Translating a Math Word Problem to a Expression Tree
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Abstract

Sequence-to-sequence (SEQ2SEQ) models
have been successfully applied to automatic
math word problem solving. Despite its
simplicity, a drawback still remains: a math
word problem can be correctly solved by more
than one equations. This non-deterministic
transduction harms the performance of max-
imum likelihood estimation. In this paper,
by considering the uniqueness of expression
tree, we propose an equation normalization
method to normalize the duplicated equations.
Moreover, we analyze the performance
of three popular SEQ2SEQ models on the
math word problem solving. We find that
each model has its own specialty in solving
problems, consequently an ensemble model is
then proposed to combine their advantages.
Experiments on dataset Math23K show that
the ensemble model with equation normal-
ization significantly outperforms the previous
state-of-the-art methods.

1 Introduction

Developing computer systems to automatically
solve math word problems (MWPs) has been an
interest of NLP researchers since 1963 (Feigen-
baum et al., 1963; Bobrow, 1964). A typical
MWP is shown in Table 1. Readers are asked
to infer how many pens and pencils Jessica have
in total, based on the textual problem descrip-
tion provided. Statistical machine learning-based
methods (Kushman et al., 2014; Amnueyporn-
sakul and Bhat, 2014; Zhou et al., 2015; Mitra and
Baral, 2016; Roy and Roth, 2018) and semantic
parsing-based methods (Shi et al., 2015; Koncel-
Kedziorski et al., 2015; Roy and Roth, 2015;
Huang et al., 2017) are proposed to tackle this
problem, yet they still require considerable manual
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Problem: Dan has 5 pens and 3 pencils, Jes-
sica has 4 more pens and 2 less pencils than
him. How many pens and pencils does Jessica
have in total?

Equation: x =5+4+43 —2;

Solution: 10

Table 1: A math word problem

efforts on feature or template designing. For more
literatures about solving math word problems au-
tomatically, refer to a recent survey paper Zhang
et al. (2018).

Recently, the Deep Neural Networks (DNNs)
have opened a new direction towards automatic
MWP solving. Ling et al. (2017) take multiple-
choice problems as input and automatically gener-
ate rationale text and the final choice. Wang et al.
(2018) then make the first attempt of applying
deep reinforcement learning to arithmetic word
problem solving. Wang et al. (2017) train a deep
neural solver (DNS) that needs no hand-crafted
features, using the SEQ2SEQ model to automati-
cally learn the problem-to-equation mapping.

Although promising results have been reported,
the model in (Wang et al., 2017) still suffers from
an equation duplication problem: a MWP can be
solved by multiple equations. Taking the prob-
lem in Table 1 as an example, it can be solved by
various equations such as x = 5 +4 4+ 3 — 2,
r=4+(5—-2)+3andx =5—2+ 3+ 4. This
duplication problem results in a non-deterministic
output space, which has a negative impact on the
performance of most data-driven methods. In this
paper, by considering the uniqueness of expres-
sion tree, we propose an equation normalization
method to solve this problem.

Given the success of different SEQ2SEQ mod-
els on machine translation (such as recurrent
encoder-decoder (Wu et al., 2016), Convolutional
SEQ2SEQ model (Gehring et al., 2017) and Trans-
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former (Vaswani et al., 2017)), it is promising to
adapt them to MWP solving. In this paper, we
compare the performance of three state-of-the-art
SEQ2SEQ models on MWP solving. We observe
that different models are able to correctly solve
different MWPs, therefore, as a matter of course,
an ensemble model is proposed to achieve higher
performance. Experiments on dataset Math23K
show that by adopting the equation normaliza-
tion and model ensemble techniques, the accuracy
boosts from 60.7% to 68.4%.

The remaining part of this paper is organized as
follows: we first introduce the SEQ2SEQ Frame-
work in Section 2. Then the equation normaliza-
tion process is presented in Section 3, following
which three SEQ2SEQ models and an ensemble
model are applied to MWP solving in Section 4.
The experimental results are presented in Section
5. Finally we conclude this paper in Section 6.

