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Abstract

Detecting events and classifying them into pre-
defined types is an important step in knowl-
edge extraction from natural language texts.
While the neural network models have gen-
erally led the state-of-the-art, the differences
in performance between different architec-
tures have not been rigorously studied. In
this paper we present a novel GRU-based
model that combines syntactic information
along with temporal structure through an at-
tention mechanism. We show that it is compet-
itive with other neural network architectures
through empirical evaluations under different
random initializations and training-validation-
test splits of ACE2005 dataset.

1 Introduction

Events are the lingua franca of news stories and
narratives and describe important changes of state
in the world. Identifying events and classifying
them into different types is a challenging aspect of
understanding text. This paper focuses on the task
of event detection, which includes identifying the
“trigger” words that indicate events and classify-
ing the events into refined types. Event detection is
the necessary first step in inferring more semantic
information about the events including extracting
the arguments of events and recognizing temporal
and causal relationships between different events.

Neural network models have been the most suc-
cessful methods for event detection. However,
most current models ignore the syntactic relation-
ships in the text. One of the main contributions of
our work is a new DAG-GRU architecture (Chung
et al., 2014) that captures the context and syntac-
tic information through a bidirectional reading of
the text with dependency parse relationships. This
generalizes the GRU model to operate on a graph
by novel use of an attention mechanism.

1Also associated with Oregon State University.

Following the long history of prior work on
event detection, ACE2005 is used for the precise
definition of the task and the data for the purposes
of evaluation. One of the challenges of the task
is the size and sparsity of this dataset. It con-
sists of 599 documents, which are broken into a
training, development, testing split of 529, 30, and
40 respectively. This split has become a de-facto
evaluation standard since (Li et al., 2013). Fur-
thermore, the test set is small and consists only
of newswire documents, when there are multiple
domains within ACE2005. These two factors lead
to a significant difference between the training and
testing event type distribution. Though some work
had been done comparing method across domains
(Nguyen and Grishman, 2015), variations in the
training/test split including all the domains has not
been studied. We evaluate the sensitivity of model
accuracy to changes in training and test set splits
through a randomized study.

Given the limited amount of training data in
comparison to other datasets used by neural net-
work models, and the narrow margin between
many high performance methods, the effect of the
initialization of these methods needs to be consid-
ered. In this paper, we conduct an empirical study
of the sensitivity of the system performance to the
model initialization.

Results show that our DAG-GRU method is
competitive with other state-of-the-art methods.
However, the performance of all methods is more
sensitive to the random model initialization than
expected. Importantly, the ranking of different
methods based on the performance on the standard
training-validation-test split is sometimes different
from the ranking based on the average over mul-
tiple splits, suggesting that the community should
move away from single split evaluations.
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2 Related Work

Event detection and extraction are well-studied
tasks with a long history of research.

Nguyen and Grishman (2015) used CNNs
to represent windows around candidate triggers.
Each word is represented by a concatenation of its
word and entity type embeddings with the distance
to candidate trigger. Global max-pooling summa-
rizes the CNN filter and the result is passed to a
linear classifier.

Nguyen and Grishman (2016) followed up with
a skip-gram based CNN model which allows the
filter to skip non-salient or otherwise unnecessary
words in the middle of word sequences.

Feng et al. (2016) combined a CNN, simi-
lar to (Nguyen and Grishman, 2015), with a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) to create a hybrid network. The output of
both networks was concatenated together and fed
to a linear model for final predictions.

Nguyen et al. (2016) uses a bidirectional gated
recurrent units (GRUs) for sentence level encod-
ing, and in conjunction with a memory network,
to jointly predict events and their arguments.

Liu et al. (2016) created a probablistic soft logic
model incorporating the semantic frames from
Framenet (Baker et al., 1998) in the form of ex-
tra training examples. Based on the intuition that
entity and argument information is important for
event detection, Liu et al. (2017) built an attention
model over annotated arguments and the context
surrounding event trigger candidates.

Liu et al. (2018) created a cross language atten-
tion model for event detection and used it for event
detection in both the English and Chinese portions
of the ACE2005 data.

Recently, Nguyen and Grishman (2018) used
graph-CNN (GCCN) where the convolutional fil-
ters are applied to syntactically dependent words
in addition to consecutive words. The addition of
the entity information into the network structure
produced the state-of-the-art CNN model.

