housing in London”, Type.Housing⊓Location.London}
…

…

… …

Figure 2: Training flow. Examples in source domains
are delexicalized. Abstract examples are used to train
both the structure mapper learner and aligner learner,
where the aligner learner uses noisy alignments as la-
bels.

et al. (2015). Finally, we assume a pre-trained,
static, embedding function φ(w) ∈ Rf for every
word w, used to measure cross-domain lexical se-
mantic similarity. Our goal is to train a seman-
tic parser that maps a new utterance x to the cor-
rect logical form z from a new domain dnew given
Kdnew .

Figure 2 describes the flow of our training
procedure: we first employ a simple rule-based
method to transform training examples to an ab-
stract representation, where content words (in ut-
terances) and KB constants (in logical forms) are
delexicalized. We then train the following two
models that decouple structure from lexicon (a)
The structure mapper that maps abstract utterances
to abstract logical forms. (b) The aligner that pro-
vides an alignment from abstract logical form to-
kens to abstract utterance tokens. Training the
aligner is challenging because no gold alignments
between the abstract utterance and abstract logi-
cal form are available. To overcome this chal-
lenge we propose a distillation strategy: we obtain
noisy supervision by training a state-of-the-art un-
supervised alignment model on the D source do-
mains. Then, we train a second supervised align-
ment model that receives abstract utterances, ab-
stract logical forms, and target noisy alignments as
input and learns to predict the noisy alignments.

Once the two models are trained, we can tackle
a new domain without training examples (Fig-
ure 1). Given an utterance from the target domain,
we first abstract it using the delexicalizer, and then
predict its abstract structure using the structure

Lexical representation
“What meetings have no more than 3 attendees?”
Type.Meeting uR[λx.count(Attendee.x)].≤.3
“Which recipe needs no more than two ingredients?”
Type.Recipe uR[λx.count(IngredientOf.x)].≤.2

Abstract representation
“What NOUN have no more than NUM NOUN?”
Type.$ENT TYPE uR[λx.count($REL.x)].≤.$NUM
“Which NOUN VERB no more than NUM NOUN.”
Type.$ENT TYPE uR[λx.count($REL.x)].≤.$NUM

Figure 3: Examples in different domains (CALENDAR
and RECIPES) in their original and abstract represen-
tations. A similar structural regularity (a comparative
structure) maps to an identical abstract logical form.

mapper. We treat delexicalized logical form to-
kens as slots to be filled with KB constants. Candi-
date assignments are then scored locally according
to the semantic similarity of a KB constant (repre-
sented by its entry value in the lexicon L) to words
the slot aligns to according to the aligner. For this
we use the pre-trained embedding function φ(·) as
the only cross-domain information. Finally, we
choose a final assignment of KB constants by ex-
actly maximizing a global scoring function, which
takes into account both local alignment scores as
well as global constraints.

We next describe in detail the four compo-
nents of our framework: the delexicalizer, struc-
ture mapper, aligner, and inference procedure.

3.2 Delexicalizer

The goal of the delexicalizer is to strip utterances
and logical forms from their domain-specific com-
ponents and preserve domain-independent parts.
We note that it is possible that some words contain
both domain-specific and domain-general aspects
(“cheapest”). However, we conjecture that it is
possible to decompose examples in a manner that
enables zero-shot semantic parsing.

The output of the delexicalizer is an abstract
representation that should manifest structural lin-
guistic regularities across domains (Figure 3). For
example, a comparative structure will correspond
to the same abstract logical form in different do-
mains. In this representation, used as input to our
models, content words and KB constants are trans-
formed to an abstract type. This rule-based pre-
processing step is applied to all D source domain
training examples (utterances and logical forms),
and to target domain utterances at test time. We
now describe the process of delexicalization.
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Source Category Abstract Type Examples
Utterance Noun NOUN “cuisines”, “housing”, “time”

Verb VERB “published”, “born”, “posted”
Adjective ADJ “high”, “cooking”, “monthly”
Number NUM “4”, “three”
Date DATE “2018”, “january 2nd”
Entity ENT “midtown”, “alice”, “dinner”

Logical Form Number $NUM 1,2,3

Date $DATE 1 6 2018

Entity $ENT MidtownWest, CentralOffice

Entity type $ENT TYPE Person, Location, Recipe

Numerical entity $ENT NUM Rent, Size, CookingTime

Binary relation $REL Author, Attendee

Unary relation $REL UNARY AllowsCats, WonAward

Numerical relation $REL NUM Height, Length, StarRating

Date relation $REL DATE PostingDate, PubYear

Table 1: Categories of content words and KB constants,
and their corresponding abstract type notation.

