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Abstract

We present a dataset for evaluating the gram-
maticality of the predictions of a language
model. We automatically construct a large
number of minimally different pairs of En-
glish sentences, each consisting of a gram-
matical and an ungrammatical sentence. The
sentence pairs represent different variations of
structure-sensitive phenomena: subject-verb
agreement, reflexive anaphora and negative
polarity items. We expect a language model
to assign a higher probability to the grammati-
cal sentence than the ungrammatical one. In an
experiment using this data set, an LSTM lan-
guage model performed poorly on many of the
constructions. Multi-task training with a syn-
tactic objective (CCG supertagging) improved
the LSTM’s accuracy, but a large gap remained
between its performance and the accuracy of
human participants recruited online. This sug-
gests that there is considerable room for im-
provement over LSTMs in capturing syntax in
a language model.

1 Introduction

A language model (LM) defines a probability dis-
tribution over sequences of words. Recent techno-
logical advances have led to an explosion of neural
network-based LM architectures. The most pop-
ular ones are based on recurrent neural networks
(RNNs) (Elman, 1990; Mikolov et al., 2010),
in particular Long Short-Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997).
While a large number of alternative architectures
have been proposed in the past few years, LSTMs
are still highly competitive (Melis et al., 2018).
Language models are typically evaluated using
perplexity: it is considered desirable for an LM
to assign a high probability to held-out data from
the same corpus as the training data. This mea-
sure conflates multiple sources of success (or fail-
ure) in predicting the next word: common collo-
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cations, semantics, pragmatics, syntax, and so on.
The quality of the syntactic predictions made by
the LM is arguably particularly difficult to mea-
sure using perplexity: since most sentences are
grammatically simple and most words can be pre-
dicted from their local context, perplexity rewards
LMs primarily for collocational and semantic pre-
dictions.

We propose to supplement perplexity with a
metric that assesses whether the probability dis-
tribution defined by the model conforms to the
grammar of the language. Following previous
work (Lau et al., 2017; Linzen et al., 2016; Gu-
lordava et al., 2018), we suggest that given two
sentences that differ minimally from each other,
one of which is grammatical and the other which is
not, it is desirable for the model to assign a higher
probability to the grammatical one.

The value of this approach can be illustrated
with a recent study by Tran et al. (2018), where a
standard LSTM language model was compared to
an attention-only LM without recurrence (Vaswani
et al., 2017). Although the attention-only model
had somewhat better perplexity on the valida-
tion set, when the models were tested specifically
on challenging subject-verb agreement dependen-
cies, the attention-only model made three times
as many errors as the LSTM. In other words, the
LSTM learned more robust syntactic representa-
tions, but this advantage was not reflected in its av-
erage perplexity on the corpus, since syntactically
challenging sentences are relatively infrequent.

Previous work on targeted syntactic evaluation
of language models has identified syntactically
challenging sentences in corpora (Linzen et al.,
2016; Gulordava et al., 2018). While evaluation
on naturally occurring examples is appealing, this
approach has its limitations (see Section 2). In
particular, syntactically challenging examples are
sparsely represented in a corpus, their identifica-
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tion requires a clean parsed corpus, and naturally
occurring sentences are difficult to control for con-
founds. We contrast the naturalistic approach with
a constructed dataset, which allows us to exam-
ine a much larger range of specific grammatical
phenomena than has been possible before. We
use templates to automatically create our test sen-
tences, making it possible to generate a large test
set while maintaining experimental control over
our materials as well as a balanced number of ex-
amples of each phenomenon.

We test three LMs on the data set we develop:
an n-gram baseline, an RNN LM trained on an
unannotated corpus, and an RNN LM trained on a
multitask objective: language modeling and Com-
binatory Categorial Grammar (CCG) supertagging
(Bangalore and Joshi, 1999). We also conduct
a human experiment using the same materials.
The n-gram baseline largely performed at chance,
suggesting that good performance on the task re-
quires syntactic representations. The RNN LMs
performed well on simple cases, but struggled on
more complex ones. Multi-task training with a su-
pervised syntactic objective improved the perfor-
mance of the RNN, but it was still much weaker
than humans. This suggests that our data set is
challenging, especially when explicit syntactic su-
pervision is not available, and can therefore moti-
vate richer language modeling architectures.

