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Abstract

Discourse segmentation, which segments texts
into Elementary Discourse Units, is a fun-
damental step in discourse analysis. Previ-
ous discourse segmenters rely on complicated
hand-crafted features and are not practical in
actual use. In this paper, we propose an end-
to-end neural segmenter based on BiLSTM-
CRF framework. To improve its accuracy, we
address the problem of data insufficiency by
transferring a word representation model that
is trained on a large corpus. We also propose
a restricted self-attention mechanism in order
to capture useful information within a neigh-
borhood. Experiments on the RST-DT corpus
show that our model is significantly faster than
previous methods, while achieving new state-
of-the-art performance. 1

1 Introduction

Discourse segmentation, which divides text into
proper discourse units, is one of the fundamen-
tal tasks in natural language processing. Accord-
ing to Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), a complex text is com-
posed of non-overlapping Elementary Discourse
Units (EDUs), as shown in Table 1. Segment-
ing text into such discourse units is a key step in
discourse analysis (Marcu, 2000) and can benefit
many downstream tasks, such as sentence com-
pression (Sporleder and Lapata, 2005) or docu-
ment summarization (Li et al., 2016).

Since EDUs are initially designed to be deter-
mined with lexical and syntactic clues (Carlson
et al., 2001), existing methods for discourse seg-
mentation usually design hand-crafted features to
capture these clues (Feng and Hirst, 2014). Es-
pecially, nearly all previous methods rely on syn-
tactic parse trees to achieve good performance.

1Our code is available at https://github.com/
PKU-TANGENT/NeuralEDUSeg

[Mr. Rambo says]e1 [that a 3.2-acre prop-
erty]e2 [overlooking the San Fernando Val-
ley]e3 [is priced at $4 million]e4 [because the
late actor Erroll Flynn once lived there.]e5

Table 1: A sentence that is segmented into five EDUs

But extracting such features usually takes a long
time, which contradicts the fundamental role of
discourse segmentation and hinders its actual use.
Considering the great success of deep learning on
many NLP tasks (Lu and Li, 2016), it’s a natural
idea for us to design an end-to-end neural model
that can segment texts fast and accurately.

The first challenge of applying neural methods
to discourse segmentation is data insufficiency.
Due to the limited size of labeled data in exist-
ing corpus (Carlson et al., 2001), it’s quite hard to
train a data-hungry neural model without any prior
knowledge. In fact, some traditional features, such
as the POS tags or parse trees, naturally provide
strong signals for identifying EDUs. Removing
them definitely increases the difficulty of learning
an accurate model. Secondly, many EDU bound-
aries are actually not determined locally. For ex-
ample, to recognize the boundary between e3 and
e4 in Table 1, our model has to be aware that e3 is
an embedded clauses starting from “overlooking”,
otherwise it could regard “San Fernando Valley”
as the subject of e4. Such kind of long-distance
dependency can be precisely extracted from parse
trees but is difficult for neural models to capture.

To address these challenges, in this paper, we
propose a neural discourse segmenter based on
the BiLSTM-CRF (Huang et al., 2015) framework
and further improve it from two aspects. Firstly,
since the discourse segmentation corpus is too
small to learn precise word representations, we
transfer a word representation model trained on a
large corpus into our task, and show that this trans-

https://github.com/PKU-TANGENT/NeuralEDUSeg
https://github.com/PKU-TANGENT/NeuralEDUSeg
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ferred model can provide very useful information
for our task. Secondly, in order to model long-
distance dependency, we employ the self-attention
mechanism (Vaswani et al., 2017) when encoding
the text. Different from previous self-attention,
we restrict the attention area to a neighborhood of
fixed size. The motivation is that effective infor-
mation for determining the boundaries is usually
collected from adjacent EDUs, while the whole
text may contain many disturbing words, which
could mislead the model into incorrect decisions.
In summary, the contributions of this work are as
follows:

• Our neural discourse segmentation model
doesn’t rely on any syntactic features, while it
can outperform other state-of-the-art systems
and achieve significant speedup.

• To our knowledge, we are the first to trans-
fer word representations learned from large
corpus into discourse segmentation task and
show that they can significantly alleviate the
data insufficiency problem.

• Based on the nature of discourse segmenta-
tion, we propose a restricted attention mech-
anism , which enables the model to capture
useful information within a neighborhood but
ignore unnecessary faraway noises.

2 Neural Discourse Segmentation Model

We model discourse segmentation as a sequence
labeling task, where the start word of each EDU
(except the first EDU) is supposed to be labeled as
1 and other words are labeled as 0. Figure 1 gives
an overview of our segmentation model. We will
introduce the BiLSTM-CRF framework in Section
2.1, and describe the two key components of our
model in Section 2.2, 2.3.