Utterances Table 1 describes the full list of ab-
straction rules. We delexicalize several categories
of content words and keep function words, which
describe the utterance structure, in their lexical-
ized form. Specifically, any verb1 whose lemma
is not “be” or “do” is delexicalized. All nouns
are delexicalized, except for a small vocabulary
of three words (“average”, “total”, and “num-
ber”), which denote a domain-general operation.
Adjectives tend to distribute more evenly between
domain-specific words and domain-general words,
thus discriminating them is harder (e.g., “out-
door”, “wide” and “cooking” are domain-specific
words while “minimum”, “same” and “many” are
domain-general words). Thus, we take a statistical
approach and only delexicalize adjectives that are
unique to the domain (i.e., did not appear in the
training set of any other source domain). We also
delexicalize dates and numbers, and identify enti-
ties in the utterance by string matching against the
entities in the KB. These are then delexicalized to
their corresponding abstract type (Table 1).

Logical Forms We delexicalize all KB con-
stants to their abstract type, which is given as part
of the KB schema (Table 1).

3.3 Structure Mapper
As a first step towards predicting the lexical logi-
cal form, we map an abstract utterance, to an ab-
stract logical form. The model is the neural se-
mantic parser described in Section 2, only here
the input and output are the abstract examples in
all D domains, which the delexicalizer outputs.
The model utilizes a single encoder-decoder pair
shared across all domains. As Figure 3 suggests,
the model should learn, e.g., that a noun modified

1Numbers, dates and part-of-speech tags are extracted us-
ing Stanford CoreNLP (Manning et al., 2014).

NUMBERwhat has Type $ENT_TYPE.NOUN
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Figure 4: The aligner model. Alignments are derived
by comparing the slot hidden state against all utterance
hidden states.

by a wh-question often maps to $ENT TYPE, and
that “no more than” maps to the ≤ operator.

3.4 Aligner

The output of the structure mapper is an abstract
logical form that contains slots instead of KB con-
stants. To predict a complete logical form, we
must assign a KB constant to each slot.

We observe that the description of a KB con-
stant that appears in the logical form (Article) is
often semantically similar to some word in the ut-
terance (“paper”). Thus, we can obtain signal for
the identity of a KB constant by solving an align-
ment problem: each slot can be aligned to words in
the utterance that have similar meaning to that of
the gold KB constant. Naturally, in some cases a
KB constant is not semantically similar to any ut-
terance word (e.g., the relation Field in Figure 1),
which we will mediate by using a global inference
procedure (Section 3.5).

Thus, our goal is to learn a model that given
an abstract utterance-logical form pair (xabs, zabs)
produces an alignment matrix A, where Aij corre-
sponds to the alignment probability p(xabs

j | zabs
i ).

A central challenge is that no gold alignments are
provided in any domain. Therefore, we adopt a
“distillation approach”, where we train a super-
vised model over abstract examples to mimic the
predictions of an unsupervised model that has ac-
cess to the full lexicalized examples.

Specifically, we use a standard unsupervised
word aligner (Dyer et al., 2013), which takes all
lexicalized examples {(xi, zi)}Nd

i=1 in all D do-
mains and produces an Alignment matrix A∗ for
every example, where A∗ij = 1 iff token i in the
logical form is aligned to token j in the utterance.
Then, we treat A∗ as gold alignments and gener-
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ate examples (xabs, zabs, A∗) to train the aligner.
Learning alignments over abstract representations
is possible, as a slot in a specific context tends to
align to specific types of abstract words (e.g., Fig-
ure 3 suggests that a relation that is aggregated, of-
ten aligns to the NOUN that appears after the NUM
in the abstract utterance).