2 Overview of the approach

2.1 Grammaticality and LM probability

How should grammaticality be captured in the
probability distribution defined by an LM? The
most extreme position would be that a language
model should assign a probability of zero to un-
grammatical sentences. For most applications,
some degree of error tolerance is desirable, and
it is not practical to assign a sentence a proba-
bility of exactly zero.! Following Linzen et al.
(2016) and Gulordava et al. (2018), our desider-
atum for the language model is more modest: if
two closely matched sentence differ only in their
grammaticality, the probability of the grammati-
cal sentence should be higher than the probability
of the ungrammatical one. For example, the fol-
lowing minimal pair illustrates the fact that third-

"Nor is it possible to have a threshold e such that all gram-
matical sentences have probability higher than € and all un-
grammatical sentences have probability lower than ¢, for the

simple reason that there is an infinite number of grammatical
sentences (Lau et al., 2017).

person present English verbs agree with the num-
ber of their subject:

(1) Simple agreement:

a. The author laughs.
b. *The author laugh.

We expect the probability of (1a) to be higher than
the probability of (1b). Previous work has simpli-
fied this setting further by comparing the proba-
bility that the LM assigns to a single word that is
the locus of ungrammaticality. In (1), for exam-
ple, the LM would be fed the first two words of
the sentence, and would be considered successful
on the task if it predicts P(laughs) > P(laugh).

The prediction setting is only applicable when
the locus of ungrammaticality is a single word,
rather than, say, the interaction between two
words; moreover, the information needed to make
the grammaticality decision needs to be available
in the left context of the locus of grammaticality.
These conditions do not always hold. Negative po-
larity items (NPIs), for example, are words like
any and ever that can only be used in the scope
of negation.” The grammaticality of placing a par-
ticular quantifier in the beginning of the sentences
in (2) depends on whether the sentence contains
an NPI later on:

(2) Simple NPI:
a. No students have ever lived here.
b. *Most students have ever lived here.

It would not be possible to compare these two sen-
tences using the prediction task. In the current pa-
per, we use the more general setting and compare
the probability of the two complete sentences.

2.2 Data set construction

Previous work has used syntactically complex sen-
tences identified from a parsed corpus. This ap-
proach has several limitations. If the corpus is
automatically parsed, the risk of a parse error in-
creases with the complexity of the construction
(Bender et al., 2011). If the test set is restricted
to sentences with gold parses, it can be difficult
or impossible to find a sufficient number of exam-
ples of syntactically challenging cases. Moreover,
using naturally occurring sentences can introduce

?In practice, the conditions that govern the distribution of
NPIs are much more complicated, but this first approxima-
tion will suffice for the present purposes. For a review, see
Giannakidou (2011).
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confounds that may complicate the interpretation
of the experiments (Ettinger et al., 2018).

To circumvent these issues, we use templates
to automatically construct a large number of En-
glish sentence pairs (~350,000). Our data set in-
cludes three phenomena that linguists consider to
be sensitive to hierarchical syntactic structure (Ev-
eraert et al., 2015; Xiang et al., 2009): subject-
verb agreement (described in detail in Sections 4.1
and 4.2), reflexive anaphora (Section 4.3) and neg-
ative polarity items (Section 4.4).

The templates can be described using non-
recursive context-free grammars. We specify the
preterminal symbols that make up a syntactic con-
struction and have different terminal symbols that
those preterminals could be mapped to. For ex-
ample, the template for the simple agreement con-
struction illustrated in (1) consists of the following
rules:

(3) a. Simple agreement —- D MS MV
b. D — the
c. MS — {author, pilot, ...}
d. MV — {laughs, smiles, ...}

We generate all possible combinations of the ter-
minals. The Supplementary Materials provide a
full description of all our templates.’

