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Abstract

We study how to learn a semantic parser
of state-of-the-art accuracy with less super-
vised training data. We conduct our study on
WikiSQL, the largest hand-annotated seman-
tic parsing dataset to date. First, we demon-
strate that question generation is an effective
method that empowers us to learn a state-of-
the-art neural network based semantic parser
with thirty percent of the supervised training
data. Second, we show that applying question
generation to the full supervised training data
further improves the state-of-the-art model. In
addition, we observe that there is a logarithmic
relationship between the accuracy of a seman-
tic parser and the amount of training data.

1 Introduction

Semantic parsing aims to map a natural language
utterance to an executable program (logical form)
(Zelle and Mooney, 1996; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007). Recently,
neural network based approaches (Dong and Lap-
ata, 2016; Jia and Liang, 2016; Xiao et al., 2016;
Guu et al., 2017; Dong et al., 2018) have achieved
promising performance in semantic parsing. How-
ever, neural network approaches are data hungry,
which performances closely correlate with the vol-
ume of training data. In this work, we study the in-
fluence of training data on the accuracy of neural
semantic parsing, and how to train a state-of-the-
art model with less training data.

We conduct the study on WikiSQL (Zhong
et al., 2017), the largest hand-annotated semantic
parsing dataset which is larger than other datasets
in terms of both the number of logical forms and
the number of schemata. The task is to map a nat-
ural language question to a SQL query. We use a

∗ Work done while this author was an intern at Microsoft
Research.

state-of-the-art end-to-end semantic parser based
on neural networks (detailed in Section 3), and
vary the number of supervised training instances.
Results show that there is a logarithmic relation-
ship between accuracy and the amount of training
data, which is consistent with the observations in
computer vision tasks (Sun et al., 2017).

We further study how to achieve state-of-the-art
parsing accuracy with less supervised data, since
annotating a large scale semantic parsing dataset
requires funds and domain expertise. We achieve
this through question generation, which generates
natural language questions from SQL queries. Our
question generation model is based on sequence-
to-sequence learning. Latent variables (Cao and
Clark, 2017) are introduced to increase the diver-
sity of generated questions. The artificially gener-
ated question-SQL pairs can be viewed as pseudo-
labeled data, which can be combined with a small
amount of human-labeled data to train the seman-
tic parser.

Results on WikiSQL show that the state-of-the-
art logical form accuracy drops from 60.7% to
53.7% with only thirty percent of training data,
while increasing to 61.0% when we combine the
pseudo-labeled data generated from the question
generation model. Applying the question genera-
tion model to full training data brings further im-
provements with 3.0% absolute gain. We further
conduct a transfer learning experiment that applies
our approach trained on WikiSQL to WikiTable-
Questions (Pasupat and Liang, 2015). Results
show that incorporating generated instances im-
proves the state-of-the-art neural semantic parser
(Krishnamurthy et al., 2017).

2 Overview of the Approach

Our task aims to map a question to a SQL query,
which is executable over a table to yield the an-
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swer. Formally, the task takes a question q and a
table t consisting of n column names and n ×m
cells as the input, and outputs a SQL query y. In
this section, we describe an overview of our ap-
proach, which is composed of several components.

SQL Sampler

SELECT MAX bronze WHERE silver > 2.0

1. what is the highest number of bronze medals when silver 

is larger than 2.0 ? 

2. if the silver is larger than 2.0 , what is the highest 

amount of bronze medals ?

Rank Nation Gold Silver Bronze

1 France 4 1 3

2 Great Britain 2 0 1

3 Germany 1 1 2

4 Belgium 1 1 1

5 Japan 0 2 1

Generated dataSupervised data

Semantic parser

SQL-to-Question

Model Training

Figure 1: An overview of our approach that improves
semantic parsing with question generation.

Figure 1 gives an overview of our approach.
First, given a table, a SQL query sampler is used
to sample valid, realistic, and representative SQL
queries. Second, a question generation compo-
nent takes SQL queries as inputs to obtain natu-
ral language questions. Here, the question gen-
eration model is learnt from a small-scale super-
vised training data that consists of SQL-question
pairs. Lastly, the generated question-SQL pairs
are viewed as the pseudo-labeled data, which are
combined with the supervised training data to train
the semantic parser.