Another neural network model that includes
syntactic dependency relationships is DAG-based
LSTM (Qian et al., 2018). It combines the syntac-
tic hidden vectors by weighted average and adds
them through a dependency gate to the output gate
of the LSTM model. To the best of our knowledge,
none of the neural models combine syntactic in-
formation with attention, which motivates our re-
search.

3 DAG GRU Model

Event detection is often framed as a multi-class
classification problem (Chen et al., 2015; Ghaeini
et al., 2016). The task is to predict the event
label for each word in the test documents, and
NIL if the word is not an event. A sentence is a
sequence of words x1 . . . xn, where each word is
represented by a k-length vector. The standard
GRU model works as follows:

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)
h̃t = tanh(Whxt + rt � Uhht−1 + bh)
ht = (1− zt)� ht−1 + zt � h̃t

The GRU model produces a hidden vector ht for
each word xt by combining its representation with
the previous hidden vector. Thus ht summarizes
both the word and its prior context.

Our proposed DAG-GRU model incorporates
syntactic information through dependency parse
relationships and is similar in spirit to (Nguyen
and Grishman, 2018) and (Qian et al., 2018).
However, unlike those methods, DAG-GRU uses
attention to combine syntactic and temporal infor-
mation. Rather than using an additional gate as
in (Qian et al., 2018), DAG-GRU creates a sin-
gle combined representation over previous hid-
den vectors and then applies the standard GRU
model. Each relationship is represented as an
edge, (t, t′, e), between words at index t and t′

with an edge type e. The standard GRU edges are
included as (t, t− 1, temporal).

Each dependency relationship may be between
any two words, which could produce a graph with
cycles. However, back-propagation through time
(Mozer, 1995) requires a directed acyclic graph
(DAG), Hence the sentence graph, consisting of
temporal and dependency edges E, is split into
two DAGs: a “forward” DAG Gf that consists of
only of edges (t, t′, e) where t′ < t and a corre-
sponding “backward” DAG Gb where t′ > t. The
dependency relation between t and t′ also includes
the parent-child orientation, e.g., nsubj-parent or
nsubj-child for a nsubj (subject) relation.

An attention mechanism is used to combine the
multiple hidden vectors. The matrix Dt is formed
at each word xt by collecting and transforming all
the previous hidden vectors coming into node t,
one per each edge type e. α gives the attention, a
distribution weighting importance over the edges.
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At least three members of a family in Indias northeastern state of Tripura were hacked to death by a tribal mob

nsubj

auxpass

tanh softmaxx dot tanh dot

Figure 1: The hidden state of “hacked” is a combination of previous output vectors. In this case, three vectors
are aggregated with DAG-GRU’s attention model. ht′′ , is included in the input for the attention model since it is
accessible through the “subj” dependency edge. ht′ is included twice because it is connected through a narrative
edge and a dependency edge with type “auxpass.” The input matrix is non-linearly transformed by Ua and tanh.
Next, wa determines the importance of each vector in Dt. Finally, the attention at is produced by tanh followed
by softmax then applied to Dt. The subject “members” would be distant under a standard RNN model, however
the DAG-GRU model can focus on this important connection via dependency edges and attention.

Finally, the combined hidden vector ha is created
by summing Dt weighted by attention.

DT
t = [tanh(Ueht′)|(t, t′, e) ∈ E]

α = softmax(tanh(Dtwa))

ha = DT
t α

However, having a set of parametersUe for each
edge type e is over-specific for small datasets. In-
stead a shared set of parameters Ua is used in con-
junction with an edge embedding ve.

DT
t = [tanh(Uaht′ ◦ ve)|(t, t′, e) ∈ E]

The edge type embedding ve is concatenated
with the hidden vector ht′ and then transformed
by the shared weights Ua. This limits the number
of parameters while flexibly weighting the differ-
ent edge types. The new combined hidden vector
ha is used instead of ht−1 in the GRU equations.

The model is run forward and backward with
the output concatenated, hc,t = hf,t � hb,t, for a
representation that includes the entire sentence’s
context and dependency relations. After applying
dropout (Srivastava et al., 2014) with 0.5 rate to
hc,t, a linear model with softmax is used to make
predictions for each word at index t.

4 Experiments

We use the ACE2005 dataset for evaluation. Each
word in each document is marked with one of

the thirty-three event types or Nil for non-triggers.
Several high-performance models were repro-
duced for comparison. Each is a good faith re-
production of the original with some adjustments
to level the playing field.

