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Abstract

Contextual word representations derived from
pre-trained bidirectional language models
(biLMs) have recently been shown to provide
significant improvements to the state of the
art for a wide range of NLP tasks. How-
ever, many questions remain as to how and
why these models are so effective. In this
paper, we present a detailed empirical study
of how the choice of neural architecture (e.g.
LSTM, CNN, or self attention) influences both
end task accuracy and qualitative properties of
the representations that are learned. We show
there is a tradeoff between speed and accuracy,
but all architectures learn high quality con-
textual representations that outperform word
embeddings for four challenging NLP tasks.
Additionally, all architectures learn represen-
tations that vary with network depth, from ex-
clusively morphological based at the word em-
bedding layer through local syntax based in the
lower contextual layers to longer range seman-
tics such coreference at the upper layers. To-
gether, these results suggest that unsupervised
biLMs, independent of architecture, are learn-
ing much more about the structure of language
than previously appreciated.

1 Introduction

Contextualized word embeddings (Peters et al.,
2018) derived from pre-trained bidirectional lan-
guage models (biLMs) have been shown to sub-
stantially improve performance for many NLP
tasks including question answering, entailment
and sentiment classification (Peters et al., 2018),
constituency parsing (Kitaev and Klein, 2018;
Joshi et al., 2018), named entity recognition (Pe-
ters et al., 2017), and text classification (Howard
and Ruder, 2018). Despite large gains (typical rel-
ative error reductions range from 10–25%), we do
not yet fully understand why or how these models

⇤These authors contributed equally to this work.

work in practice. In this paper, we take a step to-
wards such understanding by empirically studying
how the choice of neural architecture (e.g. LSTM,
CNN, or self attention) influences both direct end-
task accuracies and the types of neural represen-
tations that are induced (e.g. how do they encode
notions of syntax and semantics).

Previous work on learning contextual represen-
tations has used LSTM-based biLMs, but there is
no prior reason to believe this is the best possible
architecture. More computationally efficient net-
works have been introduced for sequence model-
ing including including gated CNNs for language
modeling (Dauphin et al., 2017) and feed forward
self-attention based approaches for machine trans-
lation (Transformer; Vaswani et al., 2017). As
RNNs are forced to compress the entire history
into a hidden state vector before making predic-
tions while CNNs with a large receptive field and
the Transformer may directly reference previous
tokens, each architecture will represent informa-
tion in a different manner.

Given such differences, we study whether more
efficient architectures can also be used to learn
high quality contextual vectors. We show em-
pirically that all three approaches provide large
improvements over traditional word vectors when
used in state-of-the-art models across four bench-
mark NLP tasks. We do see the expected tradeoff
between speed and accuracy between LSTMs and
the other alternatives, but the effect is relatively
modest and all three networks work well in prac-
tice.

Given this result, it is important to better un-
derstand what the different networks learn. In
a detailed quantitative evaluation, we probe the
learned representations and show that, in every
case, they represent a rich hierarchy of contex-
tual information throughout the layers of the net-
work in an analogous manner to how deep CNNs
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trained for image classification learn a hierarchy
of image features (Zeiler and Fergus, 2014). For
example, we show that in contrast to traditional
word vectors which encode some semantic infor-
mation, the word embedding layer of deep biLMs
focuses exclusively on word morphology. Mov-
ing upward in the network, the lowest contextual
layers of biLMs focus on local syntax, while the
upper layers can be used to induce more semantic
content such as within-sentence pronominal coref-
erent clusters. We also show that the biLM ac-
tivations can be used to form phrase representa-
tions useful for syntactic tasks. Together, these re-
sults suggest that large scale biLMs, independent
of architecture, are learning much more about the
structure of language than previous appreciated.

2 Contextual word representations from
biLMs

To learn contextual word representations, we fol-
low previous work by first training a biLM on a
large text corpus (Sec. 2.1). Then, the internal
layer activations from the biLM are transferred to
downstream tasks (Sec. 2.3).

