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Abstract

How to generate relevant and informative re-
sponses is one of the core topics in response
generation area. Following the task formu-
lation of machine translation, previous works
mainly consider response generation task as
a mapping from a source sentence to a tar-
get sentence. To realize this mapping, exist-
ing works tend to design intuitive but complex
models. However, the relevant information ex-
isted in large dialogue corpus is mainly over-
looked. In this paper, we propose Sequence
to Sequence with Prototype Memory Network
(S2SPMN) to exploit the relevant information
provided by the large dialogue corpus to en-
hance response generation. Specifically, we
devise two simple approaches in S2SPMN to
select the relevant information (named proto-
types) from the dialogue corpus. These pro-
totypes are then saved into prototype mem-
ory network (PMN). Furthermore, a hierarchi-
cal attention mechanism is devised to extract
the semantic information from the PMN to as-
sist the response generation process. Empiri-
cal studies indicate the advantage of our model
over several classical and strong baselines.

1 Introduction

Dialogue systems, or say, chatbots are usually con-
sidered as the future of human-computer interac-
tion and extensive works have been done in this
area (Wen et al., 2016; Qiu et al., 2017; Wen et al.,
2017; Kreyssig et al., 2018).

As one of the main approaches for dialogue
system design, response generation has attracted
more and more attention from research commu-
nity. Neural networks based models like Seq2Seq
architecture (Vinyals and Le, 2015; Shang et al.,
2015) are proven to be effective to generate valid
responses for a dialogue system. However, as re-
vealed in many previous works (Li et al., 2016a;
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Wu et al., 2018), ’safe reply” is still an open prob-
lem and lots of efforts are made to generate more
informative responses (Lietal.,2016a; Mou et al.,
2016; Li et al., 2016b; Qiu et al., 2017; Li et al.,
2017; Zhao et al.; He et al., 2017; Zhou et al.,
2017; Liu et al., 2018; Chen et al., 2018).

Note that in this paper when we say response
generation, we focus on single turn chit-chat for
that other tasks like multi-turn (Zhang et al.,
2018) or goal-oriented (Kan et al., 2018)genera-
tion could be partly considered as the extensions
of single-turn generation.

Though existing works mentioned above are
helpful in some ways, they all follow the task for-
mulation proposed by (Ritter et al., 2011), which
considers response generation (RG) task as a map-
ping from a source sentence to a target sentence
like machine translation (MT). This task formu-
lation ignores the natural difference between MT
and RG: MT deals with sentence pairs of the same
meanings while RG needs to realize the meaning
transformation from a source post to the target re-
sponse. In this sense, the meaning transformation
is more difficult than machine translation. Hence,
many researchers have designed more and more
complex models. However, given a target post, the
relevant information covered by the dialogue cor-
pus is usually overlooked. It is intuitive that the
responses for a similar post would provide more
contextual information to guide the response gen-
eration. To this end, we are interested in exploit-
ing the relevant responses in the training set as soft
prototypes to assist the response generation.

Specifically, in this paper, we propose Se-
quence to Sequence with Prototype Memory Net-
work (named S2SPMN). We introduce two Pro-
totype Memory Networks (PMNs5s) to store the rel-
evant responses extracted from the dialogue cor-
pus: static PMN and dynamic PMN. Tested on
a widely used benchmark dataset, the proposed
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Figure 1: S2SPMN Framework

S2SPMN produces more informative responses
than the standard and strong baselines. To the
best of our knowledge, it is the first work lever-
aging prototype information in dialogue corpus in
response generation area.

The contributions of this paper could be sum-
marized as follows:

(1) We propose S2SPMN, a simple yet effec-
tive response generation model which could lever-
age relevant information in dialogue corpus to as-
sist response generation.

(2) Empirical studies indicate the superiority of
proposed S2SPMN over other methods.

2 Architecture

2.1 Problem Definition

Given a dialogue dataset I' = {X, Yz}fi 1» Where
Y; is the response for a post X;, we aim to train
a model with I' such that the model can gener-
ate an accurate and informative response for a
new post X’. Here, we propose to exploit the
relevant information provided by I'. Let T/ =
(r1,79, ..., ) refers to the prototype memory
network constructed for post X', where r; is the
i-th relevant response (named prototype) extracted
from dialogue dataset I". The goal is to derive the
model to generate the response Y': p(Y'|X') =
p(Y'| T, X7).