For word embeddings, Elmo was used to gen-
erate a fixed representation for every word in
ACE2005 (Peters et al., 2018). The three vectors
produced per word were concatenated together for
a single representation. We did not use entity type
embeddings for any method. The models were
trained to minimize the cross entropy loss with
Adam (Kingma and Ba, 2014) with L2 regulariza-
tion set at 0.0001. The learning rate was halved
every five epochs starting from 0.0005 for a max-
imum of 30 epochs or until convergence as deter-
mined by F1 score on the development set.

The same training method and word embed-
dings were used across all the methods. Based on
preliminary experiments, these settings resulted in
better performance than those originally specified.
However, notably both GRU (Nguyen et al., 2016)
and DAG-LSTM (Qian et al., 2018) were not used
as joint models. Further, the GRU implementation
did not use a memory network, instead we used
the final vectors from the forward and backward
pass concatenated to each timestep’s output for ad-
ditional context. For CNNs (Nguyen and Grish-
man, 2015) the number of filters was reduced to
50 per filter size. The CNN+LSTM (Feng et al.,
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Figure 2: A comparison of mean performance versus
number of parameters.

2016) model had no other modifications. DAG-
GRU used a hidden layer size of 128. Variant A of
the DAG-GRU model utilized the attention mech-
anism, while variant B used averaging, that is:

Dt =
1

|E(t)|
∑

(t′,e)∈E(t)

tanh(Uaht′ ◦ ve)

4.1 Effects of Random Initialization
Given that ACE2005 is small as far as neural net-
work models are concerned, the effect of the ran-
dom initialization of these models needs to be
studied. Although some methods include tests of
significance, the type of statistical test is often not
reported. Simple statistical significance tests, such
as the t-test, are not compatible with a single F1
score, instead the average of F1 scores should be
tested (Wang et al., 2015).

We reproduced and evaluated five different sys-
tems with different initializations to empirically
assess the effect of initialization. The experiments
were done on the standard ACE2005 split and
the aggregated results over 20 random seeds were
given in Table 1. The random initializations of the
models had a significant impact on their perfor-
mance. The variation was large enough that the
observed range of the F1 scores overlapped across
almost all the models. However the differences
in average performances of different methods, ex-
cept for CNN and DAG-LSTM, were significant
at p < 0.05 according to the t-test, not controlling
for multiple hypotheses.

Both the GRU (Nguyen et al., 2016) and CNN
(Nguyen and Grishman, 2015) models perform
well with their best scores being close to the re-
ported values. The CNN+LSTM model’s results
were significantly lower than the published val-
ues, though this method has the highest variation.
It is possible that there is some unknown factor
such as the preprocessing of the data that signifi-
cantly impacted the results or that the value is an
outlier. Likewise, the DAG-LSTM model under-
performed. However, the published results were

based on a joint event and argument extraction
model and probably benefited from the additional
entity and argument information.

DAG-GRU A consistently and significantly out-
performs the other methods in this comparison.
The best observed F1 score, 71.1%, for DAG-
GRU is close to the published state-of-the-art
scores of DAG-LSTM and GCNN at 71.9% and
71.4% respectively. With additional entity infor-
mation, GCNN achieves a score of 73.1%. Also,
the attention mechanism used in DAG-GRU A
shows a significant improvement over the averag-
ing method of DAG-GRU B. This indicates that
some syntactic links are more useful than others
and that the weighting attention applies is neces-
sary to utilize that syntactic information.

Another source of variation was the distribu-
tional differences between the development and
testing sets. Further, the testing set only include
newswire articles whereas the training and dev.
sets contain informal writing such as web log
(WL) documents. The two sets have different pro-
portions of event types and each model saw at least
a 2% drop in performance between dev. and test
on average. At worst, the DAG-LSTM model’s
drop was 5.26%. This is a problem for model se-
lection, since the dev. score is used to choose the
best model, hyperparameters, or random initial-
ization. The distributional differences mean that
methods which outperform others on the dev. set
do not necessarily perform as well on the test set.
For example, DAG-GRU A performs worse that
DAG-GRU B on the dev. set, however it achieves
a higher mean score on the testing set.