2.1 Bidirectional language models
Given a sequence of N tokens, (t1, t2, ..., tN ), a
biLM combines a forward and backward language
model to jointly maximize the log likelihood of
both directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;
�!
⇥)

+ log p(tk | tk+1, . . . , tN ;

 �
⇥) ) ,

where
�!
⇥ and

 �
⇥ are the parameters of the forward

and backward LMs respectively.
To compute the probability of the next token,

state-of-the-art neural LMs first produce a context-
insensitive token representation or word embed-
ding, xk, (with either an embedding lookup or in
our case a character aware encoder, see below).
Then, they compute L layers of context-dependent
representations

�!
h k,i where i 2 [1, L] using a

RNN, CNN or feed forward network (see Sec. 3).
The top layer output

�!
h k,L is used to predict the

next token using a Softmax layer. The backward
LM operates in an analogous manner to the for-
ward LM. Finally, we can concatenate the forward
and backward states to form L layers of contex-
tual representations, or context vectors, at each to-

ken position: hk,i = [

�!
h k,i;

 �
h k,i]. When training,

we tie the weights of the word embedding layers
and Softmax in each direction but maintain sepa-
rate weights for the contextual layers.

2.2 Character based language models

Fully character aware models (Kim et al., 2015)
are considerably more parameter efficient then
word based models but more computationally
expensive then word embedding based methods
when training. During inference, these differences
can be largely eliminated by pre-computing em-
beddings for a large vocabulary and only falling
back to the full character based method for rare
words. Overall, for a large English language news
benchmark, character aware models have slightly
better perplexities then word based ones, although
the differences tend to be small (Józefowicz et al.,
2016).

Similar to Kim et al. (2015), our character-to-
word encoder is a five-layer sub-module that first
embeds single characters with an embedding layer
then passes them through 2048 character n-gram
CNN filters with max pooling, two highway lay-
ers (Srivastava et al., 2015), and a linear projection
down to the model dimension.

2.3 Deep contextual word representations

After pre-training on a large data set, the internal
representations from the biLM can be transferred
to a downstream model of interest as contextual
word representations. To effectively use all of the
biLM layers, Peters et al. (2018) introduced ELMo
word representations, whereby all of the layers are
combined with a weighted average pooling oper-
ation, ELMok = �

PL
j=0 sjhk,j . The parameters

s are optimized as part of the task model so that it
may preferentially mix different types of contex-
tual information represented in different layers of
the biLM. In Sec. 4 we evaluate the relative ef-
fectiveness of ELMo representations from three
different biLM architectures vs. pre-trained word
vectors in four different state-of-the-art models.

3 Architectures for deep biLMs

The primary design choice when training deep
biLMs for learning context vectors is the choice
of the architecture for the contextual layers. How-
ever, it is unknown if the architecture choice is im-
portant for the quality of learned representations.
To study this question, we consider two alterna-
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Architecture # layers Perplexity # params. (M) Inference (ms)
1 sentence

Inference (ms)
64 sentences

LSTM 2 39.7 76 / 94 44 / 46 66 / 85
LSTM 4 37.5 151 / 153 85 / 86 102 / 118
Transformer 6 40.7 38 / 56 12 / 13 22 / 44
Gated CNN 16 44.5 67 / 85 9 / 11 29 / 55

Table 1: Characteristics of the different biLMs in this study. For each model, the table shows the number of layers
used for the contextual representations, the averaged forward and backward perplexities on the 1 Billion Word
Benchmark, the number of parameters (in millions, excluding softmax) and the inference speed (in milliseconds
with a Titan X GPU, for sentences with 20 tokens, excluding softmax). For the number of parameters and inference
speeds we list both the values for just the contextual layers and all layers needed to compute context vectors.

tives to LSTMs as described below. See the ap-
pendix for the hyperparameter details.