In following sections, we firstly introduce the
generation framework with hierarchical attention
mechanism assuming PMN is constructed. Then
we will introduce two kinds of PMNs: static PMN
and dynamic PMN.

2.2 Sequence-to-Sequence with Prototype
Memory Network

S2SPMN is built with a Seq2Seq encoder-decoder
framework (Sutskever et al., 2014) with the atten-
tion mechanism (Bahdanau et al., 2014). We use
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LSTM (Hochreiter and Schmidhuber, 1997) to
materialize both encoder and decoder. The hid-
den state at ¢-th encoding step is generated from
previous hidden state h;_; and current input x; as
follows:

ht = lstm(xt, htfl) (1)

For decoder, at ¢-th timestep, s; is the decoder’s
hidden state and p; is the probability distribution
of candidate words .

S; = lStm(yi—la Si—1,Ciy Oi) (2)
p; = softmax(MLP(s;,y1—1,0i,¢))  (3)

where M LP() is a one-layer perception, o; is the
hierarchical attention over entire prototype mem-
ory network which will be formalized in following
sections. ¢; is the summarization for the post re-
garding to the hidden state s;_1:

T
exp(eij)
C; = Oéijhj, Qi = —7 < (4)
Z STy exple)
eij = v{ MLP(s;_1,h;) )

where v is the attention parameter.

2.3 Prototype Memory Network

Given a post X', a set of responses are selected
from training set as prototypes and are then saved
into the Prototype Memory Network(PMN). We
propose two kinds of Prototype Memory Net-
works.

Static PMN: For static PMN(SPMN), we ran-
domly select m responses before training starts
and the entire PMN remains unchanged during the
training process. That is, we use the same proto-
types for all the post-response pairs.

Dynamic PMN: In dynamic PMN(DPMN),
prototypes are selected by retrieving the most rel-
evant posts. We calculate the cosine similarity
with TF-IDF weighting scheme between the given
post and all the posts in training set. We consider
top-m posts and put the associated responses into
DPMN. This means that the prototypes are char-
acteristic for each post-response pair.

In both SPMN and DPMN, m is a predefined
hyper-parameter controlling the size of the PMN.
Each prototype is represented with the concate-
nation of word embeddings. We perform zero
padding for both SPMN and DPMN with a pseudo



word!, making the length for the representation
of each prototype be the same. Here we de-
note the prototype memory network as PMN =
{r1,72, ..., "m }, in which r,, is the representation
of m-th prototype and m is the size of the PMN.
And ry, = {Wm,1, Wm.2, ..., W1 } Where wy, ; is
the embedding of i-th word, and [ is the maximum
allowable length for a prototype.

For both SPMN and DPMN, we select re-
sponses rather than posts although sometimes they
have similar vocabularies and syntactic structure.
We believe that using responses as prototypes
could help with the meaning transformation from
post to response. In DPMN, all the retrieved proto-
types could be considered as responses to the tar-
get post. It is intuitive that the generated response
would have similar representation to these proto-

types.

2.4 Hierarchical Attention Mechanism

We use a two-stage hierarchical attention mech-
anism to extract useful information in PMN and
integrate it into the decoding process. The first
stage is a sentence level attention over entire PMN
to generate the abstractive prototype 7; at each
timestep:

- exp(fij)

ti=) Biris Bii= g (©)
; P L eap(fir)

fii = vs MLP(s;_1,7;) (7)

where v is the attention parameter.

The second stage is a word level attention o;
over the generated 7; = {1, Wy, ...,w;} and is
calculated as follows:

l
R exr i
0; = Z'Yijwja Yij = lp# )
j=1 k=1 €xp(gi)
gij = vs MLP(si_1,10;) 9)

where vs3 is the attention parameter.

3 Experiment

3.1 Experiment Setup

We use a subset of STC dataset (Shang et al.,
2015) crawled from Weibo, the largest social me-
dia in China. The vocabulary size is set to be
8,000 for computational efficiency and words out
of vocabulary are replaced by the symbol “unk”.

'"The embedding of the pseudo word is a zero vector.
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We remove sentences longer than 25 words or
containing more than 2 unk symbols. After pre-
processing step, we have 315,980 post-response
pairs in training set, 3, 510 pairs in validation set
and 300 in test set.

