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Abstract

Unsupervised learning of cross-lingual word
embedding offers elegant matching of words
across languages, but has fundamental limi-
tations in translating sentences. In this pa-
per, we propose simple yet effective methods
to improve word-by-word translation of cross-
lingual embeddings, using only monolingual
corpora but without any back-translation. We
integrate a language model for context-aware
search, and use a novel denoising autoencoder
to handle reordering. Our system surpasses
state-of-the-art unsupervised neural transla-
tion systems without costly iterative training.
We also analyze the effect of vocabulary size
and denoising type on the translation perfor-
mance, which provides better understanding
of learning the cross-lingual word embedding
and its usage in translation.

1 Introduction

Building a machine translation (MT) system re-
quires lots of bilingual data. Neural MT mod-
els (Bahdanau et al., 2015), which become the
current standard, are even more difficult to train
without huge bilingual supervision (Koehn and
Knowles, 2017). However, bilingual resources
are still limited to some of the selected language
pairs—mostly from or to English.

A workaround for zero-resource language pairs
is translating via an intermediate (pivot) language.
To do so, we need to collect parallel data and train
MT models for source-to-pivot and pivot-to-target
individually; it takes a double effort and the de-
coding is twice as slow.

Unsupervised learning is another alternative,
where we can train an MT system with only mono-
lingual corpora. Decipherment methods (Ravi and
Knight, 2011; Nuhn et al., 2013) are the first work
in this direction, but they often suffer from a huge
latent hypothesis space (Kim et al., 2017).
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Recent work by Artetxe et al. (2018) and Lam-
ple et al. (2018) train sequence-to-sequence MT
models of both translation directions together in an
unsupervised way. They do back-translation (Sen-
nrich et al., 2016a) back and forth for every itera-
tion or batch, which needs an immensely long time
and careful tuning of hyperparameters for massive
monolingual data.

Here we suggest rather simple methods to build
an unsupervised MT system quickly, based on
word translation using cross-lingual word embed-
dings. The contributions of this paper are:

o We formulate a straightforward way to com-
bine a language model with cross-lingual
word similarities, effectively considering

context in lexical choices.

We develop a postprocessing method for
word-by-word translation outputs using a de-
noising autoencoder, handling local reorder-
ing and multi-aligned words.

We analyze the effect of different artificial
noises for the denoising model and propose
a novel noise type.

We verify that cross-lingual embedding on
subword units performs poorly in translation.

We empirically show that cross-lingual map-
ping can be learned using a small vocabulary
without losing the translation performance.

The proposed models can be efficiently trained
with off-the-shelf softwares with little or no
changes in the implementation, using only mono-
lingual data. The provided analyses help for bet-
ter learning of cross-lingual word embeddings for
translation purpose. Altogether, our unsupervised
MT system outperforms the sequence-to-sequence
neural models even without training signals from
the opposite translation direction, i.e. via back-
translation.
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2 Cross-lingual Word Embedding

As a basic step for unsupervised MT, we learn a
word translation model from monolingual corpora
of each language. In this work, we exploit cross-
lingual word embedding for word-by-word trans-
lation, which is state-of-the-art in terms of type
translation quality (Artetxe et al., 2017; Conneau
et al., 2018).

Cross-lingual word embedding is a continu-
ous representation of words whose vector space
is shared across multiple languages. This en-
ables distance calculation between word embed-
dings across languages, which is actually finding
translation candidates.

We train cross-lingual word embedding in a
fully unsupervised manner:

1. Learn monolingual source and target embed-
dings independently. For this, we run skip-
gram algorithm augmented with character n-
gram (Bojanowski et al., 2017).

2. Find a linear mapping from source embed-
ding space to target embedding space by
adversarial training (Conneau et al., 2018).
We do not pre-train the discriminator with
a seed dictionary, and consider only the top
Veross-train Words of each language as input to
the discriminator.

Once we have the cross-lingual mapping, we
can transform the embedding of a given source
word and find a target word with the closest em-
bedding, i.e. nearest neighbor search. Here, we
apply cross-domain similarity local scaling (Con-
neau et al., 2018) to penalize the word similarities
in dense areas of the embedding distribution.

