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Abstract

We introduce DSDS: a cross-lingual neural
part-of-speech tagger that learns from dis-
parate sources of distant supervision, and re-
alistically scales to hundreds of low-resource
languages. The model exploits annotation pro-
jection, instance selection, tag dictionaries,
morphological lexicons, and distributed repre-
sentations, all in a uniform framework. The
approach is simple, yet surprisingly effective,
resulting in a new state of the art without ac-
cess to any gold annotated data.

1 Introduction

Low-resource languages lack manually annotated
data to learn even the most basic models such as
part-of-speech (POS) taggers. To compensate for
the absence of direct supervision, work in cross-
lingual learning and distant supervision has dis-
covered creative use for a number of alternative
data sources to learn feasible models:
– aligned parallel corpora to project POS annota-

tions to target languages (Yarowsky et al., 2001;
Agić et al., 2015; Fang and Cohn, 2016),

– noisy tag dictionaries for type-level approxima-
tion of full supervision (Li et al., 2012),

– combination of projection and type constraints
(Das and Petrov, 2011; Täckström et al., 2013),

– rapid annotation of seed training data (Garrette
and Baldridge, 2013; Garrette et al., 2013).
However, only one or two compatible sources of

distant supervision are typically employed. In re-
ality severely under-resourced languages may re-
quire a more pragmatic “take what you can get”
viewpoint. Our results suggest that combining su-
pervision sources is the way to go about creating
viable low-resource taggers.

We propose a method to strike a balance be-
tween model simplicity and the capacity to eas-
ily integrate heterogeneous learning signals. Our

Figure 1: Illustration of DSDS (Distant Supervi-
sion from Disparate Sources).

system is a uniform neural model for POS tag-
ging that learns from disparate sources of dis-
tant supervision (DSDS). We use it to combine:
i) multi-source annotation projection, ii) instance
selection, iii) noisy tag dictionaries, and iv) dis-
tributed word and sub-word representations. We
examine how far we can get by exploiting only the
wide-coverage resources that are currently readily
available for more than 300 languages, which is
the breadth of the parallel corpus we employ.

DSDS yields a new state of the art by jointly
leveraging disparate sources of distant supervision
in an experiment with 25 languages. We demon-
strate: i) substantial gains in carefully selecting
high-quality instances in annotation projection, ii)
the usefulness of lexicon features for neural tag-
ging, and iii) the importance of word embeddings
initialization for faster convergence.

2 Method

DSDS is illustrated in Figure 1. The base model
is a bidirectional long short-term memory net-
work (bi-LSTM) (Graves and Schmidhuber, 2005;
Hochreiter and Schmidhuber, 1997; Plank et al.,
2016; Kiperwasser and Goldberg, 2016). Let x1:n
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be a given sequence of input vectors. In our
base model, the input sequence consists of word
embeddings ~w and the two output states of a
character-level bi-LSTM ~c. Given x1:n and a de-
sired index i, the functionBiRNNθ(x1:n, i) (here
instantiated as LSTM) reads the input sequence in
forward and reverse order, respectively, and uses
the concatenated (◦) output states as input for tag
prediction at position i.1 Our model differs from
prior work on the type of input vectors x1:n and
distant data sources, in particular, we extend the
input with lexicon embeddings, all described next.

Annotation projection. Ever since the seminal
work of Yarowsky et al. (2001), projecting sequen-
tial labels from source to target languages has been
one of the most prevalent approaches to cross-
lingual learning. Its only requirement is that paral-
lel texts are available between the languages, and
that the source side is annotated for POS.

We apply the approach by Agić et al. (2016),
where labels are projected from multiple sources
and then decoded through weighted majority vot-
ing with word alignment probabilities and source
POS tagger confidences. We exploit their wide-
coverage Watchtower corpus (WTC), in contrast
to the typically used Europarl data. Europarl cov-
ers 21 languages of the EU with 400k-2M sen-
tence pairs, while WTC spans 300+ widely diverse
languages with only 10-100k pairs, in effect sac-
rificing depth for breadth, and introducing a more
radical domain shift. However, as our results show
little projected data turns out to be the most bene-
ficial, reinforcing breadth for depth.