Since we conduct the experiment on WikiSQL
dataset, we follow Zhong et al. (2017) and use
the same template-based SQL sampler, as summa-
rized in Table 1. The details about the semantic
parser and the question generation model will be
introduced in Sections 3 and Section 4, respec-
tively.

3 Semantic Parsing Model

We use a state-of-the-art end-to-end semantic
parser (Sun et al., 2018) that takes a natural lan-
guage question as the input and outputs a SQL

Format of a Sampled SQL Query
SELECT agg op agg col From table WHERE
cond1 col cond1 op cond1 AND cond2 col ...

Sampling Rules
Variable Sampling range
agg col
or
cond col

The aggregation column agg col and the
condition column cond col can be one of
columns in the table.

agg op The aggregation operator agg op can be
empty or COUNT. If the type of agg col is
numeric, agg op can additionally be one of
MAX and MIN.

cond op The condition operator cond op is =. If the
type of cond col is numeric, cond op can
additionally be one of > and <.

cond The condition value cond can be any cell
value under the cond col. If the type of
cond col is numeric, cond can be numer-
ical value sampled from minimum value to
maximum value in the cond col.

Filter Rules
1.The condition will be removed if doing the action
does not change the execution result.
2.We only save the sampled SQL queries that pro-
duce non-empty result set.

Table 1: The SQL sampler of (Zhong et al., 2017).

query, which is executed on a table to obtain the
answer. To make the paper self-contained, we
briefly describe the approach in this section.

The semantic parser is abbreviated as STAMP,
which is short for Syntax- and Table- Aware se-
Mantic Parser. Based on the encoder-decoder
framework, STAMP takes a question as the input
and generates a SQL query. It extends pointer net-
works (Zhong et al., 2017; Vinyals et al., 2015) by
incorporating three “channels” in the decoder, in
which the column channel predicts column names,
the value channel predicts table cells and the SQL
channel predicts SQL keywords. An additional
switching gate selects which channel to be used
for generation. In STAMP, the probability of a to-
ken to be generated is calculated as Equation 1,
where pz(·) is the probability of the channel zt to
be chosen, and pw(·) is the probability distribution
of generating a word yt from the selected channel.

p(yt|y<t, x) =
∑
zt

pw(yt|zt, y<t, x)pz(zt|y<t, x)

(1)
Specifically, the encoder takes a question as the

input, uses bidirectional RNN with GRU cells to
compute the hidden states, and feeds the concate-
nation of both ends as the initial state of the de-
coder. The decoder has another GRU to calculate
the hidden states.

Each channel is implemented with an atten-
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tional neural network. In the SQL channel, the
input of the attention module includes the decoder
hidden state and the embedding of the SQL key-
word to be calculated (i.e. esqli ).

psqlw (i) ∝ exp(Wsql[h
dec
t ; esqli ]) (2)

In the column channel, the vector of a column
name includes two parts, as given in Equation 3.
The first vector (hcoli ) is calculated with a bidirec-
tional GRU because a column name might contain
multiple words. The second vector is a question-
aware cell vector, which is weighted averaged over
the cell vectors belonging to the column. Cell
vectors (hcelli ) are also obtained by a bidirectional
GRU. The importance of a cell is measured by the
number of co-occurred question words, which is
further normalized through a softmax function to
yield the final weight αcellj ∈ [0, 1].

pcolw (i) ∝ exp(Wcol[h
dec
t ;hcoli ;

∑
j∈coli

αcellj hcellj ])

(3)
In the value channel, the model has two distri-

butions and weighted average them as Equation
4. Similar to psql(·), a standard cell distribution
p̂cellw (·) is calculated over the cells belonging to
the last predicted column name. They incorpo-
rate an additional probability distribution αcell(·)
based on the aforementioned word co-occurrence.
The hyper parameter λ is tuned on the dev set.

pcellw (j) = λp̂cellw (j) + (1− λ)αcellj (4)

Please see more details on model training and
inference in Sun et al. (2018).

4 Question Generation Model

In this section, we present our SQL-to-question
generation approach, which takes a SQL query as
the input and outputs a natural language question.
Our approach is based on sequence-to-sequence
learning (Sutskever et al., 2014; Bahdanau et al.,
2015). In order to replicate rare words from SQL
queries, we adopt the copying mechanism. In ad-
dition, we incorporate latent variables to increase
the diversity of generated questions.