We further refine the mapping obtained from
Step 2 as follows (Artetxe et al., 2017):

3. Build a synthetic dictionary by finding mu-
tual nearest neighbors for both translation di-
rections in vocabularies of Vi oss-train WOrds.

Run a Procrustes problem solver with the dic-
tionary from Step 3 to re-train the mapping
(Smith et al., 2017).

. Repeat Step 3 and 4 for a fixed number of
iterations to update the mapping further.

3 Sentence Translation

In translating sentences, cross-lingual word em-
bedding has several drawbacks. We describe each
of them and our corresponding solutions.
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3.1 Context-aware Beam Search

The word translation using nearest neighbor
search does not consider context around the cur-
rent word. In many cases, the correct translation is
not the nearest target word but other close words
with morphological variations or synonyms, de-
pending on the context.

The reasons are in two-fold: 1) Word embed-
ding is trained to place semantically related words
nearby, even though they have opposite meanings.
2) A hubness problem of high-dimensional em-
bedding space hinders a correct search, where lots
of different words happen to be close to each other
(Radovanovi¢ et al., 2010).

In this paper, we integrate context information
into word-by-word translation by combining a lan-
guage model (LM) with cross-lingual word em-
bedding. Let f be a source word in the current
position and e a possible target word. Given a his-
tory h of target words before e, the score of e to be
the translation of f would be:

L(e; f, h) = Aemb log q(fv 6) + Am ]ng<€|h)

Here, q(f,e) is a lexical score defined as:
d(f,e) +1

2

where d(f,e) € [—1,1] is a cosine similarity be-
tween f and e. It is transformed to the range [0, 1]
to make it similar in scale with the LM probability.
In our experiments, we found that this simple lin-
ear scaling is better than sigmoid or softmax func-
tions in the final translation performance.

Accumulating the scores per position, we per-
form a beam search to allow only reasonable trans-
lation hypotheses.

q(f,e) =

3.2 Denoising

Even when we have correctly translated words for
each position, the output is still far from an ac-
ceptable translation. We adopt sequence denois-
ing autoencoder (Hill et al., 2016) to improve the
translation output of Section 3.1. The main idea
is to train a sequence-to-sequence neural network
model that takes a noisy sentence as input and pro-
duces a (denoised) clean sentence as output, both
of which are of the same (target) language. The
model was originally proposed to learn sentence
embeddings, but here we use it directly to actually
remove noise in a sentence.

Training label sequences for the denoising net-
work would be target monolingual sentences, but



we do not have their noisy versions at hand. Given
a clean target sentence, the noisy input should
be ideally word-by-word translation of the corre-
sponding source sentence. However, such bilin-
gual sentence alignment is not available in our un-
supervised setup.

Instead, we inject artificial noise into a clean
sentence to simulate the noise of word-by-word
translation. We design different noise types after
the following aspects of word-by-word translation.

3.2.1 Insertion

Word-by-word translation always outputs a target
word for every position. However, there are a
plenty of cases that multiple source words should
be translated to a single target word, or that some
source words are rather not translated to any word
to make a fluent output. For example, a German
sentence “Ich hore zu.” would be translated to
“I’'m listening to.” by a word-by-word transla-
tor, but “I’m listening.” is more natural in English
(Figure 1).

‘ I'm ‘ ‘ listening ‘

I I I Denoising
‘ I'm ‘ ‘ listening ‘ ‘ to ‘

I Word-by-word
‘ Ich ‘ ‘ hére ‘ ‘ zu ‘

Figure 1: Example of denoising an insertion noise.

We pretend to have extra target words which
might be translation of redundant source words, by
inserting random target words to a clean sentence:

1. For each position ¢, sample a probability p; ~
Uniform(0, 1).

2. If p; < pins, sample a word e from the most
frequent Vj,, target words and insert it before
position 4.

We limit the inserted words by Vj,s because tar-
get insertion occurs mostly with common words,
e.g. prepositions or articles, as the example above.
We insert words only before—not after—a posi-
tion, since an extra word after the ending word
(usually a punctuation) is not probable.

3.2.2 Deletion

Similarly, word-by-word translation cannot handle
the contrary case: when a source word should be
translated into more than one target words, or a
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target word should be generated from no source
words for fluency. For example, a German word
“im” must be “in the” in English, but word transla-
tion generates only one of the two English words.
Another example is shown in Figure 2.