We now present our alignment model, de-
picted in Figure 4. The model uses two differ-
ent BiLSTMs to encode xabs and zabs to their con-
text sensitive states b1, . . . , bm and s1, . . . , sn re-
spectively. We model the alignment probability
palign(x

abs
j | zabs

i ) with a bi-linear form similar to
attention (Luong et al., 2015):

eij = sTi Wbj ,

palign(x
abs
j | zabs

i ) =
exp(eij)∑m
j′=1 exp(eij′)

,

where the parameters W are learned during train-
ing. We train the model to minimize the negative
log-likelihood of gold alignments while consider-
ing only alignments of slots (since we only align
slots at test time). The cross-entropy loss for a
training example (xabs, zabs, A∗) is then given by:

−
n∑

i:i∈Sz

m∑
j=1

A∗ij log palign(x
abs
j | zabs

i ),

where Sz are the slot indices in zabs.
Our model can be viewed as an attention model,

dedicated to aligning logical form tokens to utter-
ance tokens. Using a separate alignment model
rather than the attention weights of the structure
mapper has two advantages: First, alignments are
generated given the entire generated sequence zabs

rather than just a prefix. Second, our model fo-
cuses its capacity on the alignment task with-
out worrying about generation of zabs. In Sec-
tion 4, we will demonstrate that training a dedi-
cated aligner substantially improves performance.

3.5 Inference

The aligner provides a distribution over utterance
tokens for every slot in the abstract logical form.
To compute the final logical form, we must re-
place each slot with a KB constant. Formally, let
(zabs
j1
, . . . , zabs

jl
) be the sequence of slots in zabs and

denote them for simplicity as y = (y1, . . . , yl).
Our goal is to predict a sequence of KB constants
c = (c1, . . . , cl), where each ci is chosen from a

candidate set C(yi) that is determined by the ab-
stract token yi according to Table 1 (e.g., if yi is
$REL, then C(yi) is the set of binary relations).

Our scoring function depends on alignments
computed by the aligner. However, because slots
are independent in the aligner, we introduce a few
global constraints that capture the dependence be-
tween different slots. Formally, we wish to find
c∗ that maximizes the following scoring function,
which depends on the utterance x, the slot se-
quence y, the abstract logical form zabs, the align-
ment matrix A and the embedding function φ:

argmax
c

l∑
i=1

(
slocal(ci, yi, x, A, φ)

)
+ sglobal(c, z

abs).

We now describe our scoring functions in detail.

Local Score Because inference is applied only
at test time, we have access to the lexicalized ut-
terance and not only the abstract one. Thus, the
aligner outputs a distribution over words for a slot
y (e.g., in Figure 1, $REL DATE aligns with high
probability to VERB, which corresponds to the
word “published”). Each word, in turn, has dif-
ferent semantic similarity to each KB constant in
C(y). Intuitively, we would like to assign a KB
constant that has high similarity with words the
slot is aligned to. Thus, we define slocal of a KB
constant ci for every slot yi to be its expected se-
mantic similarity under the alignment distribution:

slocal(ci, yi, x, A, φ) = Ex∼palign(xabs|yi)[simφ(x, ci)]

=

m∑
j=1

palign(x
abs
j | yi) · simφ(xj , ci).

We define simφ(xj , ci) to be the cosine simi-
larity between the embedding φ(xj) and the em-
bedding φ(ci) (scaled to the range [0,1]), where
φ(ci) is defined to be the average embedding
of all words in L(ci), that is, sim(xj , ci) =
1+cos(φ(xj),φ(ci))

2 .

Global Score Utilizing only a local scoring
function raises several concerns. First, slots
are treated independently and dependencies be-
tween slots are ignored, which might result in
a final logical form that is globally inconsistent.
For example, we could generate the logical form
Birthplace.ComputerScience, which is seman-
tically dubious. Second, some KB constants do
not align to any word in the utterance and appear
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in the logical form only implicitly. For example,
the logical form in Figure 1 contains the Field re-
lation, however “field” is implicit in the utterance.
Therefore, we define exeK(z) to be true iff z exe-
cutes against K without errors, and define a global
score that prevents assignments c that result in a
logical form z such that exeK(z) is false.

Moreover, we can use similar constraints to pre-
vent logical forms that are highly unlikely accord-
ing to our prior knowledge. Specifically, we define
once(z) to be true iff each date, named entity, and
number in the logical form z appear exactly once.
We then define a global score that prevents logical
forms in which once(z) is false. Empirically, we
find such assignments to be mostly wrong (e.g.,
Type.Article u (Field.QA t Field.QA)).

Formally, our scoring function is defined as:

sglobal(c, z
abs) =

{
0 exeK(zabs|c), once(zabs|c)

−∞ otherwise,

where zabs|c is the result of assigning the KB con-
stants c to the slots in zabs.