3.1 LSTM

Among the RNN variants, LSTMs have been
shown to provide state-of-the-art performance
for several benchmark language modeling tasks
(Józefowicz et al., 2016; Merity et al., 2018; Melis
et al., 2018). In particular, the LSTM with pro-
jection introduced by Sak et al. (2014) allows the
model to use a large hidden state while reducing
the total number of parameters.This is the archi-
tecture adopted by Peters et al. (2018) for com-
puting ELMo representations. In addition to the
pre-trained 2-layer biLM from that work,1 we also
trained a deeper 4-layer model to examine the im-
pact of depth using the publicly available training
code.2 To reduce the training time for this large
4-layer model, we reduced the number of parame-
ters in the character encoder by first projecting the
character CNN filters down to the model dimen-
sion before the two highway layers.

3.2 Transformer

The Transformer, introduced by Vaswani et al.
(2017), is a feed forward self-attention based ar-
chitecture. In addition to machine translation, it
has also provided strong results for Penn Treebank
constituency parsing (Kitaev and Klein, 2018) and
semantic role labeling (Tan et al., 2018). Each
identical layer in the encoder first computes a
multi-headed attention between a given token and
all other tokens in the history, then runs a position
wise feed forward network.

To adapt the Transformer for bidirectional lan-
guage modeling, we modified a PyTorch based

1
http://allennlp.org/elmo

2
https://github.com/allenai/bilm-tf

re-implementation (Klein et al., 2017)3 to mask
out future tokens for the forward language model
and previous tokens for the backward language
model, in a similar manner to the decoder mask-
ing in the original implementation. We adopted
hyper-parameters from the “base” configuration in
Vaswani et al. (2017), providing six layers of 512
dimensional representations for each direction.

Concurrent with our work, Radford et al. (2018)
trained a large forward Transformer LM and fine
tuned it for a variety of NLP tasks.

3.3 Gated CNN

Convolutional architectures have also been shown
to provide competitive results for sequence mod-
eling including sequence-to-sequence machine
translation (Gehring et al., 2017). Dauphin et al.
(2017) showed that architectures using Gated Lin-
ear Units (GLU) that compute hidden representa-
tions as the element wise product of a convolution
and sigmoid gate provide perplexities comparable
to large LSTMs on large scale language modeling
tasks.

To adapt the Gated CNN for bidirectional lan-
guage modeling, we closely followed the publicly
available ConvSeq2Seq implementation,4 modi-
fied to support causal convolutions (van den Oord
et al., 2016) for both the forward and backward di-
rections. In order to model a wide receptive field
at the top layer, we used a 16-layer deep model,
where each layer is a [4, 512] residual block.

3.4 Pre-trained biLMs

Table 1 compares the biLMs used in the remain-
der of this study. All models were trained on the 1

3
http://nlp.seas.harvard.edu/2018/04/

03/attention.html

4
https://github.com/pytorch/fairseq

http://allennlp.org/elmo
https://github.com/allenai/bilm-tf
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/pytorch/fairseq
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Architecture MultiNLI SRL Constituency
Parsing NER

GloVe 77.0 / 76.0 81.4 91.8 89.9 ± 0.35
LSTM 2-layer 79.6 / 79.3 84.6 93.9 91.7 ± 0.26
LSTM 4-layer 80.1 / 79.7 84.7 93.9 91.5 ± 0.12
Transformer 79.4 / 78.7 84.1 93.7 91.1 ± 0.26
Gated CNN 78.3 / 77.9 84.1 92.9 91.2 ± 0.14

Table 2: Test set performance comparison using different pre-trained biLM architectures. The performance metric
is accuracy for MultiNLI and F1 score for the other tasks. For MultiNLI, the table shows accuracy on both the
matched and mismatched portions of the test set.

Billion Word Benchmark (Chelba et al., 2014) us-
ing a sampled softmax with 8192 negative samples
per batch. Overall, the averaged forward and back-
ward perplexities are comparable across the mod-
els with values ranging from 37.5 for the 4-layer
LSTM to 44.5 for the Gated CNN. To our knowl-
edge, this is the first time that the Transformer has
been shown to provide competitive results for lan-
guage modeling. While it is possible to reduce
perplexities for all models by scaling up, our goal
is to compare representations across architectures
for biLMs of approximately equal skill, as mea-
sured by perplexity.