4.1 Encoder-Decoder
Encoder: A bidirectional RNN with gated re-
current unit (GRU) (Cho et al., 2014) is used
as the encoder to read a SQL query x =
(x1, ..., xT ). The forward RNN reads a SQL query

in a left-to-right direction, obtaining hidden states
(
−→
h1, ...,

−→
hT ). The backward RNN reads reversely

and outputs (
←−
h1, ...,

←−
hT ). We then get the final rep-

resentation (h1, ..., hT ) for each word in the query,
where hj = [

−→
hj ;
←−
hj ]. The representation of the

source sentence hx = ([
−→
hT ;
←−
h1]) is used as initial

hidden state of the decoder.

Decoder: We use a GRU with an attention
mechanism as the decoder. At each time-step t,
the attention mechanism obtains the context vector
ct that is computed same as the multiplicative at-
tention (Luong et al., 2015). Afterwards, the con-
catenation of the context vector, the embedding of
the previously predicted word yt−1, and the last
hidden state st−1 is fed to the next step.

st = GRU(st−1, yt−1, ct) (5)

After obtaining hidden states st, we adopt the
copying mechanism that predicts a word from the
target vocabulary or from the source sentence (de-
tailed in Subsection 4.2).

4.2 Incorporating Copying Mechanism
In our task, the generated question utterances typi-
cally include informative yet low-frequency words
such as named entities or numbers. Usually, these
words are not included in the target vocabulary but
come from SQL queries. To address this, we fol-
low CopyNet (Gu et al., 2016) and incorporate a
copying mechanism to select whether to generate
from the vocabulary or copy from SQL queries.

The probability distribution of generating the
t-th word is calculated as Equation 6, where
ψg(·) and ψc(·) are scoring functions for gener-
ating from the vocabulary ν and copying from the
source sentence x, respectively.

p(yt|y<t, x) =
eψg(yt) + eψc(yt)∑

v∈ν e
ψg(v) +

∑
w∈x e

ψc(w)

(6)
The two scoring functions are calculated as fol-

lows, where Wg and Wc are model parameters, vi
is the one-hot indicator vector for yi and hi is the
hidden state of word yi in the source sentence.

ψg(yi) = vTi Wgst

ψc(yi) = tanh(hi
TWc)st

(7)

4.3 Incorporating Latent Variable
Increasing the diversity of generated questions is
very important to improve accuracy, generaliza-
tion, and stability of the semantic parser, since this
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increases the mount of training data and produces
more diverse questions for the same intent. In this
work, we incorporate stochastic latent variables
(Cao and Clark, 2017; Serban et al., 2017) to the
sequence-to-sequence model in order to increase
question diversity.

Specifically, we introduce a latent variable z ∼
p(z), which is a standard Gaussian distribution
N (0, In) in our case, and calculate the likelihood
of a target sentence y as follows:

p(y|x) =
∫
z
p(y|z, x)p(z) dz (8)

We maximize the evidence lower bound
(ELBO), which decomposes the loss into two
parts, including (1) the KL divergence between
the posterior distribution and the prior distribution,
and (2) a cross-entropy loss between the generated
question and the ground truth.

logp(y|x) ≥ −DKL(Q(z|x, y)||p(z))
+Ez∼Qlogp(y|z, x) (9)

The KL divergence in Equation 9 is calculated as
follow, where n is the dimensionality of z.

DKL(Q(z|x, y)||p(z)) =

− 1

2

n∑
j=1

(1 + log(σ2j )− µ2j − σ2j )
(10)

Q(z|x, y) is a posterior distribution with Gaussian
distribution. The mean µ and standard deviation
σ are calculated as follows, where hx and hy are
representations of source and target sentences in
the encoder, respectively. Similar to hx, hy is ob-
tained by encoding the target sentence.

µ =Wµ[hx;hy] + bµ

log(σ2) =Wσ[hx;hy] + bσ
(11)

4.4 Training and Inference

At the training phase, we sample z fromQ(z|x, y)
using the re-parametrization trick (Kingma and
Welling, 2014), and concatenate the source last
hidden state hx and z as the initial state of the de-
coder. Since the model tends to ignore the latent
variables by forcing the KL divergence to 0 (Bow-
man et al., 2016), we add a variable weight to the
KL term during training. At the inference phase,
the model will generate different questions by first
sampling z from p(z), concatenating hx and z as

the initial state of the decoder, and then decoding
deterministically for each sample.

