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Abstract

Accurately and efficiently estimating word
similarities from text is fundamental in natural
language processing. In this paper, we propose
a fast and lightweight method for estimating
similarities from streams by explicitly count-
ing second-order co-occurrences. The method
rests on the observation that words that are
highly correlated with respect to such counts
are also highly similar with respect to first-
order co-occurrences. Using buffers of co-
occurred words per word to count second-
order co-occurrences, we can then estimate
similarities in a single pass over data without
having to do prohibitively expensive similar-
ity calculations. We demonstrate that this ap-
proach is scalable, converges rapidly, behaves
robustly under parameter changes, and that it
captures word similarities on par with those
given by state-of-the-art word embeddings.

1 Introduction

Word similarities play an integral part in many nat-
ural language processing applications. Improving
similarity estimates will therefore in turn poten-
tially improve a broad range of areas, including
word alignment (Songyot and Chiang, 2014), query
expansion (Diaz et al., 2016), simplification (Biran
et al., 2011), document classification (Arras et al.,
2017), lexical substitution (McCarthy and Navigli,
2009) and many more.

The prevalent approach to estimate similarities
is to first embed words in a vector space using tech-
niques such as word2vec (Mikolov et al., 2013a,b)
and GloVe (Pennington et al., 2014), and then cal-
culate the similarities between words as the simi-
larities between corresponding vectors. Finding all
significant similarities among a set of words in this
way, however, is computationally demanding due
to the large number of pairwise similarity calcula-
tions involved (scaling as the square of the vocabu-
lary size at worst). All-to-all similarity calculations
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are in particular strenuous, if at all feasible, in a
streaming setting due to tight latency and memory
constraints.

In this paper we address this by proposing a
method that finds significant similarities without
calculating any similarities. This seemingly con-
tradictory feat is possible by explicitly counting
second-order co-occurrences (SOCOs for short)
and calculating correlations with respect to these.
Two words w and v are said to have a SOCO if
there is a third word v with whom both w and
v co-occur (not necessarily together). For exam-
ple, if the words hot and coffee co-occur at some
point in a corpus or stream, and Aot and fea co-
occur at some other point in the same corpus or
stream, then coffee and fea have a SOCO relation
since they both co-occur with hot. The key obser-
vation then, as depicted in Fig. 1, is that words that
are highly correlated with respect to second-order
co-occurrences are highly similar with respect to
first-order co-occurrences. This relation enables us
to avoid pairwise similarity calculations altogether
and instead acquire similarities directly from the
SOCO counts.

The contribution of this paper is mainly twofold.
Firstly, we introduce an operational definition of
SOCO probabilities. To the best of our knowl-
edge, this has not been done before in this explicit
manner. Secondly, we apply this definition to effi-
ciently estimate word similarities from streams. In
practice we achieve this by keeping small buffers of
co-occurred words per context word, and then incre-
menting SOCO counts of new co-occurred words
and those in the buffer. Importantly, this enables
us to pass over data only once. To ensure scala-
bility in memory usage and runtime, approximate
SOCO counts are then maintained in a count-min
sketch table (Cormode and Muthukrishnan, 2005)
that keeps the algorithm lightweight.

The benefits of our approach are not only com-
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Figure 1: Diagram that describes the relationship be-
tween Ist and 2nd order co-occurrences. Instead of
first embedding words with regard to 1st order co-
occurrences and then calculating pairwise similarities
between word vectors, we acquire similarities by di-
rectly correlating words with respect to their explicit
2nd order co-occurrences (encompassing labels in bold-
face).

putational in allowing us to avoid both multi-pass
batch processing and the quadratic time complexity
that comes with pairwise similarity calculations.
Since the method is based on simple counting of
SOCOs, it is also completely transparent and in-
terpretable. By comparison, most first-order word
embeddings — word2vec and GloVe are again good
examples — are relatively opaque and difficult to
interpret. The simplicity of our method also makes
it straightforward to implement while having only
a handful of parameters to tune compared to preva-
lent embedding methods that typically involve a
large number hyperparameters.

The remainder of this paper is outlined as fol-
lows: Next we will relate our proposed method to
current approaches for calculating word similari-
ties. The method is described in Sec. 3, followed by
a complexity analysis in Sec. 4 where we theoret-
ically and experimentally show that our approach
indeed is suitable for stream mining. In Sec. 5, we
evaluate the method with respect to convergence,
accuracy and parameter sensitivity. The paper is
concluded in Sec. 6 with a summary and a discus-
sion on possible future directions.