2.1 BiLSTM-CRF for Sequence Labeling

Conditional Random Fields (CRF) (Lafferty et al.,
2001) is an effective method to sequence labeling
problem and has been widely used in many NLP
tasks (Sutton and McCallum, 2012). To approach
our discourse segmentation task in a neural way,
we adopt the BiLSTM-CRF model (Huang et al.,
2015) as the framework of our system. Formally,
given an input sentence x = {xt}nt=1, we first em-
bed each word into a vector et. Then these word
embeddings are fed into a bi-directional LSTM
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Figure 1: Overview of our model for discourse segmen-
tation

layer to model the sequential information:

ht = BiLSTM(ht−1, et) (1)

where ht is the concatenation of the hidden states
from both forward and backward LSTMs. After
encoding this sentence, we make labeling deci-
sions for each word. Instead of modeling the deci-
sions independently, the CRF layer computes the
conditional probability p(y|h;W,b) over all pos-
sible label sequences y given h as follows:

p(y|h;W,b) =

∏n
i=1 ψi(yi−1, yi,h)∑

y′∈Y

∏n
i=1 ψi(y′i−1, y

′
i,h)

(2)

where ψi(yi−1, yi,h) = exp(wThi + b) is the po-
tential function and Y is the set of possible label
sequences. The training objective is to maximize
the conditional likelihood of the golden label se-
quence. During testing, we search for the label
sequence with the highest conditional probability.

2.2 Transferring Representations Learned
from Large Corpus

Due to the large parameter space, neural models
usually require much more training data in order
to achieve good performance. However, to the best
of our knowledge, nearly all existing discourse
segmentation corpora are limited in size. After we
remove all the syntactic features, which has been
proven useful in many previous work (Bach et al.,
2012; Feng and Hirst, 2014; Joty et al., 2015), it’s
expected that our neural model will not achieve
very satisfying results.

To tackle this issue, we propose to leverage
model learned from other large datasets, aiming
that this transferred model has been well trained



964

to encode text and capture useful signals. Instead
of training the transferred model by ourselves, in
this paper, we adopt the ELMo word representa-
tions (Peters et al., 2018), which are derived from
a bidirectional language model (BiLM) trained on
one billion word benchmark corpus (Chelba et al.,
2014). Specifically, this BiLM has one charac-
ter convolution layer and two biLSTM layers, and
correspondingly there are three internal represen-
tations for each word xt, which are denoted as
{hLM

t,l }3l=1. Following (Peters et al., 2018), we
compute the ELMo representation rt for word xt
as follows:

rt = γLM
∑3

l=0
sLM
l hLM

t,l (3)

where sLM are normalized weights and γLM con-
trols the scaling of the entire ELMo vector. Then
we concatenate rt with the word embedding et,
and take them as the input of Equation (1).

2.3 Restricted Self-Attention

As we have introduced in Section 1, some EDU
boundaries rely on relatively long-distance sig-
nals to recognize, while normal LSTM model is
still weak at this. Recently, self-attention mecha-
nism, which relates different positions of a single
sequence, has been successfully applied to many
NLP tasks (Vaswani et al., 2017; Wang et al.,
2017) and shows its superiority in capturing long
dependency. However, we found that most bound-
aries are actually only influenced by nearby EDUs,
thereby forcing the model to attend to the whole
sequence will bring in unnecessary noises. There-
fore, we propose a restricted self-attention mech-
anism, which only collects information from a
fixed neighborhood. To do this, we first compute
the similarity between current word xi and each
nearby word xj within a window:

si,j = wT
attn[hi,hj ,hi � hj ] (4)

Then the attention vector ai is computed as a
weighted sum of nearby words:

αi,j =
esi,j∑K

k=−K esi,i+k
(5)

ai =
∑K

j=−K
αi,i+khi+k (6)

where hyper-parameter K is the window size.
This attention vector ai is then put into another

BiLSTM layer together with hi in order to fuse
the information:

h̃t = BiLSTM(h̃t−1, [ht,at]) (7)

We use h̃t as the new input to the CRF layer.

3 Experiments and Results

3.1 Dataset and Metrics
We conduct experiments on the RST Discourse
Treebank (RST-DT) (Carlson et al., 2001). The
original corpus contains 385 Wall Street Journal
articles from the Penn Treebank, which are di-
vided in to training set (347 articles, 6132 sen-
tences) and test set (38 articles, 991 sentences).
We randomly sample 34 (10%) articles from the
train set as validation set in order to tune the hyper-
parameters and only train our model on the re-
mained train set. We follow mainstream studies
(Soricut and Marcu, 2003; Joty et al., 2015) to
measure segmentation accuracy only with respect
to the intra-sentential segment boundaries, and we
report Precision (P), Recall (R) and F1-score (F1)
for segmentation performance.

3.2 Implementation Details
We tune all the hyper-parameters according to the
model performance on the separated validation
set. The 300-D Glove embeddings (Pennington
et al., 2014) are employed and kept fixed during
training. We use the AllenNLP toolkit (Gardner
et al., 2018) to compute the ELMo word represen-
tations. The hidden size of our model is set to be
200 and the batch size is 32. L2 regularization
is applied to trainable variables with its weight as
0.0001 and we use dropout between every two lay-
ers, where the dropout rate is 0.1. For model train-
ing, we employ the Adam algorithm (Kingma and
Ba, 2014) with its initial learning rate as 0.0001
and we clip the gradients to a maximal norm 5.0.
Exponential moving average is applied to all train-
able variables with a decay rate 0.9999. The win-
dow size K for restricted attention is set to be 5.