While Agić et al. (2016) selected 20k projected
sentences at random to train taggers, we propose a
novel alternative: selection by coverage. We rank
the target sentences by percentage of words cov-
ered by word alignment from 21 sources of Agić
et al. (2016), and select the top k covered instances
for training. In specific, we employ the mean
coverage ranking of target sentences, whereby
each target sentence is coupled with the arithmetic
mean of the 21 individual word alignment cover-
ages for each of the 21 source-language sentences.
We show that this simple approach to instance se-
lection offers substantial improvements: across all
languages, we learn better taggers with signifi-
cantly fewer training instances.

1CRF decoding did not consistently improve POS accu-
racy, as recently also independently found (Yang et al., 2018).

Dictionaries. Dictionaries are a useful source
for distant supervision (Li et al., 2012; Täckström
et al., 2013). There are several ways to exploit
such information: i) as type constraints during en-
coding (Täckström et al., 2013), ii) to guide unsu-
pervised learning (Li et al., 2012), or iii) as addi-
tional signal at training. We focus on the latter and
evaluate two ways to integrate lexical knowledge
into neural models, while comparing to the former
two: a) by representing lexicon properties as n-hot
vector (e.g., if a word has two properties accord-
ing to lexicon src, it results in a 2-hot vector, if the
word is not present in src, a zero vector), with m
the number of lexicon properties; b) by embedding
the lexical features, i.e., ~esrc is a lexicon src em-
bedded into an l-dimensional space. We represent
~esrc as concatenation of all embedded m proper-
ties of length l, and a zero vector otherwise. Tun-
ing on the dev set, we found the second embedding
approach to perform best, and simple concatena-
tion outperformed mean vector representations.

We evaluate two dictionary sources, motivated
by ease of accessibility to many languages: WIK-
TIONARY, a word type dictionary that maps to-
kens to one of the 12 Universal POS tags (Li
et al., 2012; Petrov et al., 2012); and UNIMORPH,
a morphological dictionary that provides inflec-
tional paradigms across 350 languages (Kirov
et al., 2016). For Wiktionary, we use the freely
available dictionaries from Li et al. (2012) and
Agić et al. (2017). The size of the dictionaries
ranges from a few thousands (e.g., Hindi and Bul-
garian) to 2M (Finnish UniMorph). Sizes are pro-
vided in Table 1, first columns. UniMorph covers
between 8-38 morphological properties (for En-
glish and Finnish, respectively).

Word embeddings. Embeddings are available
for many languages. Pre-initialization of ~w offers
consistent and considerable performance improve-
ments in our distant supervision setup (Section 4).
We use off-the-shelf Polyglot embeddings (Al-
Rfou et al., 2013), which performed consistently
better than FastText (Bojanowski et al., 2016).

3 Experiments

Baselines. We compare to the following weakly-
supervised POS taggers:
– AGIC: Multi-source annotation projection with

Bible parallel data by Agić et al. (2015).
– DAS: The label propagation approach by Das

and Petrov (2011) over Europarl data.
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Figure 2: Learning curves for: a) random vs.
coverage-based sentence selection in annotation
projection, both with Polyglot embeddings, and b)
pre-trained embeddings on top of coverage-based
selection. Means over 21 languages.

– GARRETTE: The approach by Garrette and
Baldridge (2013) that works with projections,
dictionaries, and unlabeled target text.

– LI: Wiktionary supervision (Li et al., 2012).

Data. Our set of 25 languages is motivated by
accessibility to embeddings and dictionaries. In all
experiments we work with the 12 Universal POS
tags (Petrov et al., 2012). For development, we
use 21 dev sets of the Universal Dependencies 2.1
(Nivre et al., 2017). We employ UD test sets on
additional languages as well as the test sets of Agić
et al. (2015) to facilitate comparisons. Their test
sets are a mixture of CoNLL (Buchholz and Marsi,
2006; Nivre et al., 2007) and HamleDT test data
(Zeman et al., 2014), and are more distant from
the training and development data.