2 SEQ2SEQ Framework

The process of using SEQ2SEQ model to solve
MWPs can be divided into two stages (Wang et al.,
2017). In the first stage (number mapping stage),
significant numbers (numbers that will be used in
real calculation) in problem P are mapped to a list
of number tokens {ni,...,nm,} by their natural
order in the problem text. Throughout this paper,
we use the significant number identification (SNI)
module proposed in (Wang et al., 2017) to iden-
tify whether a number is significant. In the second
stage, SEQ2SEQ models can be trained by taking
the problem text as the source sequence and equa-
tion templates (equations after number mapping)
as the target sequence.

Taking the problem P in Table 1 as an example,
first we can obtain a number mapping M : {n; =
5, ng =3; ng =4; ng = 2;}, and trans-
form the given equation Ep : z =5+4+44+3—2to
an equation template Tp : * = ny +nz +ng — ny.
During training, the objective of our SEQ2SEQ
model is to maximize the conditional probabil-
ity P(7},|P), which will be decomposed to token-
wise probabilities. During decoding, we use beam
search to approximate the most likely equation
template. After that, we replace the number tokens
with actual numbers and calculate the solution S
with a math solver.

3 Equation Normalization

In the number mapping stage, the equations Ep
have been successfully transformed to equation
templates Tp. However, due to the equation du-
plication problem introduced in Section 1, this
problem-equation templates formalization is a
non-deterministic transduction that will have ad-
verse effects on the performance of maximum
likelihood estimation. There are two types of
equation duplication: 1) order duplication such
as “nl + n3 + n2” and “nl + n2 + n3”, 2)
bracket duplication such as “n; + ng — no” and
“nl+ (ng —n2)”.

To normalize the order-duplicated templates,
we define two normalization rules:

e Rule 1: Two duplicated equation templates
with unequal length should be normalized to
the shorter one. For example, two equation
templates “ny + no + nz +nz —n3”, “n; +
no + ng” should be normalized to the latter
one.

e Rule 2: The number tokens in equation tem-
plates should be ordered as close as possible
to their order in number mapping. For exam-
ple, three equation templates “ni + n3 +ns”,
“n1 + n9 + ng” and “ng + ny + ng” should
be normalized to “ni + ng + n3”.

To solve the bracket duplication problem, we
further normalize the equation templates to an ex-
pression tree. Every inner node in the expres-
sion tree is an operator with two children, while
each leaf node is expected to be a number to-
ken. An example of expressing equation template
n1 + no + n3 — ny as the unique expression tree is
shown in Figure 1.

()

Figure 1: A Unique Expression Tree

After equation normalization, the SEQ2SEQ
models can solve MWPs by taking problem text
as source sequence and the postorder traversal of
an unique expression tree as target sequence, as
shown in Figure 2.
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Solution: [10]
Number mapping:
{n=5, n,=3, n;=4, n;=2}
Model output (Postorder

Traversal of an eauation tree):
X = - ny

rr 1 f

x=nn,tn;tn

Decoding Decoder: LSTM / Convolution /Self-attention ‘
ﬁ Attention
i
Encoding: Encoder: BiLSTM /Convolution /Self-attention
Embedding: @@ 00 @0 00 T @0 00 @0 T (D)
Dan have total ?

Model input (Problem text after number mapping): Dan has »,
pens and 7, pencils, Jessica has n; more pens and n, less pencils
than him. How many pens and pencils does Jessica have in total?

Figure 2: Framework of SEQ2SEQ models

4 Models

In this section, we present three types of SEQ2SEQ
models to solve MWPs: bidirectional Long Short
Term Memory network (BiLSTM) (Wu et al.,
2016), Convolutional SEQ2SEQ model (Gehring
et al.,, 2017), and Transformer (Vaswani et al.,
2017). To benefit the output accuracy with all
three architectures, we propose to use a simple en-
semble method.