The Transformer and CNN based models are
faster than the LSTM based ones for our hyper-
parameter choices, with speed ups of 3-5X for the
contextual layers over the 2-layer LSTM model.5

Speed ups are relatively faster in the single ele-
ment batch scenario where the sequential LSTM
is most disadvantaged, but are still 2.3-3X for a
64 sentence batch. As the inference speed for the
character based word embeddings could be mostly
eliminated in a production setting, the table lists
timings for both the contextual layers and all lay-
ers of the biLM necessary to compute context vec-
tors. We also note that the faster architectures will
allow training to scale to large unlabeled corpora,
which has been shown to improve the quality of
biLM representations for syntactic tasks (Zhang
and Bowman, 2018).

4 Evaluation as word representations

In this section, we evaluate the quality of the
pre-trained biLM representations as ELMo-like
contextual word vectors in state-of-the-art mod-

5While the CNN and Transformer implementations are
reasonably well optimized, the LSTM biLM is not as it does
not use an optimized CUDA kernel due to the use of the pro-
jection cell.

els across a suite of four benchmark NLP tasks.
To do so, we ran a series of controlled trials by
swapping out pre-trained GloVe vectors (Penning-
ton et al., 2014) for contextualized word vectors
from each biLM computed by applying the learned
weighted average ELMo pooling from Peters et al.
(2018).6 Each task model only includes one type
of pre-trained word representation, either GloVe
or ELMo-like, this is a direct test of the transfer-
ability of the word representations. In addition,
to isolate the general purpose LM representations
from any task specific supervision, we did not fine
tune the LM weights.

Table 2 shows the results. Across all tasks,
the LSTM architectures perform the best. All ar-
chitectures improve significantly over the GloVe
only baseline, with relative improvements of 13%
– 25% for most tasks and architectures. The gains
for MultiNLI are more modest, with relative im-
provements over GloVe ranging from 6% for the
Gated CNN to 13% for the 4-layer LSTM. The re-
mainder of this section provides a description of
the individual tasks and models with details in the
Appendix.

4.1 MultiNLI

The MultiNLI dataset (Williams et al., 2018) con-
tains crowd sourced textual entailment annotations
across five diverse domains for training and an ad-
ditional five domains for testing. Our model is a
re-implementation of the ESIM sequence model
(Chen et al., 2017). It first uses a biLSTM to
encode the premise and hypothesis, then com-
putes an attention matrix followed by a local in-
ference layer, another biLSTM inference compo-
sition layer, and finally a pooling operation before

6Generally speaking, we found adding pre-trained GloVe
vectors in addition to the biLM representations provided a
small improvement across the tasks.
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Figure 1: Visualization of contextual similarity between all word pairs in a single sentence using the 4-layer
LSTM. The left panel uses context vectors from the bottom LSTM layer while the right panel uses the top LSTM
layer. Lighter yellow-colored areas have higher contextual similarity.

the output layer. With the 2-layer LSTM ELMo
representations, it is state-of-the-art for SNLI (Pe-
ters et al., 2018). As shown in Table 2, the LSTMs
perform the best, with the Transformer accura-
cies 0.2% / 0.6% (matched/mismatched) less then
the 2-layer LSTM. In addition, the contextual rep-
resentations reduce the matched/mismatched per-
formance differences showing that the biLMs can
help mitigate domain effects. The ESIM model
with the 4-layer LSTM ELMo-like embeddings
sets a new state-of-the-art for this task, exceeding
the highest previously published result by 1.3%
matched and 1.9% mismatched from Gong et al.
(2018).

4.2 Semantic Role Labeling

The Ontonotes 5.0 Dataset (Pradhan et al., 2013)
contains predicate argument annotations for a va-
riety of types of text, including conversation logs,
web data, and biblical extracts. For our model, we
use the deep biLSTM from He et al. (2017) who
modeled SRL as a BIO tagging task. With ELMo
representations, it is state-of-the-art for this task
(Peters et al., 2018). For this task, the LSTM based
word representations perform the best, with abso-
lute improvements of 0.6% of the 4-layer LSTM
over the Transformer and CNN.