Model and parameters. We extend an off-the-
shelf state-of-the-art bi-LSTM tagger with lexicon
information. The code is available at: https://
github.com/bplank/bilstm-aux. The
parameter l=40 was set on dev data across all lan-
guages. Besides using 10 epochs, word dropout
rate (p=.25) and 40-dimensional lexicon embed-
dings, we use the parameters from Plank et al.
(2016). For all experiments, we average over 3
randomly seeded runs, and provide mean accu-
racy. For the learning curve, we average over 5
random samples with 3 runs each.

4 Results

Table 1 shows the tagging accuracy for individual
languages, while the means over all languages are
given in Figure 2. There are several take-aways.

Data selection. The first take-away is that
coverage-based instance selection yields substan-

tially better training data. Most prior work on an-
notation projection resorts to arbitrary selection;
informed selection clearly helps in this noisy data
setup, as shown in Figure 2 (a). Training on 5k
instances results in a sweet spot; more data (10k)
starts to decrease performance, at a cost of run-
time. Training on all WTC data (around 120k) is
worse for most languages. From now on we con-
sider the 5k model trained with Polyglot as our
baseline (Table 1, column “5k”), obtaining a mean
accuracy of 83.0 over 21 languages.

Embeddings initialization. Polyglot initializa-
tion offers a large boost; on average +3.8% abso-
lute improvement in accuracy for our 5k training
scheme, as shown in Figure 2 (b). The big gap in
low-resource setups further shows their effective-
ness, with up to 10% absolute increase in accuracy
when training on only 500 instances.

Lexical information. The main take-away is
that lexical information helps neural tagging, and
embedding it proves the most helpful. Embedding
Wiktionary tags reaches 83.7 accuracy on average,
versus 83.4 for n-hot encoding, and 83.2 for type
constraints. Only on 4 out of 21 languages are type
constraints better. This is the case for only one
language for n-hot encoding (French). The best
approach is to embed both Wiktionary and Uni-
morph, boosting performance further to 84.0, and
resulting in our final model. It helps the most on
morphological rich languages such as Uralic.

On the test sets (Table 4, right) DSDS reaches
87.2 over 8 test languages intersecting Li et al.
(2012) and Agić et al. (2016). It reaches 86.2 over
the more commonly used 8 languages of Das and
Petrov (2011), compared to their 83.4. This shows
that our novel “soft” inclusion of noisy dictionar-
ies is superior to a hard decoding restriction, and
including lexicons in neural taggers helps. We did
not assume any gold data to further enrich the lex-
icons, nor fix possible tagset divergences.

5 Discussion

Analysis. The inclusion of lexicons results in
higher coverage and is part of the explanation for
the improvement of DSDS; see correlation in Fig-
ure 3 (a). What is more interesting is that our
model benefits from the lexicon beyond its con-
tent: OOV accuracy for words not present in the
lexicon overall improves, besides the expected im-
provement on known OOV, see Figure 3 (b).

https://github.com/bplank/bilstm-aux
https://github.com/bplank/bilstm-aux
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LEX (103) DEV SETS (UD2.1) TEST SETS