Inference Algorithm. While each local scoring
function can be efficiently maximized indepen-
dently, the global constraints that depend on the
entire assignment c make inference more compli-
cated. However, because the global scoring func-
tion introduces hard constraints, an exact and effi-
cient inference algorithm is still possible. Our in-
ference algorithm generates solutions one-by-one
sorted by the local scoring function only. Then, it
checks for each one whether it satisfies the global
constraints defined by sglobal, and stops once a sat-
isfying solution is found, which is guaranteed to
maximize our scoring function. While in the worst
case, this procedure is exponential in the size of
c, in practice solutions are found after only a few
steps. We also always halt after T steps if a solu-
tion has not been found.

Algorithm 1 describes the details of our in-
ference procedure. We define cands to be a
data structure that contains l lists of candidate
KB constants (a list for each slot), sorted ac-
cording to the local scoring function slocal in de-
scending order. Additionally, getAssign(cands, a)
is a function that accesses cands, and retrieves
the assignment with indices a. For example,
getAssign(cands, {0}l) retrieves the top scoring
local assignment. Last, we define ainc(i) to be the
indices a, where ai is incremented by 1.

Algorithm 1 Exact inference algorithm
Input: cands, T
Output: c∗ - the top scoring assignment
1: horizon← ∅ . Max heap
2: ainit ← {0}l
3: push(horizon, ainit)
4: for t← 1 to T do
5: a← pop(horizon)
6: c← getAssign(cands, a)
7: if sglobal(c, z

abs) = 0 then
8: return c
9: for i← 1 to l do

10: push(horizon, ainc(i))

11: return NULL

The algorithm proceeds as follows. First we
initialize a maximum heap horizon into which
we will dynamically push candidate assignments.
Then, we iteratively pop the best current assign-
ment from the heap, and check if it satisfies the
global constraints. If it does, we return this assign-
ment and stop. Otherwise, we generate the next
possible candidates, one from each list (there is no
need to add more than one because candidates are
sorted). If no satisfying assignment is found af-
ter T steps, we return NULL. It is easy to show
that when the algorithm returns an assignment it is
guaranteed to be the one that maximizes our global
scoring function.

4 Experiments

4.1 Experimental Setup

Data We evaluated our method on the
OVERNIGHT semantic parsing dataset, which
contains 13, 682 examples of language utterances
paired with logical forms across eight domains,
which were chosen to explore diverse types of
language phenomena. As described, our approach
depends on having linguistic regularities repeat
across domains. However two domains contain
logical forms that are based on neo-davidsonian
semantics for treating events with multiple argu-
ments. Since such logical forms are completely
absent in six domains, it is not possible for our
method to generalize to those in our zero-shot
approach. Therefore, we do not evaluate on the
BASKETBALL domain, in which 98% of the
examples contain such logical forms, and omit all
examples (68%) that contain such logical forms
in the SOCIAL domain. We evaluated on the
same train/test split as Wang et al. (2015), using
the same accuracy metric, i.e., the proportion
of questions for which the denotations of the
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Model Blocks Calendar Housing Publications Recipes Restaurants Social Avg.
INLEX 59.9 73.8 72.0 79.5 79.2 76.2 83.4 74.8
INABSTRACT 39.6 57.7 51.9 59.6 66.2 68.4 66.1 58.5
CROSSLEX 0.0 0.0 0.5 0.0 1.4 1.2 1.0 0.6
CROSSLEXREP 6.5 1.8 2.6 1.9 16.7 6.6 1.7 5.4
ZEROSHOT 28.3 53.6 52.4 55.3 60.2 61.7 62.4 53.4

Table 2: Test accuracy for all models on all domains.

In-domain Cross-domain
Lexical INLEX CROSSLEX

Abstract INABSTRACT ZEROSHOT

Table 3: Evaluated models.

predicted and gold logical forms are equal. We
additionally used the lexicon L they provided
with descriptions for KB constants.

Evaluated Models We evaluated different mod-
els (Table 3) according to the following two at-
tributes. Firstly, whether the model is trained on
target domain data (in-domain) or on source do-
mains data only (cross-domain). Secondly, we
trained the neural semantic parser described in
Section 2 over the lexical data representation (lex-
ical), or in comparison trained our model over the
abstract representation (abstract).