3.3 Performance
The results of our model and other competing sys-
tems on the test set of RST-DT are shown in Table
2. We compare our results against the following
systems: (1) SPADE (Soricut and Marcu, 2003)
is an early system using simple lexical and syn-
tactic features; (2) NNDS (Subba and Di Eugenio,
2007) uses a neural network classifier to do the
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Model Tree P(%) R(%) F1(%)
SPADE Gold 84.1 85.4 84.7
NNDS Gold 85.5 86.6 86.0

CRFSeg Gold 92.7 89.7 91.2
Reranking Gold 93.1 94.2 93.7
CRFSeg Stanford 91.0 87.2 89.0
CODRA BLLIP 88.0 92.3 90.1

Reranking Stanford 91.5 90.4 91.0
Two-Pass BLLIP 92.8 92.3 92.6

Our Model No 92.9 95.7 94.3
- Attention No 92.4 94.8 93.6

- ELMo No 87.9 84.5 86.2
- Both No 87.0 82.8 84.8
Human No 98.5 98.2 98.3

Table 2: Performance of our model and other systems
on the RST-DT test set 3

segmentation after extracting features; (3) CRF-
Seg (Hernault et al., 2010) is the first discourse
segmenter using CRF model; (4) CODRA (Joty
et al., 2015) uses fewer features and a simple lo-
gistic regression model to achieve impressive re-
sults; (5) Reranking (Bach et al., 2012) reranks
the N-best outputs of a base CRF segmenter; (6)
Two-Pass (Feng and Hirst, 2014) conducts a sec-
ond segmentation after extracting global features
from the first segmentation result. All these meth-
ods rely on tree features and we list their perfor-
mance given different parse trees, where Gold are
the trees extracted from the Penn Treebank (Prasad
et al., 2005), Stanford represents trees from the
Stanford parser (Klein and Manning, 2003) and
BLLIP represents those from the BLLIP parser
(Charniak and Johnson, 2005). It should be noted
that the results of SPADE and CRFSeg are taken
from Bach et al. (2012) since the original papers
adopt different evaluation metrics. All the other
results are taken from the corresponding original
papers.

From Table 2, we can see that our model
achieves state-of-the-art performance without ex-
tra parse trees. Especially, if no gold parse trees
are provided, our system outperforms other meth-
ods by more than 1.7 points in F1 score. Since the
gold parse trees are not available when processing
new sentences, this improvement becomes more
valuable when the system is put into use.

3In parallel with our work, Li et al. (2018) proposes an-
other neural model with its performance as: P-91.6, R-92.8,
F1-92.2. We didn’t see their paper at the time of submission,
but it’s worth mentioning here for the readers’ reference.

System Speed (Sents/s) Speedup
Two-Pass 1.39 1.0x
SPADE 3.78 2.7x

Ours (Batch=1) 9.09 6.5x
Ours (Batch=32) 76.23 54.8x

Table 3: Speed comparison with two open-sourced dis-
course segmenter

To further explore the influence of different
components in our model, we also report the re-
sults of ablation experiments in Table 2. We can
see that the transferred ELMo representations pro-
vide the most significant improvement. This ac-
cords with our assumption that the RST-DT cor-
pus itself is not large enough to train an expres-
sive neural model sufficiently. With the help of the
transferred representations, we are capable of cap-
turing more semantic and syntactic signals. Also,
comparing the models with and without the re-
stricted self-attention, we find that this attention
mechanism can further boost the performance. Es-
pecially, if there are no ELMo vectors, the im-
provement provided by the attention mechanism
is more noticeable.

3.4 Speed Comparison

We also measure the speedup of our model against
traditional systems in Table 3. The Two-Pass sys-
tem has the best performance among all existing
methods, while SPADE is much simpler with less
features. We test these systems on the same ma-
chine (CPU: Intel Xeon E5-2690, GPU: NVIDIA
Tesla P100). The results show that our system is
2.4-6.5 times faster than the compared systems if
the batch size is 1. Moreover, if we process the
test sentences in parallel, we can achieve 20.2-
54.8 times speedup with the batch size as 32. This
makes our system more practical in actually use.

3.5 Effect of Restricted Self-Attention

We propose to restrict the self-attention within a
neighborhood instead of the whole sequence. Ta-
ble 4 demonstrates the performance of our model
over different window size K. We can see that
all these results is better than the performance our
model without attention mechanism. However, a
proper restriction window is helpful for the atten-
tion mechanism to take better effect.



966

Window Size 1 5 10 ∞
F1-score 94.0 94.3 94.2 93.8

Table 4: Performance of our model over different at-
tention window size

4 Conclusion

In this paper, we propose a neural discourse seg-
menter that can segment text fast and accurately.
Different from previous methods, our segmenter
doesn’t rely on any hand-crafted features, espe-
cially the syntactic parse tree. To achieve our goal,
we propose to leverage the word representations
learned from large corpus and we also propose a
restricted self-attention mechanism. Experimen-
tal results on RST-DT show that our system can
achieve state-of-the-art performance together with
significant speedup.
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