LANGUAGE W U 5k TCW n-hotW ~eW DSDS DAS LI GARRETTE AGIC DSDS

Bulgarian (bg) 3 47 88.6 88.6 88.9 89.6 89.7 – – 83.1 77.7 83.9
Croatian (hr) 20 – 84.9 85.4 84.9 84.8 †84.8 – – – 67.1 †78.0
Czech (cs) 14 72 86.6 86.6 86.9 87.6 87.2 – – – 73.3 86.8
Danish (da) 22 24 89.6 89.0 89.8 90.2 90.0 83.2 83.3 78.8 79.0 84.5
Dutch (nl) 52 26 88.3 88.9 89.0 89.7 89.8 79.5 86.3 – – 83.9
English (en) 358 91 86.5 87.4 86.8 87.3 87.3 – 87.1 80.8 73.0 85.7
Finnish (fi) 104 2,345 81.5 81.2 81.8 82.4 82.4 – – – – –
French (fr) 17 274 91.0 89.6 91.7 91.2 91.4 – – 85.5 76.6 88.7
German (de) 62 71 85.0 86.4 85.5 86.0 86.7 82.8 85.8 87.1 80.2 84.1
Greek (el) 21 – 80.6 85.7 80.2 80.5 †80.5 82.5 79.2 64.4 52.3 †81.1
Hebrew (he) 3 12 76.0 76.1 75.5 74.9 75.3 – – – – –
Hindi (hi) 2 26 64.6 64.6 64.8 65.4 66.2 – – – 67.6 63.1
Hungarian (hu) 13 13 75.6 75.6 75.3 75.7 77.9 – – 77.9 72.0 77.3
Italian (it) 478 410 91.9 91.7 93.4 93.5 93.7 86.8 86.5 83.5 76.9 92.1
Norwegian (no) 47 18 90.9 90.9 90.9 91.0 91.5 – – 84.3 76.7 86.2
Persian (fa) 4 26 42.8 43.0 43.7 43.5 43.8 – – – 59.6 43.6
Polish (pl) 6 132 84.7 84.6 84.2 84.8 86.0 – – – 75.1 84.4
Portuguese 41 211 91.4 91.5 92.3 92.9 92.2 87.9 84.5 87.3 83.8 89.4
Romanian (ro) 7 4 83.9 83.9 84.8 85.3 86.3 – – – – –
Spanish (es) 234 324 90.4 88.6 91.0 91.5 92.0 84.2 86.4 88.7 81.4 91.7
Swedish (sv) 89 67 88.9 88.9 89.6 89.9 89.9 80.5 86.1 76.1 75.2 83.1

AVG(21) 83.0 83.2 83.4 83.7 84.0 AVG(8: DAS) 83.4 84.8 80.8 75.5 86.2
AVG(8: LI∩AGIC) – 84.9 80.8 75.2 87.2

GERMANIC (6) 88.2 88.6 88.6 89.0 89.2 GERMANIC (4: DAS) 81.5 85.4 – – 83.9
ROMANCE (5) 89.7 89.0 90.6 90.9 91.1 ROMANCE (3: DAS) 86.3 85.8 86.5 80.7 91.1
SLAVIC (4) 86.2 86.3 86.2 86.7 86.9
INDO-IRANIAN (2) 53.7 53.8 54.3 54.4 55.0
URALIC (2) 78.5 78.4 78.6 79.0 80.1

Table 1: Results on the development sets and comparison of our best model to prior work. LEX: Size
(word types) of dictionaries (W: Wiktionary, U: UniMorph). TCW : type-constraints using Wiktionary;
~eW (embedded Wiktionary tags), DSDS: our model with ~eW∪U . Results indicated by † use W only. Best
result in boldface; in case of equal means, the one with lower std is boldfaced. Averages over language
families (with two or more languages in the sample, number of languages in parenthesis).

More languages. All data sources employed in
our experiment are very high-coverage. However,
for true low-resource languages, we cannot safely
assume the availability of all disparate information
sources. Table 2 presents results for four addi-
tional languages where some supervision sources
are missing. We observe that adding lexicon in-
formation always helps, even in cases where only
1k entries are available, and embedding it is usu-
ally the most beneficial way. For closely-related
languages such as Serbian and Croatian, using re-
sources for one aids tagging the other, and modern
resources are a better fit. For example, using the
Croatian WTC projections to train a model for Ser-
bian is preferable over in-language Serbian Bible
data where the OOV rate is much higher.

How much gold data? We assume not having
access to any gold annotated data. It is thus in-
teresting to ask how much gold data is needed to
reach our performance. This is a tricky question,
as training within the same corpus naturally favors
the same corpus data. We test both in-corpus (UD)
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Figure 3: Analysis of DSDS accuracy improve-
ments over the baseline on all development lan-
guages with respect to a) token coverage by the
lexicon, including Pearson’s ρ; b) OOV accuracy
for tokens in/not in the lexicon, with 95% confi-
dence intervals of the mean. Here, a token is cov-
ered if we can find it in at least one lexicon.

and out-of-corpus data (our test sets) and notice an
important gap: while in-corpus only 50 sentences
are sufficient, outside the corpus one would need
over 200 sentences. This experiment was done for
a subset of 18 languages with both in- and out-of-
corpus test data.
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LEX (103) TEST SETS