2 Related work

The explicit use of second-order co-occurrences
has so far gained little attention in word similarity
mining. The typical approach is rather to express
word similarities as similarities between vector rep-
resentations that in turn are based on first-order
co-occurrences (this is also the case in (Islam and
Inkpen, 2006), despite the name of their approach!).

'In general, the term second-order co-occurrence is some-
times used in NLP to describe second-order representations

There is a large body of work in this area, predom-
inantly based on Harris’ distributional hypothesis
(Harris, 1954), from seminal approaches such as
LSA/LSI (Deerwester et al., 1990), HAL (Lund
and Burgess, 1996) and Random indexing (Kanerva
et al., 2000) and onward. See (Levy et al., 2015)
for an extensive review. A common approach then
is to represent words in terms of co-occurrence
correlations — e.g. using Pointwise mutual infor-
mation (PMI) (Church and Hanks, 1990) and vari-
ants thereof (Levy et al., 2015) — either explicitly
or through dimensionality reduction (Pennington
et al., 2014). Another prevalent approach is to gen-
erate vector representations based on prediction
tasks, where words are predicted from their con-
texts or vice versa; Continuous bag of words and
Skip-gram (Mikolov et al., 2013a,b) are prominent
examples. However, these methods are batch-based
and typically require multiple passes over data (3
to 50 training epochs in the case of word2vec, for
instance (Mikolov et al., 2013b)). Approaches
that are more suitable for streaming data have also
been developed, e.g. for calculating the most PMI-
correlated words per word (Durme and Lall, 2009)
and, more recently, neural network methods (pri-
marily based on Skip-gram) adapted to enable in-
cremental updating (Luo et al., 2015; Kaji and
Kobayashi, 2017; Bamler and Mandt, 2017; Peng
et al., 2017). Note though that in all of the above
cases vector representations capture first-order co-
occurrences. When using PMI for example, the
correlation between two words is high if they co-
occur more frequently than expected from chance,
but high correlation does not equate high similarity
(consider the words red and wine for example). Es-
timating word similarities would therefore require
the extra step of calculating similarities between
vectors, something that our approach bypasses by
explicitly counting SOCOs.

3 Method

3.1 Second-order co-occurrences

We define the SOCO probability of words w and v
as

P(w:v) := Z P(u)P(w|u)P(vlu), (1)
ueV

where w: v denotes a SOCO and V is the vocabu-
lary. That is, P(w : v) is the probability that two
based on first-order word vectors, such as in (Schiitze, 1998).

This does not involve explicit SOCO counts as in our case
though.
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randomly selected words co-occurring with a ran-
domly selected word u are w and v. Since

> P(w,u)P(vlu) )

uey

= > P(w)P(ulw)P(v]u),

uey

Pw:v) =

an alternative interpretation of SOCO is the chain
of randomly selecting a word w, one of its co-
occurring words u, and in turn one of its co-
occurring words v.

3.2 Correlation measure

Our ansatz is that two words have a high degree of
similarity if they are highly correlated with respect
to SOCO, since this would imply that the words
are relatively interchangeable in their respective
contexts. We quantify a SOCO correlation using
standard pointwise mutual information (PMI):

P(w:wv)

M(w:v) =log, Plw)P(w)’

3)
where the denominator is the SOCO probability of
w and v given that they are independent of u, since
then

P(w:v) =Y P(u)P(w)P(v). (4)

ueVy

3.3 Estimating correlations

Making the simplifying assumptions that a stream
is stationary and that co-occurrence correlations
decay rapidly with word-to-word distance in the
stream (or corpus), we can estimate Eq. 3 in one
pass using counters of word occurrences and SO-
COs. See Fig. 2 for a schematic overview and
Algorithm 1 for a detailed description of our ap-
proach.

3.3.1 Co-occurrence buffers

Approximate SOCO counts are maintained by keep-
ing small buffers (on the order of 1 to 10 words)
of previously observed words with a given context.
The context of a word is here given by the position
relative to the word (say, -1 for the preceding word)
and the word occupying that position. For example,
if we observe the word fox in the sequence

The quick brown fox jumps over the lazy dog.

fox is added to the buffer of previously observed
words with context (-1, brown) (bear, bag and eyes

(@)  Second-order co-occurrences

Preceding

(b) Co-occurrence buffers

[0 o]

.dcbabc dd cd ..

d|
<]