In our model, we use one-layer LSTM and the
hidden size is set to be 600 in both encoder and de-
coder. For all the words used in our model, the em-
bedding size is 300. Mini-batch learning is used
and batch size is set as 64. We use simple SGD for
optimization and the initial learning rate is set to
be 0.2.

3.2 Evaluation Metrics

We use two automatic evaluation metrics includ-
ing Perplexity and Distinct. Human evaluation is
also conducted as the only gold standard for re-
sponse generation is human judgement.

Perplexity: Following (Vinyals and Le, 2015)
and (Xing et al., 2017), we use perplexity as
one of our automatic evaluation metrics. Perplex-
ity could measure the holistic condition of model
learning. A lower perplexity score indicates bet-
ter generalization performance. Perplexity on both
validation set (PPL-V) and test set (PPL-T) are
presented in table 2.

Distinct-1, Distinct-2: Distinct-1 and distinct-
2 calculate the ratios of distinct unigrams and bi-
grams in the generated responses respectively (Li
et al., 2016a; Xing et al., 2017; Wu et al., 2018).
The higher score suggests that the generated re-
sponse is more diverse and informative. Here, we
report the distinct-1 and distinct-2 scores on entire
test set.

Human Annatation: We further recruit human
annotators to judge the quality of the generated an-
swers for all the qa-pairs in test set. Responses
generated by all the methods are pooled and ran-
domly shuffled for each annotator. A score be-
tween 0 and 2 is assigned to each generated answer
based on the following criteria:

+2: the answer is natural and relevant to the
question.

+1: the answer can be used as a reply, but is not
informative enough (e.g. “FX 12" (me too), “»
HLE” (1 don’t know)).

+0: the answer is irrelevant and unclear in
meaning (e.g. too many grammatical errors to un-
derstand).



Model || PPL-V_ PPL-T  distinct-1  distinct-2 Model I 0 1 2 Kappa
S2SA 8.41 9.05 0.0809 0.2110 S2SA 76.83% 16.33% 6.83% 0.6124
TAS2S 7.38 7.84 0.04759 0.1087 TAS2S 69.83% 19.83% 10.33% 0.7425
SPMN500 7.04 7.93 0.06430 0.1734 SPMNS500 21.67% 55.00% 23.33% 0.6534
SPMN1000 6.28 7.72 0.07347 0.1909 SPMN1000 19.17% 52.50% 28.33% 0.7330
DPMN100 6.45 7.69 0.04350 0.1048 DPMN100 12.08% 56.67%  31.25%  0.6280

Table 1: Automatic evaluation

3.3 Results Comparation

We use a standard baseline and a strong baseline
for comparison.

S2SA: The standard Seq2Seq model with an at-
tention mechanism (Vinyals and Le, 2015).

TAS2S: One of the existing state-of-the-art neu-
ral models based on Seq2Seq architecture. The
topical words relevant to the post are considered
via an attention mechanism when decoding (Xing
etal., 2017).

As for our models, we use SPMN to denote
the generating method with static prototype mem-
ory networks and DPMN with dynamic prototype
memory networks. The numbers following model
names are the size of PMN.

Automatic Evaluation: Table 1 shows the au-
tomatic evaluation results. We see that both SPMN
and DPMN obtain huge improvements over the
two baselines in terms of PPL-V and PPL-T.
Also, we observe that SPMNI1000 outperforms
SPMNS500 in all the four automatic metrics. Note
that each post has the same prototypes provided
by SPMN. This is reasonable that the relevant re-
sponse is more likely to be covered by storing
more prototypes in SPMN. As for the DPMN, we
can see that DPMN achieves the best performance
with only 100 prototypes in terms of PPL-T, com-
pared with the other 4 methods. This suggests
that using a retrieval mechanism to incorporate the
relevant responses brings more useful information
for better response generation. Note that S2SA
outperforms the others in terms of distinct-1 and
distinct-2. Further human evaluation indicates that
many responses generated by S2SA are irrelevant
and meaningless, which could inevitably increase
the distinct scores.