4.3 Constituency parsing

The Penn Treebank (Marcus et al., 1993) contains
phrase structure annotation for approximately 40k
sentences sourced from the Wall Street Journal.
Our model is the Reconciled Span Parser (RSP;
Joshi et al., 2018), which, using ELMo representa-
tions, achieved state of the art performance for this
task. As shown in Table 2, the LSTM based mod-
els demonstrate the best performance with a 0.2%
and 1.0% improvement over the Transformer and
CNN models, respectively. Whether the explicit
recurrence structure modeled with the biLSTM in
the RSP is important for parsing is explored in Sec.
5.3.

4.4 Named entity recognition

The CoNLL 2003 NER task (Sang and Meul-
der, 2003) provides entity annotations for approx-
imately 20K sentences from the Reuters RCV1
news corpus. Our model is a re-implementation of
the state-of-the-art system in Peters et al. (2018)
with a character based CNN word representation,
two biLSTM layers and a conditional random field
(CRF) loss (Lafferty et al., 2001). For this task, the
2-layer LSTM performs the best, with averaged F1

0.4% - 0.8% higher then the other biLMs averaged
across five random seeds.
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Figure 2: t-SNE visualization of 3K random chunks
and 500 unlabeled spans (“NULL”) from the CoNLL
2000 chunking dataset.

5 Properties of contextual vectors

In this section, we examine the intrinsic properties
of contextual vectors learned with biLMs, focus-
ing on those that are independent of the architec-
ture details. In particular, we seek to understand
how familiar types of linguistic information such
as syntactic or coreferent relationships are repre-
sented throughout the depth of the network. Our
experiments show that deep biLMs learn represen-
tations that vary with network depth, from mor-
phology in the word embedding layer, to local syn-
tax in the lowest contextual layers, to semantic re-
lationships such as coreference in the upper layers.

We gain intuition and motivate our analysis by
first considering the inter-sentence contextual sim-
ilarity of words and phrases (Sec. 5.1). Then, we
show that, in contrast to traditional word vectors,
the biLM word embeddings capture little semantic
information (Sec. 5.2) that is instead represented
in the contextual layers (Sec. 5.3). Our analy-
sis moves beyond single tokens by showing that
a simple span representation based on the context
vectors captures elements of phrasal syntax.

5.1 Contextual similarity

Nearest neighbors using cosine similarity are a
popular way to visualize the relationships encoded
in word vectors and we can apply a similar method
to context vectors. As the biLMs use context vec-
tors to pass information between layers in the net-
work, this allows us to visualize how information
is represented throughout the network.

Intra-sentence similarity Fig. 1 shows the
intra-sentence contextual similarity between all
pairs of words in single sentence using the 4-

layer LSTM.7 From the figure, we make several
observations. First, the lower layer (left) cap-
tures mostly local information, while the top layer
(right) represents longer range relationships. Sec-
ond, at the lowest layer the biLM tends to place
words from the same syntactic constituents in sim-
ilar parts of the vector space. For example, the
words in the noun phrase “the new international
space station” are clustered together, similar to
“can not” and “The Russian government”.

In addition, we can see how the biLM is implic-
itly learning other linguistic information in the up-
per layer. For example, all of the verbs (“says”,
“can”, “afford”, “maintain”, “meet”) have high
similarity suggesting the biLM is capturing part-
of-speech information. We can also see some
hints that the model is implicitly learning to per-
form coreference resolution by considering the
high contextual similarity of “it” to “government”,
the head of “it”s antecedent span. Section 5.3 pro-
vides empirical support for these observations.

Span representations The observation that the
biLM’s context vectors abruptly change at syntac-
tic boundaries suggests we can also use them to
form representations of spans, or consecutive to-
ken sequences. To do so, given a span of S tokens
from indices s0 to s1, we compute a span repre-
sentation s(s0,s1),i at layer i by concatenating the
first and last context vectors with the element wise
product and difference of the first and last vectors:

s(s0,s1),i = [hs0,i;hs1,i;hs0,i � hs1,i;hs0,i � hs1,i].