As CROSSLEX can not generate KB constants
unseen during training, we additionally imple-
mented CROSSLEXREP. In this model, we added
an additional step that modifies the output of
CROSSLEX: we replaced a generated KB constant
with its most similar KB constant from the target
KB that also shares its abstract type.

Implementation Details In all experiments, for
our embedding function φ(·), we used pre-trained
GloVe (Pennington et al., 2014) vectors with di-
mension 300. In a single experiment we consid-
ered one domain as the target domain, while other
domains were the source domains (and repeated
for all domains). For INLEX, CROSSLEX and
CROSSLEXREP we used exactly the same exper-
imental setup as Jia and Liang (2016). For our
zero-shot model, we used 20% of the training data
as a development set for tuning hyper-parameters.
We first tuned parameters for the structure mapper,
and used the best setting for tuning the aligner.

We provide the list of hyper-parameters and
their values for our zero-shot framework. Struc-
ture mapper: number of epochs (22, using early
stopping), hidden unit dimension (300), word vec-
tor dimension (100), learning rate (0.1 with SGD

optimizer),L2 regularization (0.001). At test time,
we used beam search with beam size 5, and then
picked the highest-scoring logical form that we
could infer an assignment for. Aligner: num-
ber of epochs (30, using early stopping), hid-
den unit dimension (250), word vector dimen-
sion (100), learning rate (0.0002 with Adam op-
timizer), dropout rate over hidden states (0.4).
For both models, word vectors are updated during
training. Inference: we used T = 500 steps, after
which we halted.

4.2 Results

We trained all models above and evaluated on the
test set for all seven domains. Results show (Ta-
ble 2) that ZEROSHOT substantially outperforms
other zero-shot baselines. CROSSLEX performs
poorly, as it can only generate KB constants seen
during training. CROSSLEXREP performs better,
as it can generate KB constants from the target
domain, however, generating the correct constant
usually fails. This highlights the challenge in the
zero-shot semantic parsing setting.

For baselines trained on target domain data, IN-
LEX (re-implementation of (Jia and Liang, 2016))
achieved average accuracy of 74.8, which is com-
parable to the 74.4 average accuracy they report on
our seven domains. Training on the target domain
with our method INABSTRACT achieved 58.5%
average accuracy, which shows that while the ab-
stract representation in our framework loses some
valuable information, it is still successful. Impor-
tantly, the performance of ZEROSHOT (53.4%) is
only slightly lower than INABSTRACT, showing
that our model degrades gracefully and generalizes
well across domains compared to CROSSLEX.

Model Ablations We now measure the effect of
different components of our framework on deno-
tation accuracy. We examined the effect of remov-
ing components completely, or replacing them
with simpler ones. Thus, the following ablated
models can be viewed as additional baselines.
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Model Blocks Calendar Housing Publications Recipes Restaurants Social Avg.
ZEROSHOT 29.2 60.4 57.3 47.7 59.5 63.0 64.0 54.5
-GLOBALHEUR 29.2 60.4 56.7 46.9 60.1 46.0 62.2 51.6
-ALIGNER 22.6 57.5 52.7 46.9 58.4 43.0 60.4 48.8
-INFERENCE 28.2 51.5 44.7 43.0 42.2 44.5 45.8 42.8
-ALIGNER,INFERENCE 20.4 38.8 32.7 37.5 37.0 15.5 36.9 31.2

Table 4: Development accuracy for all ablations.

1. -ALIGNER: Replacing the alignment distribu-
tion from the aligner with alignment distribu-
tion from the decoder of the structure mapper.

2. -INFERENCE: Discarding the global scoring
function and maximizing each slot indepen-
dently.

3. -ALIGNER,INFERENCE: Discarding both of
our main technical contributions.

4. -GLOBALHEUR: Discarding the global infer-
ence heuristics (denoted as once(z)).

Table 4 shows that ablating each of the compo-
nents hurts performance. Discarding our two main
technical contributions results in 31.2% accuracy
compared to 54.5% in the full model. Performing
inference with global constraints dramatically im-
prove performance, showing that using the align-
ment model alone results often in incoherent log-
ical forms. Our dedicated aligner also improves
performance compared to alignments learned by
the decoder of the structure mapper. This is pro-
nounced without global constraints (a drop from
42.8% to 31.2%), but is less severe when global
inference is used (a drop from 54.5% to 48.8%).