Human Annotation: Table 2 shows human
annotation results. It is clear that our mod-
els (SPMNS500, SPMN1000, DPMN100) gener-
ate much more informative and valid responses
and much less meaningless or “safe” responses
than baseline models (S2SA, TAS2S). Specifi-
cally, SPMN500, SPMN1000 and DPMN100 all
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Table 2: Human Annotation

outperform S2SA and TAS2S by producing more
informative and valid responses. Also, we can
find that DPMN still outperforms SPMN500 and
SPMN1000 with only 100 relevant responses,
which is consistent with the observation made in
automatic evaluation (in terms of PPL-V and PPL-
T).

Case Study Table 3 shows several cases gen-
erated by different models. Note that the size of
training set and vocabulary used in our experi-
ments are relatively small compared to millions of
qa-pairs used in other works (Xing et al., 2017;
Wu et al., 2018), so it’s reasonable that bad cases
sometimes occur in results of baselines. How-
ever, our models, no matter the static one or the
dynamic one, could generate amazing responses
which are not only grammatical and informative,
but also have some emotional expressions like the
use of punctuation and repetition.

4 Related Work

4.1 Natural language generation

How to generate grammatical and interesting
sentences in different situations is one of the
core topics in natural language processing area.
Extensive works are proposed to generate po-
ems (Zhang et al., 2017), abstracts (Wang and
Ling, 2016), arguments (Hua and Wang, 2018),
stories (Peng et al., 2018) and so on. Although
existing approaches are useful in some ways, it’s
still difficult to generate natural sentences from
scratch and integrating retrieved results has re-
cently become a new fashion in this area. Hua and
Wang (2018) proposed an encoder-decoder style
neural network-based argument generation model
enriched with externally retrieved evidence from
Wikipedia. Li et al. (2018) devised a Retrieve-
Rerank-Rewrite model for abstractive summariza-
tion which uses retrieved results as soft template
to assist the decoding process.



Post 1 EEMMMEEWR, FFAIEN (Mono Lake in California,the US, fantastically beautiful )
S2SA HunkfHb 77 5 Eunk (It's unk if there’s unk)
TAS2S s ., (speechless)
SPMN500 AR A HTT? B FEFEE (Where’s the place? I'd like to go and see)
SPMNI1000 | iXZ7EHE? | (What's the place?!)
DPMN100 A AT (That's exactly where I want to go)
Post 2 B LB IR FIbaby (Oh! Look at the baby! She’s driving mom mad!)
S2SA unk,unk! (speechless)
TAS2S FH A E A (Wow,I like her,too)
SPMN500 TFRTZMW | IF A% ! (She’s so cute!)
SPMN1000 | FH1ZiXHEH (I was like her when I was at her age)
DPMN100 | Fcth4857F— (I want a baby like her)
Post 3 KELRRRFIEHSMEE ! BREENARN], —EERE!
(80 things to regret after decorating your house! Look at this article if you haven’t started decoration!)
S2SA BunkHF {8, F4H —unkfJunk! (When I have unk, I will have a unk unk!)
TAS2S , 17 (speechless)
SPMNS500 RMEEREE, —FEZIH! (OkI will read and collect it!)
SPMN1000 | RSEHH, 1RSEHH, ARSEH (very very very useful)
DPMN100 | RSEA, RSEH. REAH, R ! (very very very very useful!)

Table 3: The answers generated by different models for the sampled questions.

4.2 Response generation

Hand-craft rules, retrieval and generation are three
main solutions for conversational Al and genera-
tion is the most interesting one in current research
community. Li et al. (2016a; 2016b; 2017) pro-
posed a series of works in solving the “’safe reply”
problem using different approaches like redefining
the objective function or leveraging GAN. Xing
et al. (2017) considered topic coherence issue by
incorporating topical words. Dynamically restrict-
ing the target vocabulary is also an interesting idea
and Wu et al. (2018) proposed to filter irrelevant
words while achieving better computational effi-
ciency . He et al. (2017) introduced copy mecha-
nism to simulate people’s behaviors in real conver-
sations and the proposed model could copy useful
words from source sentences. Zhou et al. (2017)
indicated that emotion is quite important in real
dialogues thus an emotional chatting machine was
devised to generate emotional responses. Liu
et al. (2018) proposed a neural knowledge diffu-
sion (NKD) model to introduce knowledge into di-
alogue generation.

5 Conclusion and Future Work

In this paper, we propose S2SPMN, a simple yet
effective response generation model by exploiting
relevant information contained in large dialogue
dataset. Empirical studies indicate that simply se-
lecting responses from training set as prototypes
and integrating them into the generation process
could dramatically improve the quality of gener-
ated responses. Moreover, our model is very flex-
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ible and could be adapted to any other Seq2Seq
based generation methods. Most importantly, we
claim the intrinsic difference between RG and MT
and propose a new way to define response genera-
tion.