While these examples are somewhat artificial,
our goal is to isolate the syntactic capabilities of
the model; it is in fact beneficial to minimize the
semantic or collocational cues that can be used
to identify the grammatical sentence. Gulordava
et al. took this approach further and constructed
“colorless green ideas” test cases by substituting
random content words into sentences from a cor-
pus. We take a more moderate position and avoid
combinations that are very implausible or violate
selectional restrictions (e.g., the apple laughs). We
do this by having separate templates for animate
and inanimate subjects and verbs so that the re-
sulting sentences are always reasonably plausible.

3 Related work

Targeted evaluation: LM evaluation data sets
using challenging prediction tasks have been pro-
posed in the context of semantics and discourse
comprehension (Zweig and Burges, 2011; Paperno
et al., 2016). Evaluation sets consisting of chal-

>The code, the data set and the Supplementary
Materials can be found at https://github.com/
BeckyMarvin/LM_syneval.

lenging syntactic constructions have been con-
structed for parser evaluation (Rimell et al., 2009;
Nivre et al., 2010; Bender et al., 2011), and mini-
mal pair approaches have been proposed for eval-
uating image captioning (Shekhar et al., 2017) and
machine translation systems (Sennrich, 2017), but
no data sets exist that target a range of syntactic
constructions for language model evaluation.

Acceptability judgments: Lau et al. (2017)
compared the ability of different LMs to pre-
dict graded human acceptability judgments. The
forced-choice approach used in the current pa-
per has been shown to be effective in human
acceptability judgment experiments (Sprouse and
Almeida, 2017). In some early work, neural net-
works were trained explicitly to predict acceptabil-
ity judgments (Lawrence et al., 1996; Allen and
Seidenberg, 1999); Post (2011) likewise trained a
classifier on top of a parser to predict grammatical-
ity. Warstadt et al. (2018) use a transfer learning
approach, where an unsupervised model is fine-
tuned on acceptability prediction. Our work dif-
fers from those studies in that we do not advocate
providing any explicit grammaticality signal to the
LM at any point (‘“no negative evidence”).

Syntax in LMs: There have been several pro-
posals over the years to incorporate explicit syn-
tax into LMs to overcome the inability of n-gram
LMs to model long-distance dependencies (Juraf-
sky et al., 1995; Roark, 2001; Pauls and Klein,
2012). While RNN language models can in prin-
ciple model longer dependencies (Mikolov et al.,
2010; Linzen et al., 2016), in practice it can still be
beneficial to inject syntax into the model. This can
be done by combining it with a supervised parser
(Dyer et al., 2016) or other multi-task learning ob-
jectives (Enguehard et al., 2017). Our work is or-
thogonal to this area of research, but can be seen
as providing a potential opportunity to underscore
the advantage of such syntax-infused models.

4 Data set composition

This section describes all of the types of sentence
pairs included in our data set, which include exam-
ples of subject-verb agreement (Sections 4.1 and
4.2), reflexive anaphoras (Section 4.3) and nega-
tive polarity items (Section 4.4).
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4.1 Subject-verb agreement

Determining the correct number of the verb is triv-
ial in examples such as (1) above, in which the
sentence only contains a single noun. By contrast,
in cases where there are multiple nouns in the sen-
tence, identifying which of them is the subject of a
given verb requires understanding the structure of
the sentence. In particular, the relevant subject is
not necessarily the first noun of the sentence:

(4) Agreement in a sentential complement:

a. The bankers knew the officer smiles.
b. *The bankers knew the officer smile.

Here the verb smiles needs to agree with the em-
bedded subject officer rather than the main clause
subject bankers. The subject is also not necessar-
ily the most recent noun before the verb: when
the subject is modified by a phrase, a distracting
noun (“attractor”) often intervenes in the linear or-
der of the sentence between the head of the subject
and the verb. Two examples of such modifiers are
prepositional phrases and relative clauses (RCs):

(5) Agreement across a prepositional phrase:

a. The farmer near the parents smiles.
b. *The farmer near the parents smile.