Intrinsic Analysis While we evaluated perfor-
mance above via denotation accuracy, we now
evaluate our framework’s modules with different
metrics (on the development set). We evaluated
the structure mapper by measuring the exact match
of the top candidate in the beam to the gold ab-
stract logical form (49.1%). We further evaluated
the aligner by measuring alignment accuracy for
top candidate alignments, in comparison to the un-
supervised aligner output (72.9%).

Finally, we measured inference performance in
the following ways. The fraction of cases where
inference succeeded within T steps is 70% (as
some predicted abstract logical forms are not valid
in terms of their syntax), and the average number
of steps in case of success (3.67 steps). In ad-
dition, the fraction of correct global assignments
given an abstract logical form that exactly matches
the gold one is 77.0%. To conclude, results show
that the structure mapping problem is harder than
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Figure 5: Learning curve for INLEX, compared to ZE-
ROSHOT average performance.

slot filling, for which we learned good alignments
and performed fast and mostly accurate inference.

Valuation To estimate the value of our zero-
shot framework in terms of target domain exam-
ples, we plot a learning curve (Figure 5) that
shows development set average accuracy for IN-
LEX (trained on target domain data). In compar-
ison, ZEROSHOT utilizes no target domain data,
thus it is fixed. As Figure 5 shows, our frame-
work’s value is equal to 30% of the target do-
main training data. In our setting this equals to
400 examples manually-annotated with full log-
ical forms. Note that this value is gained every
time a semantic parser for a new domain is needed.
Moreover, our parser can be used as an initial sys-
tem, deployed to begin training from user interac-
tion directly.

Limitations We now outline some of the lim-
itations of our approach for zero-shot semantic
parsing. We hypothesized that language regular-
ities repeat across domains, however as mentioned
above, neo-davidsonian semantics occurs mostly
in one domain in the OVERNIGHT dataset and thus
we were not able to generalize to it. Our parser
also obtained low accuracy in BLOCKS. This do-
main contains mostly spatial language, different
from other domains in OVERNIGHT. Specifically,
prepositions, which we did not lexicalize map to
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relations in the KB (e.g., “below” and “above”
map to the relations Below and Above). This shows
the challenge involved in decomposing the struc-
ture from the lexicon with rules. In addition, since
some spatial relations in this domain are seman-
tically similar (Length, Width and Height), we
found it hard to rank them correctly during infer-
ence. This stresses that in our framework, we as-
sume KB constants to be sufficiently distinguish-
able in the pre-trained embedding space, which is
not always the case.

5 Related Work

While zero-shot executable semantic parsing is
still under-explored, some works focused on the
open-vocabulary setting which handles unseen re-
lations by replacing a formal KB with a probabilis-
tic database learned from a text corpus (Choi et al.,
2015; Gardner and Krishnamurthy, 2017).

Our abstract utterance representation is related
to other attempts to generate intermediate rep-
resentations that improve generalization such as
dependency trees (Reddy et al., 2016), syntactic
CCG parses (Krishnamurthy and Mitchell, 2015),
abstract templates (Abujabal et al., 2017; Goldman
et al., 2018) or masked enitites (Dong and Lapata,
2016). Our abstract logical form representation is
similar to that Dong and Lapata (2018) used in to
guide the decoding of the full logical form. The
main difference with our work is that we focus on
a comprehensive abstract representation tailored
for zero-shot semantic parsing.

It is worth mentioning other work that inspected
various aspects of zero-shot parsing. Bapna et al.
(2017) focused on frame semantic parsing, and as-
sumed that relations appear across different do-
mains to learn a better mapping in the target do-
main. Also in frame semantic parsing, Ferreira
et al. (2015) utilized word embeddings to map
words to unseen KB relations. Finally, Lake and
Baroni (2017) inspected whether neural semantic
parsers can handle types of compositionality that
were unseen during training. The main difference
between their work and ours is that we focus on
a scenario where a compositional logical form is
generated, but the target KB constants do not ap-
pear in any of the source domains.

6 Conclusion

In this paper we address the challenge of zero-
shot semantic parsing. We introduce a model that

can parse utterances in unseen domains by decou-
pling structure mapping from lexicon mapping,
and demonstrate its success on 7 domains from the
OVERNIGHT dataset.

In future work, we would like to automatically
learn a delexicalizer from data, tackle zero-shot
parsing when the structure distribution in the tar-
get domain is very different from the source do-
mains, and apply our framework to datasets where
only denotations are provided.
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