
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 811–816
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

811

HFT-CNN: Learning Hierarchical Category Structure for Multi-label
Short Text Categorization

Kazuya Shimura1, Jiyi Li2 and Fumiyo Fukumoto2

Graduate School of Engineering1

Interdisciplinary Graduate School2

University of Yamanashi
4-3-11, Takeda, Kofu, 400-8511 Japan

{g17tk008,jyli,fukumoto}@yamanashi.ac.jp

Abstract

We focus on the multi-label categorization task
for short texts and explore the use of a hierar-
chical structure (HS) of categories. In contrast
to the existing work using non-hierarchical flat
model, the method leverages the hierarchical
relations between the categories to tackle the
data sparsity problem. The lower the HS level,
the worse the categorization performance. Be-
cause lower categories are fine-grained and the
amount of training data per category is much
smaller than that in an upper level. We propose
an approach which can effectively utilize the
data in the upper levels to contribute catego-
rization in the lower levels by applying a Con-
volutional Neural Network (CNN) with a fine-
tuning technique. The results using two bench-
mark datasets show that the proposed method,
Hierarchical Fine-Tuning based CNN (HFT-
CNN) is competitive with the state-of-the-art
CNN based methods.

1 Introduction

Short text categorization is widely studied since
the recent explosive growth of online social net-
working applications (Song et al., 2014). In
contrast with documents, short texts are less
topic-focused in texts. Major attempts to
tackle the problem is to expand short texts
with knowledge extracted from the textual cor-
pus, machine-readable dictionaries, and thesauri
(Phan et al., 2008; Wang et al., 2008; Chen et al.,
2011; Wu et al., 2012). However, because of
domain-independent nature of dictionaries and
thesauri, it is often the case that the data distri-
bution of the external knowledge is different from
the test data collected from some specific domain,
which deteriorates the overall performance of cat-
egorization. A methodology which maximizes
the impact of pre-defined domains/categories is
needed to improve categorization performance.

More recently, many authors have attempted
to apply deep learning techniques including CNN
(Wang et al., 2015; Zhang and Wallace, 2015;
Zhang et al., 2017; Wang et al., 2017), the atten-
tion based CNN (Yang et al., 2016), bag-of-words
based CNN (Johnson and Zhang, 2015a), and the
combination of CNN and recurrent neural network
(Lee and Dernoncourt, 2016; Zhang et al., 2016)
to text categorization. Most of them demon-
strated that neural network models are powerful
for learning features from texts, while they fo-
cused on single-label or a few labels problem.
Several efforts have been made to multi-labels
(Johnson and Zhang, 2015b; Liu et al., 2017). Liu
et al. explored a family of new CNN models
which are tailored for extreme multi-label classi-
fication (Liu et al., 2017). They used a dynamic
max pooling scheme, a binary cross-entropy loss,
and a hidden bottleneck layer to improve the
overall performance. The results by using six
benchmark datasets where the label-set sizes are
up to 670K showed that their method attained
at the best or second best in comparison with
seven state-of-the-art methods including FastText
(Joulin et al., 2017) and bag-of-words based CNN
(Johnson and Zhang, 2015a). However, all of
these attempts aimed at utilizing a large volume
of data.

We address the problem of multi-label short text
categorization and explore the use of a HS of cat-
egories. The lower level of categories are fine-
grained compared to the upper level of categories.
Moreover, it is often the case that the amount of
training data in a lower level is much smaller than
that in an upper level which deteriorates the over-
all performance of categorization. We propose
an approach which can effectively utilize the data
in the upper levels to contribute categorization in
lower levels by applying fine-tuning to the CNN
which can learn a HS of categories and incorporate
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Figure 1: HFT-CNN model

granularity of categories into categorization. We
transferred the parameters of CNN trained from
upper to lower levels according to the HS, and
finely tuned parameters. The main contributions
of our work can be summarized: (1) We propose a
method that maximizes the impact of pre-defined
categories to alleviate data sparsity in multi-label
short texts. (2) We empirically examined a fine-
tuning with CNN that fits to learn a HS of cate-
gories defined by lexicographers, and (3) The re-
sults show that our method is competitive to the
state-of-the-art CNN based methods by using two
benchmark datasets, especially it is effective for
categorization of short texts consisting of a few
words with a large number of labels.