(6) Agreement across a subject relative clause:

a. The officers that love the skater smile.
b. *The officers that love the skater smiles.

We include all four possible configurations of
noun number for each type of minimal pair;
for (5), these would be:*

(7) a. The farmer near the parent smiles/*smile.
b. The farmer near the parents smiles/*smile.
c. The farmers near the parent smile/*smiles.
d. The farmers near the  parents
smile/*smiles.

Sentences where the two nouns conflict in num-
ber are expected to be more challenging, but in-
terpretable errors may certainly occur even when
they do not. For example, the model may use
the heuristic that sentences with multiple nouns
are likely to have a plural verb (a heuristic that

*The slash notation indicates the word that differs be-

tween the grammatical and ungrammatical sentence; for ex-
ample, in (7a), the full sentence pair would be:

(1) a. The farmer near the parent smiles.
b. *The farmer near the parent smile.

would be effective for coordination); alternatively,
it might prefer singular verbs to plural ones regard-
less of whether the subject is singular or plural,
simply because the singular form of the verb is
more frequent.

Next, in verb phrase (VP) coordination, both of
the verbs need to agree with the subject:

(8) Short VP coordination:

a. The senator smiles and laughs.
b. *The senator smiles and laugh.

We had both singular and plural subjects. The
number of the verb immediately adjacent to the
subject was always grammatical. This problem
can in principle be solved with a trigram model
(smiles and laughs is likely to be a more frequent
trigram than smiles and laugh); to address this po-
tential concern, we also included a coordination
condition with a longer dependency:

(9) Long VP coordination:

The manager writes in a journal every day and
likes/*like to watch television shows.

4.2 Agreement and object relative clauses

We go into greater depth in object relative clauses,
which most clearly require a hierarchical represen-
tation. In (10) and (11), the model needs to be
able to distinguish the embedded subject (parents)
from the main clause subject (farmer) when mak-
ing its predictions:

(10) Agreement across an object relative clause:
a. The farmer that the parents love swims.
b. *The farmer that the parents love swim.

(11) Agreement in an object relative clause:

a. The farmer that the parents love swims.
b. *The farmer that the parents loves swims.

In keeping with the minimal pair approach, we
never introduce two agreement errors at the same
time: either the embedded verb or the main verb is
incorrectly inflected, but not both.

We include a number of variations on the pat-
tern in (11). First, we delete the relativizer that,
with the hypothesis that the absence of an overt
cue to structure will make the task more difficult:

(12) The farmer the parents love/*loves swims.

In another condition, we replace the main sub-
ject with an inanimate noun and keep the embed-
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ded subject animate. We base this manipulation
on human experimental work showing that sim-
ilar nouns (for example, two animate nouns) are
more likely to cause confusion during comprehen-
sion than dissimilar nouns, such as an animate and
an inanimate noun (Van Dyke, 2007):

(13) The movies that the author likes are/*is good.

For a complete list of all the types of minimal pairs
we include, see the Supplementary Materials.

4.3 Reflexive anaphora

A reflexive pronoun such as himself needs to have
an antecedent from which it derives its interpreta-
tion. The pronoun needs to agree in number (and
gender) with its antecedent:

(14) Simple reflexive:
a. The senators embarrassed themselves.
b. *The senators embarrassed herself.

There are structural conditions on the nouns to
which a reflexive pronoun can be bound. One of
these conditions requires the antecedent to be in
the same clause as the reflexive pronoun. For ex-
ample, (15b) cannot refer to a context in which the
pilot embarrassed the bankers:

(15) Reflexive in a sentential complement:

a. The bankers thought the pilot embar-
rassed himself.

b. *The bankers thought the pilot embar-
rassed themselves.