Figure 2: (a) Words that share a context word (the word
a in this example) at a given position (as a preceding
and subsequent word, in blue and red, respectively) are
said to co-occur to the second order. For example, b
and ¢ have a SOCO relation b : ¢ since they both have
a as a subsequent word. (b) We count second-order co-
occurrences by keeping buffers of co-occurring words
for a given context. The buffer for context (1, a) is
shown above the sequence (i.e., when a occurs as a
subsequent word) and (-1, a) below the sequence (a
as a preceding word). Both buffers (implemented as
queues, where the most recent observations are stored)
are limited to two words in this example. Before a word
is added to a buffer, the second-order co-occurrence
counts of the word and the words in the buffer are in-
cremented. For instance, the counts of b:d and c: d are
incremented before the buffer [c, b] is updated to [d, ¢].

perhaps). Note that fox then has a SOCO relation
with the words in the buffer. The SOCO counters of
(fox, w) for all words w in the buffer are therefore
incremented (for (fox, bear) for instance) before
fox is added to the buffer. If the buffer is full — we
cap the number of prior words stored — the oldest
word is discarded prior to adding the new one.

The same procedure is performed for all context
positions in a sliding window of a given length (e.g.,
for positions {—2,—1,1,2} if we consider sym-
metric contexts in a five-word window). By simul-
taneously estimating word frequencies by counting
current words we can in this way incrementally
maintain estimates of M (w:v).

3.3.2 Probabilistic counting

Since the number of SOCOs may be very large, we
keep approximate counts of these using a count-
min sketch table (Cormode and Muthukrishnan,
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2005). The table, denoted d, has h rows and g
columns, where the rows are associated with h
pairwise independent hash functions, f;, and where
entries are initialized to 0. When a SOCO w : v
for words w and v is observed, each hash function
maps w : v to an index f;(w : v) of row i. Entry
(i, fi(w:v)) is then incremented by 1.

After populating d the approximate count of w:
v is given by the minimum count of the entries

(7, fi(w:v)):
c(w:v) = miind(i,fi(wzv)). 3)

Note that ¢ may overestimate the true count c(w :v)
due to hash collisions (this is indeed what keeps
the data structure sublinear with respect to the num-
ber of SOCOs). To reduce overestimations we can
employ conservative updates by only updating an
entry (i, f;(w:v)) if it is exceeded by the current in-
cremented approximate SOCO count (Goyal et al.,
2012):

d(i, fi(w:v))+max {d(i, fi(w:v)), é(w:v)}.
(6)
This is the approach used in all experiments pre-
sented below.

3.3.3 Top-k correlations

Rather than storing all SOCO correlations, which is
infeasible for large vocabularies and wide context
ranges, we keep track of the k most correlated
words for each word in the vocabulary. We achieve
this scalably by adapting the approach proposed
by Durme and Lall for calculating first-order co-
occurrence correlations in streams (Durme and Lall,
2009). We keep track of occurred SOCOs in non-
overlapping meta-windows (on the order of 10°
to 107 tokens long). For each meta-window, we
calculate PMIs for occurred SOCOs using exact
word counts (having a comparably small memory
footprint) and approximate SOCO counts, and then
update priority queues with the most similar words
per word accordingly. In this way the number of
SOCOs stored is kept approximately constant as
we consume the stream.

4 Complexity analysis

4.1 Time

For each token in the stream, updating word counts
takes constant time using an associative array. The
algorithm also goes through 2n context words,
where n is the context range. For each context

Algorithm 1 Estimate M (w:v) for stream
[s1, 82, ..., Sm|, vocabulary V), context range n,
buffer capacity r, meta-window size /N and count-
min (C-m) table with h rows and g columns. Note
that m may approach infinity.

1: l«<{-n,...,—1,1,...,n} {context positions}
2: ¢(w)<«0;w €V {word counts}
33d;;j<-0;i=1,...,9,j =1,...,h {C-m table}
4: t,, <0 {total word count}
5: ts <0 {total SOCO count}
6: q(i,w)+0;w € V,i € [ {context queues}
7: S(w) <« 0;w € V {similar word queues}
8: P <+ () {observed SOCOs}
9: for : = n+ 1 to m — n do {consume stream }
10:  e(s;)«c(s;) +1
11: ty+ty+1
12: forj €ldo
13: for v € q(j, 5i4j),v # s; do
14: P+PU{s;i:v}
15: d(s;:v)«d(s;:v) +1
16: ts—ts+ 1
17: end for
18: if |q(j, si+;)| = r then {buffer full}
19: q(J, si+;).dequeue() {discard oldest}
20: end if
21: q(J, si+;).enqueue(s;) {add current}
22:  end for
23:  if ¢ mod N = 0 then {meta-window ends}
24: for w € V do
25: P(w) <+c(w)/ty
26: end for
27: for w:v € P do
28: P(w:v)<+d(w:v)/ts
29: M = logy[P(w:v)/(P(w)P(v))]
30: Update S(w) with v and priority M
31: end for
32: P <0 {clear observed SOCOs}