4.1 BiLSTM

The BiLSTM model uses two LSTMs (forward
and backward) to learn the representation of each
token in the sequence based on both the past and
the future context of the token. At each time step
of decoding, the deocder uses a global attention
mechanism to read those representations.

In more detail, we use two-layer Bi-LSTM cells
with 256 hidden units as encoder, and two lay-
ers LSTM cells with 512 hidden units as decoder.
In addition, we use Adam optimizer with learning
rate le 73, 81 = 0.9, and B> = 0.99. The epochs,
minibatch size, and dropout rate are set to 100, 64,
and 0.5, respectively.

4.2 ConvS2S

ConvS2S (Gehring et al., 2017) uses a convolu-
tional architecture instead of RNNs. Both encoder
and decoder share the same convolutional struc-
ture that uses n kernels striding from one side
to the other, and uses gate linear units as non-
linearity activations over the output of convolu-
tion.

Our ConvS2S model adopts a four layers en-
coder and a three layers decoder, both using ker-
nels of width 3 and hidden size 256. We adopt
early stopping and learning rate annealing and set
max-epochs equals to 100.

4.3 Transformer

Vaswani et al. (2017) proposed the Transformer
based on an attention mechanism without rely-
ing on any convolutional or recurrent architecture.
Both encoder and decoder are composed of a stack
of identical layers. Each layer contains two parts:
a multi-head self-attention module and a position-
wise fully-connected feed-forward network.

Our transformer is four layers deep, with
Nhead = 16, dk = 12, dv = 32, and dmodel = 512,
where 7peqq 18 the number of heads of its self-
attention, dj, is the dimension of keys, d,, is the di-
mension of values, and d,,,4e; is the output dimen-
sion of each sub-layer. In addition, we use Adam
optimizer with learning rate 1e 9, f; = 0.9, 32 =
0.99, and dropout rate of 0.3.

4.4 Ensemble Model

Through careful observation (detailed in Section
5.2), we find that each model has a speciality in
solving problems. Therefore, we propose an en-
semble model which selects the result according
to models’ generation probability:

T

p(y) = [ [ p(vely<t, %)

t=1

where y = {y1, ..., yr} is the target sequence, and
x = {x1,...,xg} is the source sequence. Finally,
the output of the model with the highest generation
probability is selected as the final output.

5 Experiment

In this section, we conduct experiments on dataset
Math23K to examine the performance of differ-
ent SEQ2SEQ models. Our main experimental
result is to show a significant improvement over
the baseline methods. We further conduct a case
study to analyze why different SEQ2SEQ models
can solve different kinds of MWPs.

Dataset: Math23K' collected by Wang et al.
(2017) contains 23,162 labeled MWPs. All these

"https://ai.tencent.com/ailab/Deep_
Neural_Solver_for Math Word Problems.
html
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Acc w/o EN (%) | Acc w/ EN (%)
DNS 58.1 60.7
Bi-LSTM 59.6 66.7
ConvS2S 61.5 64.2
Transformer 59.0 62.3
Ensemble 66.4 68.4

Table 2: Model comparison. EN is short for equation
normalization

Bi-LSTM | Transformer | ConvS2S
w/o EN 59.6 59.0 61.5
+ SE 63.1 59.9 62.2
+ OE 63.7 60.7 62.9
+ EB 65.3 61.2 62.9

Table 3: The ablation study of three equation normal-
ization methods. SE is the first Rule mentioned in Sec-
tion 3. OE is the second rule mentioned in Section 3.
EB means eliminating the brackets.

problems are linear algebra questions with only
one unknown variable.

Baselines: We compare our methods with two
baselines: DNS and DNS-Hybrid. Both of them
are proposed in (Wang et al., 2017), with state-
of-the-art performance on dataset Math23K. The
DNS is a vanilla SEQ2SEQ model that adopts
GRU (Chung et al., 2014) as encoder and LSTM
as decoder. The DNS-Hybrid is a hybrid model
that combines DNS and a retrieval-based solver to
achieve better performance.