Here, we list our training details. We set the di-
mension of the encoder hidden state as 300, and
the dimension of the latent variable z as 64. We
use dropout with a rate of 0.5, which is applied to
the inputs of RNN. Model parameters are initial-
ized with uniform distribution, and updated with
stochastic gradient decent. Word embedding val-
ues are initialized with Glove vectors (Pennington
et al., 2014). We set the learning rate as 0.1 and
the batch size as 32. We tune hyper parameters
on the development, and use beam search in the
inference process.

5 Experiment

We conduct experiments on the WikiSQL dataset1

(Zhong et al., 2017). WikiSQL is the largest hand-
annotated semantic parsing dataset which is an
order of magnitude larger than other datasets in
terms of both the number of logical forms and
the number of schemata (tables). WikiSQL is
built by crowd-sourcing on Amazon Mechanical
Turk, including 61,297 examples for training, and
9,145/17,284 examples for development/testing.
Each instance consists of a natural language ques-
tion, a SQL query, a table and a result. Here, we
follow Zhong et al. (2017) to use two evaluation
metrics. One is logical form accuracy (Acclf ),
which measures the percentage of exact string
match between the generated SQL queries and the
ground truth SQL queries. Since different logical
forms might obtain the same result, another metric
is execution accuracy (Accex), which is the per-
centage of the generated SQL queries that result
in the correct answer.

5.1 Impact of Data Size

We study how the number of training instances af-
fects the accuracy of semantic parsing.

In this experiment, we randomly sample 20 sub-
sets of examples from the WikiSQL training data,
incrementally increased by 3K examples (about
1/20 of the full WikiSQL training data). We use
the same training protocol and report the accuracy
of the STAMP model on the dev set. Results are
given in Figure 2. It is not surprising that more
training examples bring higher accuracy. Interest-
ingly, we observe that both accuracies of the neu-
ral network based semantic parser grow logarith-

1https://github.com/salesforce/WikiSQL

https://github.com/salesforce/WikiSQL
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Methods Training Data
Dev Test

Acclf Accex Acclf Accex
Attentional Seq2Seq 100% 23.3% 37.0% 23.4% 35.9%
Aug.PntNet (Zhong et al., 2017) 100% 44.1% 53.8% 43.3% 53.3%
Aug.PntNet (re-implemented by us) 100% 51.5% 58.9% 52.1% 59.2%
Seq2SQL (Zhong et al., 2017) 100% 49.5% 60.8% 48.3% 59.4%
SQLNet (Xu et al., 2017) 100% – 69.8% – 68.0%
STAMP 30% 54.6% 69.7% 53.7% 68.9%
STAMP + QG 30% 61.6% 74.4% 61.2% 73.9%
STAMP 100% 61.5% 74.8% 60.7% 74.4%
STAMP + QG 100% 64.3% 76.5% 63.7% 75.5%

Table 2: Performance of different approaches on the WikiSQL dataset. The two evaluation metrics are logical
form accuracy (Acclf ) and execution accuracy (Accex). The settings of the training data represent the proportion
of supervised data we use.

3 6 12 21 36 60
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Execution Accuracy
Logical Form Accuracy

Figure 2: Semantic parsing accuracies of the STAMP
model on WikiSQL. The x-axis is the training data
size in log-scale, and the y-axis includes two evalua-
tion metrics Acclf and Accex.

mically as training data expands, which is consis-
tent with the observations in computer vision tasks
(Sun et al., 2017).

5.2 Model Comparisons

We report the results of existing methods on Wik-
iSQL, and demonstrate that question generation is
an effective way to improve the accuracy of se-
mantic parsing. Zhong et al. (2017) implement
several methods, including Attentional Seq2Seq,
which is a basic attentional sequence-to-sequence
learning baseline; Aug.PntNet, which is an aug-
mented pointer network in which words of the tar-
get sequence come from the source sequence; and
Seq2SQL which extends Aug.PntNet by further
learning two separate classifiers for SELECT ag-
gregator and SELECT column. Xu et al. (2017)

develop SQLNet, which uses two separate mod-
els to predict SELECT and WHERE clauses, re-
spectively, and introduce a sequence-to-set neural
network to predict the WHERE clause. STAMP
stands for the semantic parser which has been de-
scribed in Section 3.