LANGUAGE TEST PROJ EMB W U TnT 5k TCW n-hotW ~eW DSDS

Basque (eu) UD Bible eu 1 – 57.5 61.8 61.8 61.4 62.7 †62.7
Basque (eu) CoNLL Bible eu 1 – 57.0 60.3 60.3 60.3 61.3 †61.3
Estonian (et) UD WTC et – 10 79.5 80.6 – – – 81.5
Serbian (sr) UD WTC (hr) hr (hr) 20 – 84.0 84.7 85.5 85.1 85.2 †85.2
Serbian (sr) UD Bible (sr) hr (hr) 20 – 77.1 78.9 79.4 80.5 80.7 †80.7
Tamil (ta) UD WTC ta – – 58.2 61.2 – – – –

Table 2: Results for languages with missing data sources: WTC projections, Wiktionary (W), or Uni-
Morph (U). Test sets (TEST), projection sources (PROJ), and embeddings languages (EMB) are indicated.
Comparison to TnT (Brants, 2000) trained on PROJ. Results indicated by † use W only.

Further comparison. In Table 1 we directly re-
port the accuracies from the original contributions
by DAS, LI, GARRETTE, and AGIC over the same
test data. We additionally attempted to reach the
scores of LI by running their tagger over the Ta-
ble 1 data setup. The results are depicted in Fig-
ure 4 as mean accuracies over EM iterations until
convergence. We show: i) LI peaks at 10 iterations
for their test languages, and at 35 iterations for all
the rest. This is in slight contrast to 50 iterations
that Li et al. (2012) recommend, although select-
ing 50 does not dramatically hurt the scores; ii)
Our replication falls ∼5 points short of their 84.9
accuracy. There is a large 33-point accuracy gap
between the scores of Li et al. (2012), where the
dictionaries are large, and the other languages in
Figure 4, with smaller dictionaries.

Compared to DAS, our tagger clearly benefits
from pre-trained word embeddings, while theirs
relies on label propagation through Europarl, a
much cleaner corpus that lacks the coverage of the
noisier WTC. Similar applies to Täckström et al.
(2013), as they use 1-5M near-perfect parallel sen-
tences. Even if we use much smaller and noisier
data sources, DSDS is almost on par: 86.2 vs. 87.3
for the 8 languages from Das and Petrov (2011),
and we even outperform theirs on four languages:
Czech, French, Italian, and Spanish.

6 Related Work

Most successful work on low-resource POS tag-
ging is based on projection (Yarowsky et al.,
2001), tag dictionaries (Li et al., 2012), annota-
tion of seed training data (Garrette and Baldridge,
2013) or even more recently some combination
of these, e.g., via multi-task learning (Fang and
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Figure 4: The performance of LI with our dictio-
nary data over EM iterations, separate for the lan-
guages from Li et al. (2012) and all the remaining
languages in Table 1.

Cohn, 2016; Kann et al., 2018). Our paper con-
tributes to this literature by leveraging a range of
prior directions in a unified, neural test bed.

Most prior work on neural sequence predic-
tion follows the commonly perceived wisdom that
hand-crafted features are unnecessary for deep
learning methods. They rely on end-to-end train-
ing without resorting to additional linguistic re-
sources. Our study shows that this is not the case.
Only few prior studies investigate such sources,
e.g., for MT (Sennrich and Haddow, 2016; Chen
et al., 2017; Li et al., 2017; Passban et al., 2018)
and Sagot and Martı́nez Alonso (2017) for POS
tagging use lexicons, but only as n-hot features
and without examining the cross-lingual aspect.

7 Conclusions

We show that our approach of distant supervision
from disparate sources (DSDS) is simple yet sur-
prisingly effective for low-resource POS tagging.
Only 5k instances of projected data paired with
off-the-shelf embeddings and lexical information
integrated into a neural tagger are sufficient to
reach a new state of the art, and both data selec-
tion and embeddings are essential components to
boost neural tagging performance.



619

References
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Mathematics and Physics, Charles University.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
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