2 Hierarchical Fine-Tuning based CNN

2.1 CNN architecture

Similar to other CNN (Johnson and Zhang, 2015a;
Liu et al., 2017), our HFT-CNN model shown in
Figure 1 is based on (Kim, 2014). Let xi ∈ Rk be
the k-dimensional word vector with the i-th word
in a sentence obtained by applying skip-gram
model provided in fastText1. A sentence with
length n is represented as x1:n = [x1,x2, · · · ,xn]
∈ Rnk. A convolution filter w ∈ Rhk is applied
to a window size of h words to produce a new fea-
ture, ci = f(w·xi:i+h−1+b) where b ∈R indicates
a bias term and f refers to a non-linear activation
function. We applied this convolution filter to each
possible window size in the sentence and obtained
a feature map, m ∈ Rn−h+1. As shown in Fig-
ure 1, we then apply a max pooling operation over
the feature map and obtain the maximum value
m̂ as a feature of this filter. We obtained multi-
ple filters by varying window sizes and multiple

1https://github.com/facebookresearch/fastText

features. These features form a pooling layer and
are passed to a fully connected layer. In the fully
connected layer, we applied dropout (Hinton et al.,
2012). The dropout randomly sets values in the
layer to 0. Finally, we obtained the probability dis-
tribution over categories. The network is trained
with the objective that minimizes the binary cross-
entropy (BCE) of the predicted distributions and
the actual distributions by performing stochastic
gradient descent.

2.2 Hierarchical structure learning
Our key idea is to use a fine-tuning technique in
CNN to tackle the data sparsity problem, espe-
cially a lower level of a HS. Following a HS, we
transferred the parameters of CNN trained in the
upper levels to the lower levels which are worse
trained because of the lack of data, and then finely
tuned parameters of CNN for lower levels (Figure
1). This approach can effectively utilize the data
in the upper levels to contribute categorization in
the lower levels.

Fine-tuning is motivated by the observation that
the earlier features of CNN contain more generic
features that should be effective for many tasks,
but later layers of the CNN becomes progressively
more specific to the details of the classes contained
in the original dataset. The motivation is identical
to a HS of categories as we first learn to distinguish
among generic categories at the upper level of a
hierarchy, then learns lower level distinctions by
using only within the appropriate top level of the
HS. We note that fine-tuning the last few layers are
usually sufficient for transfer learning as the last
few layers become more specific features. How-
ever, the HS consisting of deep level needs to fine-
tune the early layers as well because the distance
between the upper and lower level of categories
is significant. For this reason, we transferred two
layers shown in Figure 1, i.e., a layer obtained by
word embedding and the convolutional layer. We
used them as an initial parameter to learn the sec-
ond level of a hierarchy. We repeated this pro-
cedure from the top level to the bottom level of
a hierarchy. We note that a HS consists of many
levels. We fine-tune between adjacent layers only
because they are more correlated with each other
compared to distant layers.

2.3 Multi-label categorization
Each test instance is classified into categories with
probabilities/scores by applying HFT-CNN. We
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Dataset #L Tr Te C
RCV1 4 23,149 781,265 103
Amazon670K 9 490,449 153,025 670,091

Table 1: Data Statistics: #L shows the depth of a hier-
archy. Tr and Te refer to the # of training and test data,
respectively. C indicates the total # of categories.

then utilize a constraint of a HS to obtain final
results which differs from the existing work on
non-hierarchical flat model (Johnson and Zhang,
2015a; Liu et al., 2017). This is done by using
two scoring functions: One is a Boolean Scoring
Function (BSF). Another is a Multiplicative Scor-
ing Function (MSF). Both functions set a thresh-
old value and categories whose scores exceed the
threshold value are considered for selection. The
difference is that BSF has a constraint that a cate-
gory can only be selected if its ancestor categories
are selected. MSF does not have such a constraint,
i.e., we extracted all the categories whose scores
exceeded the threshold value and sorted them in
descending order as the system’s assignments.

3 Experiments

3.1 Data and HFT-CNN model setting

We selected two benchmark datasets having a
HS from the extreme classification repository2:
RCV1 (Lewis et al., 2004) and Amazon670K
(Leskovec and Krevl, 2015). All the documents in
RCV1 and item descriptions in Amazon670K are
tagged by using Tree Tagger (Schmid, 1995). We
used nouns, verbs, and adjectives. We then applied
fastText. Each dataset has an official training and
test sets. We used each fold in the experiments.
We choose titles from the training and test set on
RCV1. The maximum number of words in the ti-
tle was 13 words. Each text of Amazon670K con-
sists of a product name and its item description.
We extracted the first 13 words from each item de-
scription and used them in the experiments. Table
1 presents the statistics on the datasets. We di-
vided the training data into two folds; we used 5%
to tuning the parameters, and the remains to train
the models. Our model setting is shown in Table
23. In the experiments, we run three times for each
model and obtained the averaged performance.