From Table 2, we can see that STAMP performs
better than existing systems when trained on the
full WikiSQL training dataset, achieving state-of-
the-art execution accuracy and logical form ac-
curacy on WikiSQL. We further conduct exper-
iments to demonstrate the effectiveness of our
question generation driven approach. We run the
entire pipeline (STAMP+QG) with different per-
centages of training data. The second column
“Training Data” in Table 2 and the x-axis in Fig-
ure 3 represent the proportion of WikiSQL train-
ing data we use for training the QG model and se-
mantic parser. That is to say, STAMP +QG with
30% means that we sample 30% WikiSQL train-
ing data to train the QG model, and then combine
QG generated data and exactly the same 30% Wik-
iSQL training data we sampled before to train the
semantic parser. In this experiment, we sample
five SQL queries for each table in the training data,
resulting in 43.5K SQL queries. Applying the QG
model on these SQL queries, we get 92.8K SQL-
question pairs. From Figure 3, we see that accu-
racy increases as the amount of supervised training
data expands. Results show that QG empowers the
STAMP model to achieve the same accuracy on
WikiSQL dataset with 30% of the training data.
Applying QG to the STAMP model under the full
setting brings further improvements, resulting in
new state-of-the-art accuracies.
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Methods
Dev Test

Accsel Accagg Accwhere Accsel Accagg Accwhere
Aug.PntNet (re-implemented by us) 80.9% 89.3% 62.1% 81.3% 89.7% 62.1%
Seq2SQL (Zhong et al., 2017) 89.6% 90.0% 62.1% 88.9% 90.1% 60.2%
SQLNet (Xu et al., 2017) 91.5% 90.1% 74.1% 90.9% 90.3% 71.9%
STAMP 89.4% 89.5% 77.1% 88.9% 89.7% 76.0%
STAMP+QG 89.7% 90.1% 79.8% 89.1% 90.2% 79.0%

Table 3: Fine-grained accuracies on the WikiSQL dev and test sets. Logical form accuracy (Acclf ) is evaluated
on SELECT column (Accsel) , SELECT aggregator (Accagg), and WHERE clause (Accwhere), respectively. All
these models are trained on the full WikiSQL training data.
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Percentage of WikiSQL Training Data
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Figure 3: Accuracies of STAMP+QG with different
portions of supervised data. Dashed lines are Acclf
and Accex of STAMP on the full training data.

5.3 Fine-grained Accuracies

Since SQL queries in WikiSQL consist of SE-
LECT column, SELECT aggregator, and WHERE
clause, we report fine-grained accuracies with re-
gard to these aspects, respectively.

From Table 3, we observe that the main ad-
vantage of STAMP+QG over STAMP comes from
the prediction of the WHERE clause, which is
also the main challenge of the WikiSQL dataset.
We further analyze STAMP and STAMP+QG on
the WHERE clause by splitting the dev and test
sets into three groups according to the number of
conditions in the WHERE clause. From Table 4,
we see that combining QG is helpful when the
number of WHERE conditions is more than one.
The main reason is that dominant instances in the
WikiSQL training set have only one WHERE con-
dition, as shown in Table 5, thus the model might
not have memorized enough patterns for the other
two limited-data groups. Therefore, the pseudo-
labeled instances generated by our SQL sampler

and QG approach are more precious to the limited-
data groups (i.e #where =2 and #where≥3).

#where
STAMP STAMP+QG

dev test dev test
= 1 80.9% 80.2% 81.5% 80.9%
= 2 65.1% 65.4% 68.3% 66.9%
≥ 3 44.1% 48.2% 53.4% 51.9%

Table 4: Execution accuracy (Accex) on different
groups of WikiSQL dev and test sets.

#where supervised data generated data
= 1 69.1% 55.4%
= 2 24.1% 33.0%
≥ 3 6.1% 11.4%

Table 5: Distribution of the number of WHERE condi-
tions in supervised and generated data.

5.4 Influences of Different QG Variations

To better understand how various components in
our QG model impact the overall performance, we
study different QG model variations. We use three
evaluation metrics, including two accuracies and
BLEU score (Papineni et al., 2002). The BLEU
score evaluates the question generation.