Likewise, in the following minimal pair, sentence
(16b) is ungrammatical, because the reflexive pro-
noun themselves, which is part of the main clause,
cannot be bound to the noun phrase the architects,
which is inside an embedded clause:

(16) Reflexive across an object relative clause:

a. The manager that the architects like
doubted himself.

b. *The manager that the architects like
doubted themselves.

4.4 Negative polarity items

Negative polarity items, introduced in example (2)
above, are words that (to a first approximation)
need to occur in the context of negation. Crucially
for the purposes of the present work, the scope
of negation is structurally defined. In particular

the negative noun phrase needs to c-command the
NPI: the syntactic non-terminal node that domi-
nates the negative noun phrase must also domi-
nate the NPI. This is the case in (17a), but not
in (17b), where the negative noun phrase is too
deep in the tree to c-command the NPI ever (Xiang
et al., 2009; Everaert et al., 2015).

(17) NPI across a relative clause:

a. No authors that the security guards like
have ever been famous.

b. *The authors that no security guards like
have ever been famous.

All of the nouns and verbs in the NPI cases were
plural. As in some of the agreement cases, we in-
cluded a variant of (17) in which the subject was
inanimate.

5 Experimental setup

To show how our challenge set can be used to eval-
uate the syntactic performance of LMs, we trained
three LMs with increasing levels of syntactic so-
phistication. All of the LMs were trained on a
90 million word subset of Wikipedia (Gulordava
et al., 2018). Our n-gram LM and LSTM LM do
not require annotated data. The third model is also
an LSTM LM, but it requires syntactically anno-
tated data (CCG supertags).

N-gram model: We trained a 5-gram model on
the same 90M word corpus using the SRILM
toolkit (Stolcke, 2002) which backs off to smaller
n-grams using Kneser-Ney smoothing.

Single-task RNN: The RNN LM had two layers
of 650 LSTM units, a batch size of 128, a dropout
rate of 0.2, and a learning rate of 20.0, and was
trained for 40 epochs (following the hyperparam-
eters of Gulordava et al. 2018).

Multi-task RNN: In multi-task learning, the
system is trained to optimize an objective func-
tion that combines the objective functions of sev-
eral tasks. We combine language modeling with
CCG supertagging, a task that predicts for each
word in the sentence its CCG supertag (Bangalore
and Joshi, 1999; Lewis et al., 2016). We sim-
ply sum the two objective functions with equal
weights (Enguehard et al., 2017). Early stopping
in this model is based on the combined loss on
language modeling and supertagging. Supertags
provide a large amount of syntactic information

1196



about the word; the sequence of supertags of a
sentence strongly constrains the possible parses of
the sentence. We use supertagging as a “scaffold”
task (Swayamdipta et al., 2017): our goal is not to
produce a competitive supertagger, but to induce
better syntactic representations, which would then
lead to improved language modeling. We used
CCG-Bank (Hockenmaier and Steedman, 2007) as
our CCG corpus.

Human evaluation: We designed a human ex-
periment on Amazon Mechanical Turk that mir-
rored the task that was given to the LMs: both ver-
sions of a minimal pair were shown on the screen
at the same time, and participants were asked to
judge which one of them was more acceptable (for
details, see the Supplementary Materials). We em-
phasize that we do not see human performance on
complex syntactic dependencies as setting an up-
per bound on the performance that we should ex-
pect from an LM. There is a rich literature showing
that humans make mistakes such as subject-verb
agreement errors; in fact, most of the phenomena
we test were inspired by work in psycholinguistics
that studies these errors (Bock and Miller, 1991;
Phillips et al., 2011). At the same time, while we
do not see a reason not to aspire for 100% accu-
racy, we are interested in comparing LM and hu-
man errors: if the errors are similar, the two sys-
tems may be using similar representations.