2manikvarma.org/downloads/XC/XMLRepository.html
3Our source code including Chainer’s version of XML-

CNN is available at: HTTP://github.com/ShimShim46/HFT-
CNN.

3.2 Evaluation Metrics

We used the standard F1 measure. Furthermore,
we evaluated our method by two rank-based eval-
uation metrics: the precision at top k, P@k
and the Normalized Discounted Cumulated Gains,
NDCG@k which are commonly used for com-
paring extreme multi-label classification meth-
ods (Liu et al., 2017). We calculated P@k and
NDCG@k for each test data and then obtained an
average over all the test data.

3.3 Basic results

We compared HFT-CNN with a method which
has hierarchical-based categorization but without
fine-tuning (WoFT-CNN) and Flat model to ex-
amine the effect of the fine-tuning. WoFT-CNN
shows that we independently trained parameters
of CNN for each level and trained parameters are
not transferred. Flat means that we simply applied
our CNN model. The results are shown in Ta-
ble 3. The HFT-CNN is better than WoFT-CNN
and Flat model except for Micro-F1 obtained by
WoFT-CNN(M) in Amazon670K. We also found
that the overall results obtained by MSF were bet-
ter to those obtained by BSF.

3.4 Comparison with state-of-the-art method

We chose XML-CNN as a comparative method
because their method attained at the best or sec-
ond best compared to the seven existing methods
in six benchmark datasets (Liu et al., 2017). Origi-
nal XML-CNN is implemented by using Theano4,
while we implemented HFT-CNN by Chainer5. In
order to avoid the influence of differences in li-
braries, we implemented XML-CNN by Chainer
and compared it with HFT-CNN. We used the
author-provided implementation in Chainer’s ver-
sion of XML-CNN. We recall that we set convo-
lutional filters with the window sizes to (2,3,4)
and the stride size to 1 because of short text. To
make a fair comparison, we also evaluated XML-
CNN with the same window sizes and stride size
as HFT-CNN.

Liu et al. evaluated their method by using P@k
and NDCG@k. We used their metrics as well as
F1 measure. We did not set a threshold value on
BSF and MSF when we evaluated by using these
metrics, but instead, we used a ranked list of cate-

4https://drive.google.com/file/d/1Wwy1MNkrJRXZM3WN
ZNywa94c2-iEh 6U/view

5https://chainer.org
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Description Values Description Values
Input word vectors fastText Filter region size (2,3,4)
Stride size 1 Feature maps (m) 128
Filters 128 × 3 Activation function ReLu
Pooling 1-max pooling Dropout Randomly selected
Dropout rate1 0.25 Dropout rate2 0.5
Hidden layers 1,024 Batch sizes 100
Learning rate Predicted by Adam Epoch 40 with early stopping
Loss function BCE loss over sigmoid activation Threshold value for BSF and MSF 0.5

Table 2: HFT-CNN model settings: Dropout rate1 shows dropout immediately after embedding layer, and Dropout
rate2 refers to dropout in a fully connected layer.

Metric RCV1
F1 HFT(B) WoFT(B) HFT(M) WoFT(M) Flat
Micro 79.87 79.69 80.29 80.06 79.51
Macro 50.31 49.59 51.40 50.64 47.71

Amazon670K
Metrics HFT(B) WoFT(B) HFT(M) WoFT(M) Flat
Micro 49.74 50.12 ∗50.94 50.94 49.10
Macro 6.78 6.37 9.87 8.68 5.73

Table 3: Basic results: (B) and (M) refer to a BSF
and MSF, respectively. Bold font shows the best result
within each line. The method marked with “∗” indi-
cates the score is not statistically significant compared
to the best one. We used a t-test, p-value < 0.05.

gories assigned to the test instance. The results are
shown in Table 4. HFT-CNN with BSF/MSF has
the best scores with statistical significance com-
pared to both of the XML-CNNs. On RCV1,
HFT-CNN(B) in P@1 and NDCG@1 were worse
than XML-CNN(1), while HFT-CNN(M) with the
same metrics were statistically significant com-
pared to XML-CNN(1). This is not surprising be-
cause hierarchical fine-tuning does not contribute
to the accuracy at the top level as the trained pa-
rameters on the top level have not changed in the
level.

