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Abstract

We address fine-grained multilingual lan-
guage identification: providing a language
code for every token in a sentence, includ-
ing codemixed text containing multiple lan-
guages. Such text is prevalent online, in doc-
uments, social media, and message boards.
We show that a feed-forward network with a
simple globally constrained decoder can accu-
rately and rapidly label both codemixed and
monolingual text in 100 languages and 100
language pairs. This model outperforms pre-
viously published multilingual approaches in
terms of both accuracy and speed, yielding an
800x speed-up and a 19.5% averaged absolute
gain on three codemixed datasets. It further-
more outperforms several benchmark systems
on monolingual language identification.

1 Introduction

Codemixed text is common in user-generated con-
tent, such as web articles, tweets, and message
boards, but most current language ID models ig-
nore it. Codemixing involves language switches
within and across constituents, as seen in these
English-Spanish and English-Hindi examples.

(1) dame [NP ese book that you told me about]
Give me this book that you told me about.

(2) [NP aapki profile photo] [V P pyari hai]
Your profile photo is lovely.

Codemixing is the norm in many communities,
e.g. speakers of both Hindi and English. As much
as 17% of Indian Facebook posts (Bali et al., 2014)
and 3.5% of all tweets (Rijhwani et al., 2017)
are codemixed. This paper addresses fine-grained
(token-level) language ID, which is needed for
many multilingual downstream tasks, including
syntactic analysis (Bhat et al., 2018), machine
translation and dialog systems. Consider this ex-

ample, which seeks a Spanish translation for the
English word squirrel:

(3) como se llama un squirrel en español
What do you call a squirrel in Spanish?

Per-token language labels are needed; a system
cannot handle the whole input while assuming it
is entirely English or Spanish.

Fine-grained language ID presents new chal-
lenges beyond sentence- or document-level lan-
guage ID. Document-level labels are often avail-
able in metadata, but token-level labels are not.
Obtaining token-level labels for hundreds of lan-
guages is infeasible: candidate codemixed exam-
ples must be identified and multilingual speak-
ers are required to annotate them. Furthermore,
language ID models typically use character- and
word-level statistics as signals, but shorter inputs
have greater ambiguity and less context for pre-
dictions. Moreover, codemixing is common in
informal contexts that often have non-standard
words, misspellings, transliteration, and abbre-
viations (Baldwin et al., 2013). Consider (4),
a French-Arabic utterance that has undergone
transliteration, abbreviation and diacritic removal.

(4) cv bien hmd w enti
ça va bien alhamdullilah wa enti
ça va bien �

I
	
K@ð é

�
<Ë @ YÒmÌ'@

It’s going well, thank God, and you?

Language ID models must be fine-grained and ro-
bust to surface variations to handle such cases.

We introduce CMX, a fast, accurate language
ID model for CodeMiXed text that tackles these
challenges. CMX first outputs a language distri-
bution for every token independently with efficient
feed-forward classifiers. Then, a decoder chooses
labels using both the token predictions and global
constraints over the entire sentence. This decoder
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produces high-quality predictions on monolingual
texts as well as codemixed inputs. We furthermore
show how selective, grouped dropout enables a
blend of character and word-level features in a sin-
gle model without the latter overwhelming the for-
mer. This dropout method is especially important
for CMX’s robustness on informal texts.

We also create synthetic training data to com-
pensate for the lack of token-level annotations.
Based on linguistic patterns observed in real-
world codemixed texts, we generate two mil-
lion codemixed examples in 100 languages. In
addition, we construct and evaluate on a new
codemixed corpus of token-level language ID la-
bels for 25k codemixed sentences (330k tokens).
This corpus contains examples derived from user-
generated posts that contain English mixed with
Spanish, Hindi or Indonesian.