Figure 2 shows a t-SNE (Maaten and Hin-
ton, 2008) visualization of span representations of
3,000 labeled chunks and 500 spans not labeled
as chunks from the CoNLL 2000 chunking dataset
(Sang and Buchholz, 2000), from the first layer of
the 4-layer LSTM. As we can see, the spans are
clustered by chunk type confirming our intuition
that the span representations capture elements of
syntax. Sec. 5.3 evaluates whether we can use
these span representations for constituency pars-
ing.

Unsupervised pronominal coref We hypothe-
size that the contextual similarity of coreferential
mentions should be similar, as in many cases it is
possible to replace them with their referent. If
true, we should be able to use contextual simi-
larity to perform unsupervised coreference reso-

7See appendix for visualizations of the other models.
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Figure 3: Various methods of probing the information stored in context vectors of deep biLMs. Each panel shows
the results for all layers from a single biLM, with the first layer of contextual representations at the bottom and last
layer at the top. From top to bottom, the figure shows results from the 4-layer LSTM, the Transformer and Gated
CNN models. From left to right, the figure shows linear POS tagging accuracy (%; Sec. 5.3), linear constituency
parsing (F1; Sec. 5.3), and unsupervised pronominal coreference accuracy (%; Sec. 5.1).

Representation Syntactic Semantic
GloVe 77.9 79.2
n-gram hash 72.3 0.5
LSTM 4-layer 74.2 11.5
Transformer 87.1 48.8
Gated CNN 83.6 26.3

Table 3: Accuracy (%) for word vector analogies.
In addition to the 300 dimension 840B GloVe vectors,
the table contains results from a character n-gram hash
and the context insensitive word embedding layer (xk)
from the biLMs.

lution. To test this, we designed an experiment
as follows. To rule out trivially high mention-
mention similarities due to lexical overlap, we re-
stricted to pronominal coreference resolution. We
took all sentences from the development set of the
OntoNotes annotations in the CoNLL 2012 shared
task (Pradhan et al., 2012) that had a third-person
personal pronoun8 and antecedent in the same sen-
tence (904 sentences), and tested whether a sys-
tem could identify the head word of the antecedent
span given the pronoun location. In addition, by
restricting to pronouns, systems are forced to rely
on context to form their representation of the pro-
noun, as the surface form of the pronoun is unin-
formative. As an upper bound on performance, the
state-of-the-art coreference model from Lee et al.
(2017)9 finds an antecedent span with the head
word 64% of the time. As a lower bound on per-
formance, a simple baseline that chooses the clos-
est noun occurring before the pronoun has an ac-

8he, him, she, her, it, them, they
9
http://allennlp.org/models

Figure 4: Normalized layer weights s for the tasks in
Sec. 4. The vertical axis indexes the layer in the biLM,
with layer 0 the word embedding xk.

curacy of 27%, and one that chooses the first noun
in the sentence has an accuracy of 35%. If we add
an additional rule and further restrict to antecedent
nouns matching the pronoun in number, the accu-
racies increase to 41% and 47% respectively.

To use contextual representations to solve this
task, we first compute the mean context vector of
the smallest constituent with more then one word
containing the pronoun and subtract it from the
pronoun’s context vector. This step is motivated
by the above observation that local syntax is the
dominant signal in the contextualized word vec-
tors, and removing it improves the accuracies of
our method. Then, we choose the noun with the
highest contextual similarity to the adjusted con-
text vector that occurs before the pronoun and
matches it in number.