We also examined the affection on each system
performance by the depth of a hierarchical struc-
ture. Figure 2 shows Micro-F1 at each hierarchi-
cal level. The deeper the hierarchical level, the
worse the system’s performance. However, HFT-
CNN is still better than XML-CNNs. The im-
provement by MSF was 1.00 ∼ 1.34% by Micro-
F1 and 3.77 ∼ 10.07% by Macro-F1 on RCV1.
On Amazon670K, the improvement was 1.10 ∼
9.26% by Micro-F1 and 1.10 ∼ 3.60% by Macro-
F1. This shows that hierarchical fine-tuning fits to
learn the hierarchical category structure.

We recall that we focused on the multi-label
problem. Figures 3 illustrates Micro-F1 and
Macro-F1 against the number of categories per
short text. We can see from RCV1 in Figure 3

Metric RCV1
HFT(B) HFT(M) XML(1) XML(2)

P@1 92.60 93.29 92.93 92.55
P@3 ∗77.56 77.70 77.18 76.80
P@5 ∗53.96 54.23 53.85 53.60
G@1 92.60 93.29 92.93 92.55
G@3 ∗88.47 88.79 88.16 87.75
G@5 89.37 89.81 89.19 88.80

Metric Amazon670K
HFT(B) HFT(M) XML(1) XML(2)

P@1 86.54 85.39 84.62 84.12
P@3 66.25 65.34 64.83 64.48
P@5 51.09 ∗50.84 49.93 49.75
G@1 86.54 85.39 84.62 84.12
G@3 76.26 75.05 74.50 74.13
G@5 72.84 71.46 70.99 70.74

Table 4: Comparative results: “1” and “2” of XML
show the stride size=1 and 2 by XML-CNN, respec-
tively. “G” stands for NDCG.

that Micro-F1 obtained by HFT-CNN and XML-
CNNs were not statistically significant difference
in the number of categories, while Macro-F1 by
HFT-CNN except for the number of 13 categories
was constantly better to XML-CNNs. On Ama-
zon670K data, when the number of categories as-
signed to the short text is less than 38, HFT-CNN
was better than XML-CNNs or HFT-CNN was not
statistically significant compared to XML-CNNs
by both F1-scores. However, when it exceeds 39,
HFT-CNN was worse than XML-CNNs. One pos-
sible reason is the use of BSF: a category can only
be selected if its ancestor categories are selected.
Therefore, once the test data could not be classi-
fied into categories correctly, their child categories
also cannot be correctly assigned to the test data.
In contrast, as shown in Figure 5, HFT-CNN by
MSF was better than XML-CNNs in both Micro
and Macro F1 even in the deep level of a hierarchy.
From the observations, a robust scoring function is
needed for further improvement.

It is important to note that how the ratio of
training data affects the overall performance as
we focused on the data sparsity problem. Figure
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(a) Micro-F1 (RCV1) (b) Macro-F1(RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 2: Performance in each hierarchical level: HFT-CNN used BSF

(a) Micro-F1 (RCV1) (b) Macro-F1 (RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 3: Performance against the # of categories per short text: HFT-CNN used BSF

(a) Micro-F1 (RCV1) (b) Macro-F1 (RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 4: Performance against a ratio of the training data

(a) Micro-F1 (Amazon670K) (b) Macro-F1 (Amazon670K)

Figure 5: Performance against the # of categories per
short text: Comparison with HFT-CNN by MSF and
other methods

4 shows Micro and Macro-F1 against a ratio of
the training data. Overall, the curves show that
more training helps the performance, while the
curves obtained by HFT-CNN drop slowly com-
pared to other methods in both datasets and evalu-
ation metrics. From the observations mentioned in
the above, we can conclude that fine-tuning works
well, especially in the cases that the number of the
training data per category is small.

4 Conclusion

We have presented an approach to multi-label cat-
egorization for short text. The comparative re-
sults with XML-CNN showed that HFT-CNN is
competitive, especially for the cases that there ex-
ists only a small amount of training data. Fu-
ture work will include: (i) incorporating lexical
semantics such as named entities and domain-
specific senses for further improvement, (ii) ex-
tending the method to utilize label dependency
constraints (Bi and Kwok, 2011), and (iii) improv-
ing the accuracy of the top ranking categories to
deal with P@1 and NDCG@1 metrics.
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