6 Results

Local agreement: The overall accuracy per
condition can be seen in Table 1. The n-gram
LM’s accuracy was only 79% for simple agree-
ment and agreement in a sentential complement,
both of which can be solved entirely using local
context. This is because not all subject and verb
combinations in our materials appeared verbatim
in the 90M word training corpus; for those combi-
nations, the model fell back on unigram probabili-
ties, which in this context amounts to selecting the
more frequent form of the verb.

Both RNNs performed much better than the
n-gram model on the simple agreement case
(single-task: 94%; multi-task: 100%), reflecting
these models’ ability to generalize beyond the spe-
cific bigrams that occurred in the corpus. Ac-
curacy on agreement in a sentential complement
was also very high (single-task: 99%; multi-task:
93%). This indicates that the RNNs do not rely on
the heuristic whereby the first noun of the sentence

is likely to be its subject. They did slightly worse
but still very well on short VP coordination (both
90%); this dependency is also local, albeit across
the word and.

Non-local agreement: The accuracy of the
n-gram model on non-local dependencies (long
VP coordination and agreement across a phrase
or a clause) was very close to 50%. This sug-
gests that local collocational information is not
useful in these conditions. The single-task RNN
also performed much more poorly on these con-
ditions than on the local agreement conditions,
though for the most part its accuracy was better
than chance. Humans did worse on these depen-
dencies as well, but their accuracy did not drop as
sharply as the RNNs’ (human accuracies ranged
from 82% to 88%). In most of these cases, multi-
task learning was very helpful; for example, accu-
racy in long VP coordination increased from 61%
to 81%. Still, both RNNs performed poorly on
agreement across an object RC, especially with-
out that, whereas humans performed comparably
on all non-local dependencies.

Agreement inside an object RC: This case is
particularly interesting, because this dependency
is purely local (see (11)), and the interference is
from the distant sentence-initial noun. Although
this configuration is similar to the sentential com-
plement case, performance was worse both in
RNNs and humans. However, RNNs performed
better than humans, at least when the sentence in-
cluded the overt relativizer that. This suggests that
interference is sensitive to proximity in RNNs but
to syntactic status in humans — humans appear to
be confusing the main clause subject and the em-
bedded subject (Wagers et al., 2009).

Reflexive anaphora: The RNNs’ performance
was significantly worse on simple reflexives (83%)
than on simple agreement (94%), and did not dif-
fer between the single-task and multi-task mod-
els. By contrast, human performance did not dif-
fer between subject-verb agreement and reflexive
anaphoras. The surprisingly poor performance for
this adjacent dependency seems to be due to an
asymmetry in accuracy between himself and them-
selves on the one hand (100% accuracy in the
multi-task RNN) and herself on the other hand
(49% accuracy).” Accuracy was very low for all

5This may be because himself and themselves are signifi-
cantly more frequent than herself, and consequently the num-
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RNN Multitask n-gram  Humans # sents
SUBJECT-VERB AGREEMENT:
Simple 0.94 1.00 0.79 0.96 280
In a sentential complement 0.99 0.93 0.79 0.93 3360
Short VP coordination 0.90 0.90 0.51 0.94 1680
Long VP coordination 0.61 0.81 0.50 0.82 800
Across a prepositional phrase 0.57 0.69 0.50 0.85 44800
Across a subject relative clause 0.56 0.74 0.50 0.88 22400
Across an object relative clause 0.50 0.57 0.50 0.85 44800
Across an object relative (no that) 0.52 0.52 0.50 0.82 44800
In an object relative clause 0.84 0.89 0.50 0.78 44800
In an object relative (no that) 0.71 0.81 0.50 0.79 44800
REFLEXIVE ANAPHORA:
Simple 0.83 0.86 0.50 0.96 560
In a sentential complement 0.86 0.83 0.50 0.91 6720
Across a relative clause 0.55 0.56 0.50 0.87 44800
NEGATIVE POLARITY ITEMS:
Simple 0.40 0.48 0.06 0.98 792
Across a relative clause 0.41 0.73 0.60 0.81 31680

Table 1: Overall accuracies for the LSTMs, n-gram model and humans on each test case.

pronouns in the structurally complex case in which
the dependency was across a relative clause (55%
compared to 87% in humans).