5.1 Results

In experiments, we use the testing set in Math23K
as the test set, and randomly split 1, 000 prob-
lems from the training set as validation set. Eval-
uation results are summarized in Table 2. First,
to examine the effectiveness of equation nor-
malization, model performance with and with-
out equation normalization are compared. Then
the performance of DNS, DNS-Hybrid, Bi-LSTM,
ConvS2S, Transformer, and Ensemble model are
examined on the dataset.

Several observations can be made from the re-
sults. First, the equation normalization process
significantly improves the performance of each
model. The accuracy of different models gain
increases from 2.7% to 7.1% after equation nor-
malization. Second, Bi-LSTM, ConvS2S, Trans-
former can achieve much higher performance than
DNS, which means that popular machine transla-
tion models are also efficient in automatic MWP

solving. Third, by combining the SEQ2SEQ mod-
els, our ensemble model gains additional 1.7% in-
crease on accuracy.

In addition, we have further conducted three ex-
tra experiments to disentangle the benefits of three
different EN techniques. Table 3 gives the details
of the ablation study of the three SEQ2SEQ mod-
els. Taking Bi-LSTM as an example, accuracies of
rule 1 (SE), rule 2 (OE) and eliminating brackets
(EB) are 63.1%, 63.7% and 65.3%, respectively.
Obviously, the performance of SEQ2ESQ models
benefits from the equation normalization technolo-
gies.

5.2 Case Study

Further, we conduct a case analysis on the capa-
bility of different SEQ2SEQ models and provide
three examples in Table 4. Our analysis is summa-
rized as follows: 1) Transformer occasionally gen-
erates mathematically incorrect templates, while
Bi-LSTM and ConvS2S almost do not, as shown
in Example 1. This is probably because the size
of training data is still not enough to train the
multi-head self-attention structures; 2) In Exam-
ple 2, the Transformer is adapted to solve prob-
lems that require complex inference. It is mainly
because different heads in a self-attention structure
can model various types of relationships between
number tokens; 3) The multi-layer convolutional
block structure in ConvS2S can properly process
the context information of number tokens. In Ex-
ample 3, it is the only one that captures the rela-
tionship between stamp A and stamp B.

6 Conclusion

In this paper, we first propose an equation normal-
ization method that normalizes duplicated equa-
tion templates to an expression tree. We test dif-
ferent SEQ2SEQ models on MWP solving and pro-
pose an ensemble model to achieve higher per-
formance. Experimental results demonstrate that
the proposed equation normalization method and
the ensemble model can significantly improve the
state-of-the-art methods.
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Example 1: Two biological groups have produced 690 (n;) butterfly specimens in 15 (n2) days.
The first group produced 20 (n3) each day. How many did the second group produced each day?
Bi-LSTM: niny/n3—; (correct) ConvS2S: nons + ny*; (error)  Transformer: naoninsns+;
(error)

Example 2: A plane, in a speed of 500 (n1) km/h, costs 3 (n2) hours traveling from city A to city
B. It only costs 2 (n3) hours for return. How much is the average speed of the plane during this
round-trip?

Bi-LSTM: njngy * nax; (error) ConvS2S: 11 + 1ng/1ny/ + /; (error) Transformer: nqing x
ns * nang + /; (correct)

Example 3: Stamp A is 2 (n1) paise denomination, and stamp B is 7 (n2) paise denomination.
If we are asked to buy 10 (n3) of each, how much more does it cost to buy stamps A than to buy
stamps B.

Bi-LSTM: ninong x —; (error) ConvS2S: ning * nong * —; (correct) Transformer: nong x

nong * —; (error)

Table 4: Three examples of solving MWP with SEQ2SEQ model. Note that the results are postorder traversal of
expression trees, and the problems are translated to English for brevity.
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