The right hand column of Fig. 3 shows the re-
sults for all layers of the biLMs. Accuracies for the

http://allennlp.org/models
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models peak between 52% and 57%, well above
the baseline, with the Transformer overall hav-
ing the highest accuracy. Interestingly, accuracies
only drop 2-3% compared to 12-14% in the base-
line if we remove the assumption of number agree-
ment and simply consider all nouns, highlighting
that the biLMs are to a large extent capturing num-
ber agreement across coreferent clusters. Finally,
accuracies are highest at layers near the top of each
model, showing that the upper layer representa-
tions are better at capturing longer range corefer-
ent relationships then lower layers.

5.2 Context independent word representation
The word analogy task introduced in Mikolov
et al. (2013) are commonly used as intrinsic evalu-
ations of word vectors. Here, we use them to com-
pare the word embedding layer from the biLMs to
word vectors. The task has two types of analo-
gies: syntactic with examples such as “bird:birds
:: goat:goats”, and semantic with examples such
as “Athens:Greece :: Oslo:Norway”. Traditional
word vectors score highly on both sections. How-
ever, as shown in Table 3, the word embedding
layer xk from the biLMs is markedly different
with syntactic accuracies on par or better then
GloVe, but with very low semantic accuracies. To
further highlight this distinction, we also com-
puted a purely orthographically based word vec-
tor by hashing all character 1, 2, and 3-grams
in a word into a sparse 300 dimensional vector.
As expected, vectors from this method had near
zero accuracy in the semantic portion, but scored
well on the syntactic portion, showing that most of
these analogies can be answered with morphology
alone. As a result, we conclude that the word rep-
resentation layer in deep biLMs is only faithfully
encoding morphology with little semantics.

5.3 Probing contextual information
In this section, we quantify some of the anecdo-
tal observations made in Sec. 5.1. To do so, we
adopt a series of linear probes (Belinkov et al.,
2017) with two NLP tasks to test the contextual
representations in each model layer for each biLM
architecture. In addition to examining single to-
kens, we also depart from previous work by exam-
ining to what extent the span representations cap-
ture phrasal syntax.

Our results show that all biLM architectures
learn syntax, including span-based syntax; and
part-of-speech information is captured at lower

layers then constituent structure. When combined
with the coreference accuracies in Sec. 5.1 that
peak at even higher layers, this supports our claim
that deep biLMs learn a hierarchy of contextual
information.

POS tagging Peters et al. (2018) showed that
the contextual vectors from the first layer of the 2-
layer LSTM plus a linear classifier was near state-
of-the-art for part-of-speech tagging. Here, we
test whether this result holds for the other archi-
tectures. The second row of Fig. 3 shows tagging
accuracies for all layers of the biLMs evaluated
with the Wall Street Journal portion of Penn Tree-
bank (Marcus et al., 1993). Accuracies for all of
the models are high, ranging from 97.2 to 97.4,
and follow a similar trend with maximum values
at lower layers (bottom layer for LSTM, second
layer for Transformer, and third layer for CNN).

Constituency parsing Here, we test whether the
span representations introduced in Sec. 5.1 capture
enough information to model constituent struc-
ture. Our linear model is a very simple and in-
dependently predicts the constituent type for all
possible spans in a sentence using a linear clas-
sifier and the span representation. Then, a valid
tree is built with a greedy decoding step that rec-
onciles overlapping spans with an ILP, similar to
Joshi et al. (2018).

The third row in Fig. 3 shows the results. Re-
markably, predicting spans independently using
the biLM representations alone has F1 of near 80%
for the best layers from each model. For compari-
son, a linear model using GloVe vectors performs
very poorly, with F1 of 18.1%. Across all architec-
tures, the layers best suited for constituency pars-
ing are at or above the layers with maximum POS
accuracies as modeling phrasal syntactic structure
requires a wider context then token level syntax.
Similarity, the layers most transferable to parsing
are at or below the layers with maximum pronom-
inal coreference accuracy in all models, as con-
stituent structure tends to be more local than coref-
erence (Kuncoro et al., 2017).