As the first work trying to help with the mean-
ing transformation between source and target, we
have obtained the encouraging progress. However,
we know that there are still many directions to
enrich the proposed framework. In future work,
we would like to devise more sophisticated solu-
tions to bridge the semantic gap in RG and explore
linguistic patterns in conversations like what has
been done in discourse analysis (Lei et al., 2018) .

Acknowledgments

This research was supported by National Natu-
ral Science Foundation of China (No. 61502344,
No. 61872278), Natural Scientific Research Pro-
gram of Wuhan University (No. 2042017kf0225).
Chenliang Li is the corresponding author.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014.  Neural machine translation by
jointly learning to align and translate. = CoRR,
abs/1409.0473.

Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yi-
hong Eric Zhao, and Dawei Yin. 2018. Hierarchi-
cal variational memory network for dialogue gener-
ation. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pages 1653—1662.



Shizhu He, Cao Liu, Kang Liu, and Jun Zhao.
2017. Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-
sequence learning. In ACL, pages 199-208.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Xinyu Hua and Lu Wang. 2018. Neural argument
generation augmented with externally retrieved ev-
idence. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics.

Min-Yen Kan, Xiangnan He, Wengiang Lei, Xisen
Jin, Zhaochun Ren, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In ACL.

Florian  Kreyssig, Iiigo Casanueva, Pawel
Budzianowski, and Milica Gasic. 2018. Neural user
simulation for corpus-based policy optimisation for
spoken dialogue systems. In SIGDIAL Conference.

Wengiang Lei, Yuanxin Xiang, Yuwei Wang, Qian
Zhong, Meichun Liu, and Min-Yen Kan. 2018. Lin-
guistic properties matter for implicit discourse re-
lation recognition: Combining semantic interaction,
topic continuity and attribution. In AAAIL

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL, pages 110-119.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep re-
inforcement learning for dialogue generation. In
EMNLP, pages 1192—-1202.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversarial
learning for neural dialogue generation. In EMNLP,
pages 2157-2169.

Wenjie Li, Furu Wei, Sujian Li, and Zigiang Cao. 2018.
Retrieve, rerank and rewrite: Soft template based
neural summarization. In ACL.

Qun Liu, Yang Feng, Hongshen Chen, Zhaochun Ren,
Dawei Yin, and Shuman Liu. 2018. Knowledge dif-
fusion for neural dialogue generation. In ACL.

Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and
Zhi Jin. 2016. Sequence to backward and forward
sequences: A content-introducing approach to gen-
erative short-text conversation. In COLING, pages
3349-3358.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43—49.

750

Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan
Chen, Weipeng Zhao, Haiqing Chen, Jun Huang,
and Wei Chu. 2017. Alime chat: A sequence to se-
quence and rerank based chatbot engine. In ACL,
pages 498-503.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
EMNLP, pages 583-593.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In ACL, pages 1577-1586.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104-3112.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR, abs/1506.05869.

Lu Wang and Wang Ling. 2016. Neural network-based
abstract generation for opinions and arguments. In
HLT-NAACL.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei hao Su, Stefan
Ultes, David Vandyke, and Steve J. Young. 2017.
A network-based end-to-end trainable task-oriented
dialogue system. In EACL.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei hao Su, David
Vandyke, and Steve J. Young. 2016. Multi-domain
neural network language generation for spoken dia-
logue systems. In HLT-NAACL.

Yu Wu, Wei Wu, Dejian Yang, Can Xu, Zhoujun Li,
and Ming Zhou. 2018. Neural response generation
with dynamic vocabularies. In AAAIL

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In AAAI, pages 3351—
3357.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang.
2017. Flexible and creative chinese poetry gener-
ation using neural memory. In ACL.

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
In Proceedings of the 27th International Confer-
ence on Computational Linguistics (COLING 2018),
pages 3740-3752.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
Learning discourse-level diversity for neural dialog
models using conditional variational autoencoders.
In ACL, pages 654—664.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2017. Emotional chatting
machine: emotional conversation generation with
internal and external memory. arXiv preprint
arXiv:1704.01074.