Methods Scale BLEU Acclf Accex
s2s 30% 20.6 59.0% 72.1%
s2s+lv 30% 22.1 60.0% 72.3%
s2s+cp 30% 29.6 60.8% 73.5%
s2s+cp+lv 30% 29.5 61.2% 73.9%
s2s 100% 26.0 62.6% 74.9%
s2s+lv 100% 26.3 63.0% 75.3%
s2s+cp 100% 31.5 63.2% 75.6%
s2s+cp+lv 100% 31.6 63.7% 75.5%

Table 6: Performances of different question generation
variations.
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SQL SELECT COUNT 2nd leg WHERE aggregate = 7-2
Question (ground truth) what is the total number of 2nd leg where aggregate is 7-2
Question (s2s + cp) how many 2nd leg with aggregate being 7-2

Question (s2s + cp + lv)
(1) what is the total number of 2nd leg when the aggregate is 7-2 ?
(2) how many 2nd leg with aggregate being 7-2
(3) name the number of 2nd leg for 7-2

Table 7: Generated examples from different question generation model variations.

Results are shown in Table 6, in which s2s rep-
resents the basic attentional sequence-to-sequence
learning model (Luong et al., 2015), cp means the
copying mechanism, and lv stands for the latent
variable. We can see that incorporating a latent
variable improves QG model performance, espe-
cially in limit-supervision scenarios. This is con-
sistent with our intuition that the performance of
the QG model is improved by incorporating the
copying mechanism, since rare words of great im-
portance mainly come from the input sequence.

To better understand the impact of incorporating
a latent variable, we show examples generated by
different QG variations in Table 7. We can see
that incorporating a latent variable empowers the
model to generate diverse questions for the same
intent.

5.5 Transfer Learning on
WikiTableQuestions

In this part, we conduct an extensional experi-
ment on WikiTableQuestions2 (Pasupat and Liang,
2015) in a transfer learning scenario to verify the
effectiveness of our approach. WikiTableQues-
tions contains 22,033 complex questions on 2,108
Wikipedia tables. Each instance consists of a nat-
ural language question, a table and an answer. Fol-
lowing Pasupat and Liang (2015), we report devel-
opment accuracy which is averaged over the first
three 80-20 training data splits. Test accuracy is
reported on the train-test data.

In this experiment, we apply the QG model
learnt from WikiSQL to improve the state-of-the-
art semantic parser (Krishnamurthy et al., 2017)
on this dataset. Different from WikiSQL, this
dataset requires question-answer pairs for training.
Thus, we generate question-answer pairs by fol-
low steps. We first sample SQL queries on the ta-
bles from WikiTableQuestions, and then use our
QG model to generate question-SQL pairs. After-

2https://nlp.stanford.edu/software/
sempre/wikitable/

wards, we obtain question-answer pairs by execut-
ing SQL queries. The generated question-answer
pairs will be combined with the original Wik-
iTableQuestions training data to train the model.

Dev Test
Pasupat and Liang (2015) 37.0% 37.1%
Neelakantan et al. (2016) 37.5% 37.7%
Haug et al. (2017) - 38.7%
Zhang et al. (2017) 40.4% 43.7%
STAMP (WikiSQL) - 14.5%
STAMP (WikiSQL) + QG - 15.2%
NSP 41.9% 43.8%
NSP + QG 42.2% 44.2%

Table 8: Accuracy (Accex) of different approaches on
WikiTableQuestion dev and test sets.

Results are shown in Table 8, in which NSP is
short for the state-of-the-art neural semantic parser
(Krishnamurthy et al., 2017). Since the train-test
data used in NSP is different from others, we re-
train the NSP under the same protocol. STAMP
(WikiSQL) means that the STAMP model trained
on WikiSQL is directly tested on WikiTableQues-
tions. Despite applying QG slightly improves
STAMP in this setting, the low accuracy reflects
the different question distribution between these
two datasets. In the supervised learning setting,
we can see that incorporating QG further improves
the accuracy of NSP from 43.8% to 44.2%.