33: endif
34: end for

word, the count-min table that stores approximate
SOCO counts is updated at most r times, where
r is the maximum buffer size. Since each update
takes O(h) time for a count-min table with i rows
(a hash function is called for each row), the time
complexity for updating counters is O(nrh). Up-
dating a co-occurrence buffer, i.e. by inserting and
(possibly) deleting a word index in a queue, takes
O(1) time, and so the total time complexity per
token when consuming a meta-window is O(nrh).

Between meta-windows, we update the top cor-

1428



%1075

I A S S
o o e

Runtime per token [s]

—
D

—
i~

—
[N
w
b
wt
[=p}
-
oo

i x10°

Figure 3: Runtime per token at stream position ¢
(Python implementation run on a MacBook Pro with
a 2.8 GHz Intel Core i7 processor and 16 GB of mem-

ory).

related words per word. We first update frequency
estimates of words, which takes O(|V|) time. For
each SOCO that has been observed in the meta-
window, | P| of them, we update the priority queues
with the most correlated words of the words in-
volved in the SOCOs. Each such update takes
O(log k), where the parameter k is the number
of most correlated words of a word.

Altogether, the time complexity is hence
O(nrh + W) per token. Note that
n,r, h,k < |V|,|P|, where n, r, h and k are all
small fixed parameters (n ~ 1 to 10, r ~ 10,
k ~ 10 to 100 and h ~ 10 typically). Given
that the stream is roughly stationary (which has
been the case in our experiments), the size of P
is approximately constant. With a fixed vocabu-
lary and [V, the runtime per token is therefore also
kept approximately constant. We confirm this ex-
perimentally, see Fig. 3, by running the algorithm
on English Wikipedia (as of March 7, 2015) us-
ing a context range of one (window size three), a
vocabulary constituted by the 10* most frequent
words, meta-windows of length 107 and five-word
co-occurrence buffers, a count-min table with 8
rows and 3.4 - 107 columns, and where the 10 most
similar words per word are stored. As expected,
the runtime per token increases initially as the co-
occurrence buffers are filled up, and then converges
towards a constant value.

4.2 Space

With regard to memory the algorithm requires that
we keep a co-occurrence buffer for each word
in the vocabulary and for each context position.

The space complexity of the buffers is therefore
O(nr|V|). In addition, there are || word coun-
ters and priority queues of size k for storing top-k
similar words, a count-min sketch table with gh
entries, where the fixed parameter g is the number
of columns in the count-min table, and a index pair
set of size |P| for storing occurred SOCOs that
have occurred in a meta-window. The total space
required is hence O((nr + k)|V| + gh + |P|).

For example, assume we have a vocabulary with
a million words, a context range of 5 (i.e., window
size 5+1+5), a buffer size of 10, a count-min table
with 3 - 10® columns and 8 rows, and that we keep
the 10 most similar words per word. We then need
to store 105 -2 -5.10 = 10® items in the co-
occurrence buffers. If each item requires 4 bytes
(a word index constituted by an unsigned integer),
the buffers take up 400 MB of space. Add to that
another 4 MB for the word counters (10° of them a
4 bytes), 40 MB (10° - 4 - 10 bytes) for the top 10
similar word indices per word and 9.6 GB (8 - 3 -
108 -4 bytes) for the count-min sketch table. Set the
meta-window length so that [P| < 7.4-108 (taking
up a bit less than 6 GB of memory at most) and
we end up with a total footprint of approximately
16 GB — a memory requirement even met by many
present-day laptops.

5 Evaluation

5.1 Examples

In Table 1 we show a set of examples of the most
SOCO-correlated words per word as output by the
algorithm (using Wikipedia, a context range of 2,
buffer size of 10 and a count-min table with 8 rows
and 2.7 - 10® columns). Although the examples are
anecdotal, they illustrate that the method manages
to mine word similarities that make intuitive sense,
such that Wednesday is most similar to other days
in the week (interestingly, it is most similar to ad-
jacent days, Tuesday and Thursday) and yellow is
most similar to other colors, etc.