One method of model selection over random
initializations is to train the model k times and
pick the best one based on the dev. score. Repeat-
ing this model selection procedure many times for
each model is prohibitively expensive, so the ex-
periment was approximated by bootstrapping the
twenty samples per model (Efron, 1992). For each
model, 5 dev. & test score pairs were sampled with
replacement from the twenty available pairs. The
initialization with the best dev. score was selected
and the corresponding test score was taken. This
model selection process of picking the best of 5
random samples was repeated 1000 times and the
results are shown in Table 2. This process did not
substantially increase the average performance be-
yond the results in Table 1, although it did reduce
the variance, except for the CNN model. It ap-
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Model Dev Mean Mean Min Max Std. Dev. Published
DAG-GRU A 70.3% 69.2%± 0.42 67.8% 71.1% 0.91% -
DAG-GRU B 71.2% 68.4%± 0.45 67.39% 70.53% 0.96% -
GRU 70.3% 68.0%± 0.42 66.4% 69.4% 0.86% 69.3%†
CNN+LSTM 69.6% 66.4%± 0.62 63.6% 68.1% 1.32% 73.4%
DAG-LSTM 70.5% 65.2%± 0.44 63.0% 66.8% 0.94% 71.9%†
CNN 68.5% 64.7%± 0.65 61.6% 67.2% 1.38% 67.6%

Table 1: The statistics of the 20 random initializations
experiment. † denotes results are from a joint event and
argument extraction model.

Model Dev Mean Mean Std. Dev.
DAG-GRU A 72.0% 69.2%± 0.04% 0.68%
DAG-GRU B 72.0% 67.9%± 0.04% 0.60%
GRU 71.5% 68.4%± 0.05% 0.80%
CNN+LSTM 70.8% 66.8%± 0.07% 1.08%
DAG-LSTM 70.4% 65.5%± 0.02% 0.40%
CNN 69.6% 65.4%± 0.09% 1.49%

Table 2: Bootstrap estimates on 1000 samples for each
model after model selection based on dev set scores.

pears that using the dev. score for model selection
is only marginally helpful.

4.2 Randomized Splits

In order to explore the effect of the training/testing
split popularized by (Li et al., 2013), a randomized
cross validation experiment was conducted. From
the set of 599 documents in ACE2005, 10 random
splits were created maintaining the same 529, 30,
40 document counts per split, training, develop-
ment, testing, respectively. This method was used
to evaluate the effect of the standard split, since
it maintains the same data proportions while only
varying the split. The results of the experiment are
found in Table 3.

The effect of the split is substantial. Almost
all models’ performance dropped except for DAG-
LSTM, however the variance increased across all
models. In the worst case, the standard deviation
increased threefold from 0.86% to 2.60% for the
GRU model. In fact, the increased variation of the
splits means that the confidence intervals for all
the models overlap. This aligns with cross domain
analysis, some domains such as WL are known to
be much more difficult than the newswire domain
which comprises all of the test data under the stan-
dard split (Nguyen and Grishman, 2015). Further,
the effect of the difference in splits also negates
the benefits of the attention mechanism of DAG-

Method Dev Mean Mean Min Max Std. Dev.
DAG-GRU A 71.4% 68.4%± 1.85% 65.7% 74.1% 2.59%
DAG-GRU B 70.9% 68.4%± 1.88% 64.19% 73.59 2.63%
DAG-LSTM 68.9% 67.3%± 1.43% 63.5% 70.7% 2.00%
GRU 69.8% 66.6%± 1.86% 62.5% 71.1% 2.60%
CNN+LSTM 69.8% 66.3%± 2.03% 60.1% 70.3% 2.83%
CNN 68.0% 65.4%± 1.59% 60.7% 69.2% 2.22%

Table 3: Average results on 10 randomized splits.

GRU A. This is likely due to the test partitions’
inclusion of WL and other kinds of informal writ-
ing. The syntactic links are much more likely to be
noisy for informal writing, reducing the syntactic
information’s usefulness and reliability.

All these sources of variation are greater than
most advances in event detection, so quantifying
and reporting this variation is essential when as-
sessing model performance. Further, understand-
ing this variation is important for reproducibility
and is necessary for making any valid claims about
a model’s relative effectiveness.

5 Conclusions

We introduced and evaluated a DAG-GRU model
along with four previous models in two different
settings, the standard ACE2005 split with mul-
tiple random initializations and the same dataset
with multiple random splits. These experiments
demonstrate that our model, which utilizes syntac-
tic information through an attention mechanism, is
competitive with the state-of-the-art. Further, they
show that there are several significant sources of
variation which had not been previously studied
and quantified. Studying and mitigating this vari-
ation could be of significant value by itself. At a
minimum, it suggests that the community should
move away from evaluations based on single ran-
dom initializations and single training-test splits.
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