NPIs: The dependency in simple NPIs spans
only four words, so the n-gram model could in
principle capture it. In practice, the n-gram model
systematically selected the wrong answer, sug-
gesting that it backed off to comparing the bi-
grams no students and most students, the first of
which is presumably less frequent. Surprisingly,
the n-gram model’s accuracy was higher than 50%
on NPIs across a relative clause, a dependency that
spans more than five words. In this case, the bi-
grams that the and the chef (for example) happen
to be more frequent than the that no and no chef.
This difference was apparently strong enough to
make up for the low-frequency bigram at the start
of the sentence.

The RNNs did poorly on this task. The accu-
racy of the single-task model was around 40%.
The multi-task did somewhat better on the simple
NPIs (48%) and much better on the NPIs across a
relative clause (73%). At the same time, an exam-
ination of the plot of log probability of each word
in a sentence (Figure A.l in the Supplementary
Materials) suggests that the single-task RNN is in

ber representation learned for herself was not robust. An-
other possibility is that gender bias reduces the probability
of an anaphoric relation between herself and words such as
surgeon (Rudinger et al., 2018).

fact able to differentiate between the grammatical
and ungrammatical sentences when it reaches the
NPI, but this difference does not offset the overall
probability advantage of the ungrammatical sen-
tence (which is likely due to non-grammatical col-
locational factors). In any case, the fact that the
n-gram baseline did not perform at chance sug-
gests that there are non-syntactic cues to this task,
complicating the interpretation of the performance
of other LMs.

Perplexity: The perplexity of the n-gram model
on the Wikipedia test data was 157.5, much higher
than the perplexity of the single-task RNN (78.65)
and the multi-task RNN (61.10). In other words,
perplexity tracked accuracy on our syntactic data
set — an unsatisfying outcome given our goal of
dissociating perplexity and our syntactic evalua-
tion method, but an expected one given that each
model was conditioned on richer information than
the previous one. In previous work, perplexity and
syntactic judgment accuracy have been found to
be partly dissociable (Kuncoro et al., 2018; Tran
et al., 2018).

Lexical variation and frequency: There was
considerable lexical variation in the results; we
have mentioned the surprising asymmetry be-
tween himself and herself above. As another
case study, we examine variation in the results
of the simple agreement condition in the single-
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Main
subject

Embedded Single-task Multi-task Humans

subject

Example sentence

Across an objective relative clause:

Singular  Singular 0.83 0.77 0.96 The author that the minister likes laughs/*laugh.
Singular  Plural 0.51 0.30 0.90 The author that the ministers like laughs/*laugh.
Plural Singular 0.18 0.53 0.77 The authors that the minister likes laugh/*laughs.
Plural Plural 0.50 0.73 0.80 The authors that the ministers like laugh/*laughs.
Within an objective relative clause:

Singular  Singular 0.73 0.92 0.94 The author that the minister likes/*like laughs.
Singular  Plural 0.91 0.81 0.72 The author that the ministers like/*likes laugh.
Plural Singular 0.81 0.97 0.73 The authors that the minister likes/*like laugh.
Plural Plural 0.87 0.84 0.76 The authors that the ministers like/*likes laugh.

Table 2: Accuracy within and across an object relative clause (only in the cases in which the main subject was

animate and the relativizer that was present). The subject that the verb is expected to agree with is underlined.

task RNN. Accuracy varied by verb, ranging from
is and are, which had 100% accuracy, to swims,
where accuracy was only 60% (recall that average
accuracy was 94%). This may be a frequency ef-
fect: either the LM is learning less robust number
representations for infrequent verbs, or the tail of
the distribution over the vocabulary is more frag-
ile during word prediction. Pauls and Klein (2012)
propose normalizing for unigram frequency when
deriving acceptability judgments from an LM. Our
preliminary experiments with this method did not
significantly improve overall performance; regard-
less of the effectiveness of this method, such cor-
rections should arguably not be necessary in an
LM that adequately captures grammaticality.