5.6 Discussion

To better understand the limitations of our QG
model, we analyze a randomly selected set of 100
questions. We observe that 27% examples do not
correctly express the meanings of SQL queries,
among which the majority of them miss infor-
mation from the WHERE clause. This problem
might be mitigated by incorporating a dedicated
encoder/decoder that takes into account the SQL
structure. Among the other 73% of examples that
correctly express SQL queries, there are two po-

https://nlp.stanford.edu/software/sempre/wikitable/
https://nlp.stanford.edu/software/sempre/wikitable/
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tential directions to make further improvements.
The first direction is to leverage table information
such as the type of a column name or column-cell
correlations. For instance, without knowing that
cells under the column name “built” are all build-
ing years, the model hardly predicts a question
“what is the average building year for superb?”
for “SELECT AVG built WHERE name = superb”.
The second direction is to incorporate common
knowledge, which would help the model to pre-
dict the earliest week rather than the lowest week.

6 Related Work

Semantic Parsing. Semantic parsing is a fun-
damental problem in NLP that maps natural lan-
guage utterances to logical forms, which could be
executed to obtain the answer (denotation) (Zettle-
moyer and Collins, 2005; Liang et al., 2011; Be-
rant et al., 2013; Krishnamurthy and Kollar, 2013;
Pasupat and Liang, 2016; Iyer et al., 2017). Exist-
ing works can be classified into three areas, includ-
ing (1) the language of the logical form, e.g. first-
order logic, lambda calculus, lambda dependency-
based compositional semantics (lambda DCS) and
structured query language (SQL); (2) the form of
the knowledge base, e.g. facts from large collabo-
rative knowledge bases, semi-structured tables and
images; and (3) the supervision used for learning
the semantic parser, e.g. question-denotation pairs
and question-logical form pairs. In this work, we
regard the table as the knowledge base, which is
critical for accessing relational databases with nat-
ural language, and also for serving information re-
trieval for structured data. We use SQL as the logi-
cal form, which has a broad acceptance to the pub-
lic. In terms of supervision, this work uses a small
portion of question-logical form pairs to initialize
the QA model and train the QG model, and incor-
porate more generated question-logical form pairs
to further improve the QA model.

Question Generation Our work also relates to
the area of question generation, which has drawn
plenty of attention recently partly influenced by
the remarkable success of neural networks in text
generation. Studies in this area are classified based
on the definition of the answer, including a sen-
tence (Heilman, 2011), a topic word (Chali and
Hasan, 2015), a fact (including a subject, a relation
phrase and an object) from knowledge bases (Ser-
ban et al., 2016), an image (Mostafazadeh et al.,
2016), etc. Recent studies in machine reading

comprehension generate questions from an answer
span and its context from the document (Du et al.,
2017; Golub et al., 2017). Wang et al. (2015) first
generate logical forms, and then use AMTurkers
to paraphrase them to get natural language ques-
tions. Iyer et al. (2017) use a template-based ap-
proach based on the Paraphrase Database (Gan-
itkevitch et al., 2013) to generate questions from
SQL. In this work, we generate questions from
logical forms, in which the amount of information
from two directions are almost identical. This dif-
fers from the majority of existing studies because
a question typically conveys less semantic infor-
mation than the answer.

Improving QA with QG This work also relates
to recent studies that uses a QG model to improve
the performance of a discriminative QA model
(Wang et al., 2017; Yang et al., 2017; Duan et al.,
2017; Konstas et al., 2017). The majority of these
works generate a question from an answer, while
there also exists a recent work (Dong et al., 2017)
that generates a question from a question through
paraphrasing. In addition, Tang et al. (2017) con-
sider QA and QG as dual tasks, and further im-
prove the QG model in a dual learning framework.
These works fall into three categories: (1) regard-
ing the artificially generated results as additional
training instances (Yang et al., 2017; Golub et al.,
2017); (2) using generated questions to calculate
additional features (Duan et al., 2017; Dong et al.,
2017); and (3) using the QG results as additional
constraints in the training objectives (Tang et al.,
2017). This work belongs to the first direction.
Our QG approach takes a logical form as the input,
and considers the diversity of generated questions
by incorporating latent variables.

7 Conclusion

In this paper, we observe the logarithmic relation-
ship between the accuracy of a semantic parser
and the amount of training data, and present an ap-
proach that improves neural semantic parsing with
question generation. We show that question gen-
eration helps us obtain a state-of-the-art neural se-
mantic parser with less supervised data, and fur-
ther improves the state-of-the-art model with full
annotated data on WikiSQL and WikiTableQue-
sions datasets. In future work, we would like to
make use of table information and external knowl-
edge to improve our QG model. We also plan to
apply the approach to other tasks.
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