5.2 Convergence

It is crucial that the method converges within a
reasonable amount of time in order for it to be of
practical use. To test this we run the algorithm
and measure how the sets of top-% similar words
change as the stream progresses. We quantify these
changes using the Jaccard index between a word
set of a word w at position ¢ in the stream, S;(w),
and the corresponding word set at Ai tokens prior,
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musician increasing croatian ~ wednesday scholar hermann coventry yellow
singer reducing  yugoslav  thursday scholars heinrich  leicester purple
pianist growing serbian tuesday translator friedrich  norwich  pink
songwriter increased  slovenian monday playwright  wilhelm  stoke orange
guitarist reduces croatia friday philosopher georg swansea blue
rapper reduce slovak saturday poet wolfgang cardiff red

Table 1: Examples of the most correlated words per word with respect to second-order co-occurrence.

SIMLEX SIMVERB MT-287 MT-771 WS-353
SOCO 0.41 0.25 0.59 0.56 0.71
FOCO 0.35 0.23 0.65 0.59 0.66
GLOVE 0.31 0.18 0.61 0.57 0.63
CBOW 0.34 0.22 0.66 0.57 0.69
SGM 0.41 0.32 0.67 0.60 0.72
Coverage 0.99 0.96 0.95 0.98 0.98

Table 2: Top rows: Spearman’s rank correlation coefficients for different methods and benchmarks. Bottom row:
fractions of benchmark word pairs covered by the methods and the corpus.

0.0 0.2 04 0.6 0.8 1.0
i x108

Figure 4: Average change of top-k word sets over
words at stream position ¢. Standard deviation shown
by error bars.

Si—aqi(w). That is,

|Si(w) N Si—ai(w)]
|Si(w) U Si-ai(w)|’
(7)
where J =1 if there is no change and the sets
are identical. As seen in Fig. 4, the top-k sets
converge as both the mean of J(S;(w), S;—a;(w))
over words w tends towards one while the standard
deviation decreases. In this experiment, applied on
Wikipedia and a vocabulary of 10* words, the top
ten words per word were stored. Further, Ai =
10° tokens, contexts of range one, a count-min
table with 8 rows and 3.4 - 107 columns, and co-

J(Si(w), Si—ni(w)) =

occurrence buffers of size five were used.

5.3 Accuracy

To quantitatively evaluate the accuracy of the
method, we use a collection of established word
similarity benchmarks: SimLex-999 (SIMLEX)
(Hill et al., 2015), SimVerb (SIMVERB) (Gerz
etal., 2016), MTurk-287 (MT-287) (Radinsky et al.,
2011), MTurk-771 (MT-771) (Halawi et al., 2012)
and WordSim (WS-353) (Finkelstein et al., 2001).
Each of these benchmarks contains a set of word
pairs and their similarities as judged by human
annotators. Comparing these word rankings with
rankings given by Eq. 3, we get an indication of
how well our method captures human notions of
similarity and relatedness. The agreement is quanti-
fied with the standard Spearman’s rank correlation
coefficient.

The results are also compared to the ranking
agreements for popular word embeddings — GloVe
(Pennington et al., 2014) (GLOVE), Continuous
Bag of words (CBOW) and Skip-gram (SGM)
(Mikolov et al., 2013a,b) — as well as for the point-
wise mutual information between regular first-order
co-occurrences (FOCO). In all these cases, word
similarities are given by the cosine similarity,

vi.vj

 Juilalvjle”

)

o(vi,vj)

where v; and v; are vectors associated with words
7 and j. All word embeddings are in 300 dimen-
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sions. Remaining parameters are set to default val-
ues, with the exception that no explicit word count
thresholding is used in order to avoid loss of bench-
mark words. (Applying thresholds at 3-5 occur-
rences gives comparable results as those reported
here, but for fewer word pairs.) For all benchmarks
the One billion word corpus” (Chelba et al., 2013)
is used with a vocabulary consisting of the 3 - 10
most frequent words, except the Stanford CoreNLP
stopwords.? A context range of 2, count-min tables
with 8 rows and 3.4 - 107 columns, and a buffer size
of 10 are used throughout. Since many word pairs
in the benchmarks are dissimilar we keep all SOCO
correlations for the benchmark word pairs in this
experiment. A small fraction of benchmark words
are either not present in the corpus or captured by
SOCO or the embedding methods due to sampling.
To ensure a fair comparison between methods, only
word pairs that are represented by all approaches
are therefore considered.