7 Case study: agreement and object
relative clauses

The overall results in Table 1 were averaged over
all of the possible number configurations within
each condition. In this section, we take a closer
look at agreement in sentences with an object RC
(see Table 2). This kind of finer-grained analy-
sis helps explain the cases in which the LMs are
failing, and might reveal some of the patterns or
heuristics the LMs are using.

Performance in agreement across an object RC
was poor. Both RNNs made attraction errors: they
often preferred the verb that agreed in number with
the irrelevant embedded subject to the verb that
agreed with the correct main subject. The multi-
task RNN showed greater symmetry between the
simpler singular/singular and plural/plural cases,
whereas the single-task RNN performed poorly
even in these cases, often preferring a singular

verb when both subjects were plural. This default
preference for singular verbs matches the behavior
of younger children (Franck et al., 2004).

Performance in agreement within an object RC
was better; still, the single-task RNN made the
most errors when both subjects were singular, per-
haps due to a heuristic in which a sentence with
multiple subjects is likely to have a plural verb (as
in coordination sentences). By contrast, the multi-
task model seemed to have a general bias towards
singular subjects in this condition. Incidentally,
the human results with object RCs were also unex-
pected: while attraction errors when the two sub-
jects differ in number are to be expected (Wagers
et al., 2009), our participants made a sizable num-
ber of errors even when both subjects were plural.

Despite the generally poor performance in ob-
ject RCs, Figures A.2 and A.3 in the Supple-
mentary Materials show that the single-task RNN
is typically assigning a higher probability to the
grammatical word of a minimal pair than to the
ungrammatical word.

8 Discussion

We have described a template-based data set for
targeted syntactic evaluation of language models.
The data set consists of pairs of sentences that are
matched except for their grammaticality; we con-
sider a language model to capture the relevant as-
pects of the grammar of the language if it assigns
a higher probability to the grammatical sentence
than to the ungrammatical one.

An RNN language model performed very well
on local subject-verb agreement dependencies,
significantly outperforming an n-gram baseline.
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This suggests that the task is a viable evalua-
tion strategy. Even on simple cases, however,
the RNN’s accuracy was sensitive to the partic-
ular lexical items that occurred in the sentence;
this would not be expected if its syntactic repre-
sentations were fully abstract. The RNN’s per-
formance degraded markedly on non-local depen-
dencies, approaching chance levels on agreement
across an object relative clause. Multi-task train-
ing with a syntactic objective (CCG supertagging)
mitigated this drop in performance for some but
not all of the dependencies we tested. We con-
jecture that the benefits of the inductive bias con-
ferred by multi-task learning will be amplified
when the amount of training data is limited.

Our results contrast with the results of Gulor-
dava et al. (2018), who obtained a prediction accu-
racy of 81% on English sentences from their test
corpus and 74% on constructed sentences modeled
after sentences from the corpus. It is likely that our
sentences are more syntactically challenging than
the ones they were able to find in the relatively
small manually annotated treebank they used.

One limitation of our approach is that it is not
always clear what constitutes a minimal grammati-
cality contrast. In the subject-verb agreement case,
the contrast was clear: the two present-tense forms
of the verb, e.g., laugh vs. laughs. Our NPI ma-
nipulations, on the other hand, were less success-
ful: the members of the contrasts differed not only
in their syntactic structure but also in low-level
n-gram probabilities, making the performance on
this particular contrast harder to interpret.

We emphasize that the goal of this article was
not to advocate for LSTMs in particular as an ef-
fective architecture for modeling syntax; indeed,
our results show that LSTM language models are
far from matching naive annotators’ performance
on this task, let alone performing at 100% accu-
racy. We hope that our data set, and future ex-
tensions to other phenomena and languages, will
make it possible to measure progress in syntactic
language modeling and will lead to better under-
standing of the syntactic generalizations captured
by language models.
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