‘ one | ‘ of | ‘ the | ‘ best |
T I Denoising
Cone | (e ) [Coest |
I I Word-by-word
‘ der | ‘ besten |

Figure 2: Example of denoising a deletion noise.

To simulate such situations, we drop some
words randomly from a clean target sentence (Hill
et al., 2016):

1. For each position ¢, sample a probability p; ~
Uniform(0, 1).

2. If p; < pge1, drop the word in the position .

3.2.3 Reordering

Also, translations generated word-by-word are not
in an order of the target language. In our beam
search, LM only assists in choosing the right word
in context but does not modify the word order. A
common reordering problem of German—English
is illustrated in Figure 3.

| what I | | I | have I | said I

x x >< Denoising
| what | | | | | said | | have |

T T T Word-by-word
| was | | ich | | gesagt | | habe |

Figure 3: Example of denoising the reordering noise.

From a clean target sentence, we corrupt its
word order by random permutations. We limit the
maximum distance between an original position
and its new position like Lample et al. (2018):

1. For each position i, sample an integer J; from
[0, dper]-

. Add J; to index i and sort the incremented
indices ¢ + J; in an increasing order.

. Rearrange the words to be in the new po-
sitions, to which their original indices have
moved by Step 2.



de-en en-de fr-en en-fr
System BLEU [%] BLEU[%] BLEU[%] BLEU [%]
Word-by-Word 11.1 6.7 10.6 7.8
+ LM 14.5 9.9 13.6 10.9
+ Denoising 17.2 11.0 16.5 13.9
(Lample et al., 2018) 13.3 9.6 14.3 15.1
(Artetxe et al., 2018) - - 15.6 15.1

Table 1: Translation results on German<-English newstest2016 and French<>English newstest2014.
Beam size is 10 and top 100 words are considered in the nearest neighbor search.

This is a generalized version of swapping two
neighboring words (Hill et al., 2016). Reordering
is highly dependent of each language, but we
found that this noise is generally close to word-
by-word translation outputs.

Insertion, deletion, and reordering noises were ap-
plied to each mini-batch with different random
seeds, allowing the model to see various noisy ver-
sions of the same clean sentence over the epochs.

Note that the deletion and permutation noises
are integrated in the neural MT training of Artetxe
etal. (2018) and Lample et al. (2018) as additional
training objectives. Whereas we optimize an inde-
pendent model solely for denoising without archi-
tecture change. It allows us to easily train a larger
network with a larger data. Insertion noise is of
our original design, which we found to be the most
effective (Section 4.1).

4 Experiments

We applied the proposed methods on WMT
2016 German<+English task and WMT 2014
French<+English task. For German/English, we
trained word embeddings with 100M sentences
sampled from News Crawl 2014-2017 monolin-
gual corpora. For French, we used News Crawl
2007-2014 (around 42M sentences). The data was
lowercased and filtered to have a maximum sen-
tence length 100. German compound words were
splitted beforehand. Numbers were replaced with
category labels and recovered back after decoding
by looking at the source sentence. Also, frequent
casing was applied to the translation output.
fasttext (Bojanowski et al., 2017) was used to
learn monolingual embeddings for only the words
with minimum count 10. MUSE (Conneau et al.,
2018) was used for cross-lingual mappings with
Veross-train = 100k and 10 refinement iterations
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(Step 3-5 in Section 2). Other parameters follow
the values in Conneau et al. (2018). With the same
data, we trained 5-gram count-based LMs using
KenLLM (Heafield, 2011) with its default setting.

Denoising autoencoders were trained using
Sockeye (Hieber et al., 2017) on News Crawl
2016 for German/English and News Crawl 2014
for French. We considered only top 50k frequent
words for each language and mapped other words
to <unk>. The unknowns in the denoised output
were replaced with missing words from the noisy
input by a simple line search.

We used 6-layer Transformer encoder/decoder
(Vaswani et al., 2017) for denoisers, with embed-
ding/hidden layer size 512, feedforward sublayer
size 2048 and 8 attention heads.