The results are summarized in Table 2, where we
note that the coverage (the fraction of benchmark
pairs represented) is high, from 95% for MT-287
to 99% for SIMLEX. The relative performance of
SOCO varies over benchmarks: in two out of five
cases the performance is roughly on par with SGM,
and compared to GLOVE, CBOW and FOCO, our
method performs best in three out of five bench-
marks. Thus the overall picture is that our approach
indeed is able to capture meaningful similarity re-
lations, and that it performs comparably to regular
first-order word embedding methods.

5.4 Parameter sensitivity

The algorithm has two key parameters: the co-
occurrence buffer capacity and the size of the count-
min sketch table. Since the approximation errors
induced by the latter is thoroughly analyzed in (Cor-
mode and Muthukrishnan, 2005) we will here focus
on how the buffer size influences similarity accu-
racy. Using the same corpus and benchmark suite
as in Sec. 5.3, we evaluate how the accuracy varies
with the buffer capacity. To again make a fair com-
parison, we then only include those benchmark
word-pairs that are covered in all experiments.

As seen in Fig. 5, the method is insensitive to the
buffer capacity size as the accuracy stays approx-
imately constant for buffers of sizes larger than 3.
This is also the case in relative terms: see Fig. 6

2http://www.statmt.org/lm-benchmark/
3https://stanfordnlp.github.io/CoreNLP/
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Figure 5: Spearman’s rank correlation coefficients for
different benchmarks and buffer capacities.
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Figure 6: Relative Spearman’s rank correlation coeffi-
cients with respect to correlations at buffer capacity 1
for different benchmarks and buffer capacities.

where we plot the accuracy relative to the accu-
racy for buffers of size 1. The improvement is then
largest for SIMLEX-999, where going from buffers
of size 1 to 15 yields an approximate difference
of 17% in accuracy. The relative accuracy, how-
ever, varies little from buffer capacity 3 and upward.
With regard to coverage, see Fig. 7, the buffer ca-
pacity has a significant effect up until buffer size 9,
after which the coverage settles at around 95-99%.

We can conclude that the method is robust with
regard to buffer capacity, resulting in predictable
and smooth changes in output, and that it suffices
to keep small buffers to maintain both accuracy and
coverage. Since the buffers in effect tend to store
the most frequent co-occurrences per word, these
results indicate that it is possible to accurately esti-
mate similarities using only salient co-occurrences.
This is also supported by Polajnar and Clark’s find-
ing (2014) that only a handful of the most frequent
context words yields the best results when estimat-
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Figure 7: Coverage for different benchmarks and buffer
capacities.

ing similarities from co-occurrence frequencies.

6 Conclusions

We have presented a method for estimating word
similarities from corpora or streams using an ex-
plicit notion of SOCQO. Our approach is simply
to count such co-occurrences and calculate cor-
relations between words with respect to these
counts. Words that are highly correlated are then
also highly similar with respect to first-order co-
occurrences. By using co-occurrence buffers and
count-min sketches for estimating SOCO counts,
the method keeps both the runtime per token and
memory usage constant while only needing one
pass over data. These properties makes our ap-
proach ideal for low-cost stream mining.

Despite its simplicity and modest computational
requirements, benchmark experiments show that
the method performs comparably to calculating
similarities between best-in-class word vectors.
This not only makes our approach a feasible al-
ternative for calculating word similarities on the
cheap, but in some cases it may be the only viable
option. Consider for instance an embedded sys-
tem in a decentralized machine learning or edge
computing scenario. Then real-time computing
constraints and scarce memory would rule out both
multi-pass word embeddings and pairwise simi-
larity calculations in favor of similarities readily
available from SOCO counts.

There are numerous possible future directions,
exploring correlation measures other than PMI be-
ing one. Also, by grouping words in concurrence
with finding top-£ similar words per word, an ex-
tended method could be used for word cluster-

ing. Possible ways to find groups of inter-similar
words — constituting abstract concepts (Gornerup
et al., 2017) — is then to use label propagation on a
graph (Raghavan et al., 2007) (with words consti-
tuting vertices and the top-k similar words directed
edges), or agglomerative hierarchical clustering.
How to do this efficiently and scalably is currently
under study. Moreover, in this paper we have ex-
clusively considered text data and word similari-
ties. The method, however, is domain-agnostic and
may be applied on other types of data, in and be-
yond the NLP domain. There is a wide range of
potential application areas, presumably in every-
thing from biology and physics to social science
and economics — in essence in any domain where
objects co-occur and where these co-occurrences
carry some relevant information or meaning.
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