5.4 Learned layer weights
Fig. 4 plots the softmax-normalized layer weights
s from each biLM, learned as part of the tasks in
Sec. 4. The SRL model weights are omitted as
they close to constant since we had to regularize
them to stabilize training. For constituency pars-
ing, s mirrors the layer wise linear parsing results,
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with the largest weights near or at the same lay-
ers as maximum linear parsing. For both NER and
MultiNLI, the Transformer focuses heavily on the
word embedding layer, xk, and the first contextual
layer. In all cases, the maximum layer weights
occur below the top layers as the most transfer-
able contextual representations tend to occur in the
middle layers, while the top layers specialize for
language modeling.

6 Related work

In addition to biLM-based representations, Mc-
Cann et al. (2017) learned contextualized vectors
with a neural machine translation system (CoVe).
However, as Peters et al. (2018) showed the biLM
based representations outperformed CoVe in all
considered tasks, we focus exclusively on biLMs.

Liu et al. (2018) proposed using densely con-
nected RNNs and layer pruning to speed up the use
of context vectors for prediction. As their method
is applicable to other architectures, it could also be
combined with our approach.

Several prior studies have examined the learned
representations in RNNs. Karpathy et al. (2015)
trained a character LSTM language model on
source code and showed that individual neurons
in the hidden state track the beginning and end of
code blocks. Linzen et al. (2016) assessed whether
RNNs can learn number agreement in subject-verb
dependencies. Our analysis in Sec. 5.1 showed
that biLMs also learn number agreement for coref-
erence. Kádár et al. (2017) attributed the activa-
tion patters of RNNs to input tokens and showed
that a RNN language model is strongly sensitive
to tokens with syntactic functions. Belinkov et al.
(2017) used linear classifiers to determine whether
neural machine translation systems learned mor-
phology and POS tags. Concurrent with our
work, Khandelwal et al. (2018) studied the role
of context in influencing language model predic-
tions, Gaddy et al. (2018) analyzed neural con-
stituency parsers, Blevins et al. (2018) explored
whether RNNs trained with several different ob-
jectives can learn hierarchical syntax, and Con-
neau et al. (2018) examined to what extent sen-
tence representations capture linguistic features.
Our intrinsic analysis is most similar to Belinkov
et al. (2017); however, we probe span represen-
tations in addition to word representations, evalu-
ate the transferability of the biLM representations
to semantic tasks in addition to syntax tasks, and

consider a wider variety of neural architectures in
addition to RNNs.

Other work has focused on attributing network
predictions. Li et al. (2016) examined the impact
of erasing portions of a network’s representations
on the output, Sundararajan et al. (2017) used a
gradient based method to attribute predictions to
inputs, and Murdoch et al. (2018) decomposed
LSTMs to interpret classification predictions. In
contrast to these approaches, we explore the types
of contextual information encoded in the biLM in-
ternal states instead of focusing on attributing this
information to words in the input sentence.

7 Conclusions and future work

We have shown that deep biLMs learn a rich hier-
archy of contextual information, both at the word
and span level, and that this is captured in three
disparate types of network architectures. Across
all architecture types, the lower biLM layers spe-
cialize in local syntactic relationships, allowing
the higher layers to model longer range relation-
ships such as coreference, and to specialize for
the language modeling task at the top most lay-
ers. These results highlight the rich nature of the
linguistic information captured in the biLM’s rep-
resentations and show that biLMs act as a gen-
eral purpose feature extractor for natural language,
opening the way for computer vision style feature
re-use and transfer methods.

Our results also suggest avenues for future
work. One open question is to what extent can
the quality of biLM representations be improved
by simply scaling up model size or data size? As
our results have show that computationally effi-
cient architectures also learn high quality repre-
sentations, one natural direction would be explor-
ing the very large model and data regime.

Despite their successes biLM representations
are far from perfect; during training, they have
access to only surface forms of words and their
order, meaning deeper linguistic phenomena must
be learned “tabula rasa”. Infusing models with
explicit syntactic structure or other linguistically
motivated inductive biases may overcome some
of the limitations of sequential biLMs. An alter-
nate direction for future work combines the purely
unsupervised biLM training objective with exist-
ing annotated resources in a multitask or semi-
supervised manner.
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