As a validation set for the denoiser training, we
used newstest2015 (German <+ English) or
newstest2013 (French <> English), where the
input/output sides both have the same clean target
sentences, encouraging a denoiser to keep at least
clean part of word-by-word translations. Here, the
noisy input showed a slight degradation of per-
formance; the model seemed to overfit to specific
noises in the small validation set.

Optimization of the denoising models was done
with Adam (Kingma and Ba, 2015): initial learn-
ing rate 0.0001, checkpoint frequency 4000, no
learning rate warmup, multiplying 0.7 to the learn-
ing rate when the perplexity on the validation set
did not improve for 3 checkpoints. We stopped the
training if it was not improved for 8 checkpoints.

Table 1 shows the results. LM improves word-
by-word baselines consistently in all four tasks,
giving at least +3% BLEU. When our denoising
model is applied on top of it, we have additional
gain around +3% BLEU. Note that our meth-
ods do not involve any decoding steps to gener-
ate pseudo-parallel training data, but still perform



better than unsupervised MT systems that rely on
repetitive back-translations (Artetxe et al., 2018;
Lample et al., 2018) by up to +3.9% BLEU. The
total training time of our method is only 1-2 days
with a single GPU.

4.1 Ablation Study: Denoising

dper Ddel Vins BLEU [%]
2 14.7
3 14.9
5 14.9
3 0.1 15.7
0.3 15.1
10 16.8
50 17.2
3 0.1 500 16.8
5000 16.5

Table 2: Translation results with different values of de-
noising parameters for German—English.

To examine the effect of each noise type in de-
noising autoencoder, we tuned each parameter of
the noise and combined them incrementally (Ta-
ble 2). Firstly, for permutations, a significant im-
provement is achieved from dpe; = 3, since a local
reordering usually involves a sequence of 3 to 4
words. With d,e; > 5, it shuffles too many con-
secutive words together, yielding no further im-
provement. This noise cannot handle long-range
reordering, which is usually a swap of words that
are far from each other, keeping the words in the
middle as they are.

Secondly, we applied the deletion noise with
different values of pge;. 0.1 gives +0.8% BLEU,
but we immediately see a degradation with a larger
value; it is hard to observe one-to-many transla-
tions more than once in each sentence pair.

Finally, we optimized Vj,s for the insertion
noise, fixing pijps = 0.1. Increasing Vi, is gener-
ally not beneficial, since it provides too much vari-
ations in the inserted word; it might not be related
to its neighboring words. Overall, we observe the
best result (+1.5% BLEU) with Vi, = 50.

4.2 Ablation Study: Vocabulary

We also examined how the translation perfor-
mance varies with different vocabularies of cross-
lingual word embedding in Table 3. The first three
rows show that BPE embeddings performs worse
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Vocabulary BLEU [%]
Merges
20k 10.4
BPE 50k 12.5
100k 13.0
V;:ross—train
20k 14.4
50k 14.4
Word 60k 14.5
200k 14.4

Table 3: Translation results with different vocabularies
for German—English.

than word embeddings, especially with smaller
vocabulary size. For small BPE tokens (1-3 char-
acters), the context they meet during the embed-
ding training is much more various than a com-
plete word, and a direct translation of such small
token to a BPE token of another language would
be very ambiguous.

For word level embeddings, we compared dif-
ferent vocabulary sizes used for training the
cross-lingual mapping (the second step in Section
2). Surprisingly, cross-lingual word embedding
learned only on top 20k words is comparable to
that of 200k words in the translation quality. We
also increased the search vocabulary to more than
200k but the performance only degrades. This
means that word-by-word translation with cross-
lingual embedding depends highly on the frequent
word mappings, and learning the mapping be-
tween rare words does not have a positive effect.

5 Conclusion

In this paper, we proposed a simple pipeline
to greatly improve sentence translation based on
cross-lingual word embedding. We achieved
context-aware lexical choices using beam search
with LM, and solved insertion/deletion/reordering
problems using denoising autoencoder. Our novel
insertion noise shows a promising performance
even combined with other noise types. Our meth-
ods do not need back-translation steps but still out-
performs costly unsupervised neural MT systems.
In addition, we proved that for general translation
purpose, an effective cross-lingual mapping can be
learned using only a small set of frequent words,
not on subword units.
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