Language ID of monolingual text has been ex-
tensively studied (Hughes et al., 2006; Baldwin
and Lui, 2010; Lui and Baldwin, 2012; King and
Abney, 2013), but language ID for codemixed text
has received much less attention. Some prior work
has focused on identifying larger language spans
in longer documents (Lui et al., 2014; Jurgens
et al., 2017) or estimating proportions of multiple
languages in a text (Lui et al., 2014; Kocmi and
Bojar, 2017). Others have focused on token-level
language ID; some work is constrained to pre-
dicting word-level labels from a single language
pair (Nguyen and Doğruöz, 2013; Solorio et al.,
2014; Molina et al., 2016a; Sristy et al., 2017),
while others permit a handful of languages (Das
and Gambäck, 2014; Sristy et al., 2017; Rijhwani
et al., 2017). In contrast, CMX supports 100 lan-
guages. Unlike most previous work–with Rijh-
wani et al. 2017 a notable exception–we do not as-
sume a particular language pair at inference time.
Instead, we only assume a large fixed set of lan-
guage pairs as a general constraint for all inputs.

We define and evaluate CMX and show that
it strongly outperforms state-of-the-art language
ID models on three codemixed test sets cover-
ing ten languages, and a monolingual test set in-
cluding 56 languages. It obtains a 19.5% abso-
lute gain on codemixed data and a 1.1% abso-
lute gain (24% error reduction) on the monolin-
gual corpus. Our analysis reveals that the gains
are even more pronounced on shorter text, where
the language ID task naturally becomes more dif-
ficult. In terms of runtime speed, CMX is roughly

800x faster than existing token-level models when
tested on the same machine. Finally, we demon-
strate a resource-constrained but competitive vari-
ant of CMX that reduces memory usage from 30M
to 0.9M.

2 Data

We create synthetic codemixed training examples
to address the expense and consequent paucity of
token-level language ID labels. We also anno-
tate real-world codemixed texts to measure per-
formance of our models, understand code-mixing
patterns and measure the impact of having such
examples as training data.

Synthetic data generation from monolingual
text. For training models that support hun-
dreds of languages, it is simply infeasible to ob-
tain manual token-level annotations to cover ev-
ery codemixing scenario (Rijhwani et al., 2017).
However, it is often easy to obtain sentence-level
language labels for monolingual texts. This allows
projection of sentence-level labels to each token,
but a model trained only on such examples will
lack codemixed contexts and thus rarely switch
within a sentence. To address this, we create syn-
thetic training examples that mix languages within
the same sequence.

To this end, we first collect a monolingual cor-
pus of 100 languages from two public resources:
the W2C corpus1 and the Corpus Crawler project.2

Then we generate a total of two million synthetic
codemixed examples for all languages.

In generating each training example, we first
sample a pair of languages uniformly.3 We sample
from a set of 100 language pairs, mainly includ-
ing the combination of English and a non-English
language. The full set is listed in the supplemental
material. Then we choose uniformly between gen-
erating an intra-mix or inter-mix example, which
are two of the most prominent types of codemix-
ing in the real world (Barman et al., 2014; Das and
Gambäck, 2014).4 An intra-mix sentence like (1)
starts with one language and switches to another
language, while an inter-mix sentence like (2) has

1
http://ufal.mff.cuni.cz/w2c

2
https://github.com/googlei18n/corpuscrawler

3Both our collected codemixed data and Barman et al.
(2014) indicate that more than 95% of codemixed instances
are bilingual.

4The two types of codemixing have roughly equal propor-
tions in our labeled corpus.

http://ufal.mff.cuni.cz/w2c
https://github.com/googlei18n/corpuscrawler
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en/es en/hi en/id
Number of tokens 98k 140k 94k
Number of sentences 9.5k 9.9k 5.3k

Table 1: Statistics of our YouTube and Google+
dataset, GY-Mix.

Test Set Languages
Twitter-Mix en, es

Web-Mix6 cs, en, eu, hu, hr, sk
GY-Mix en, es, hi, id

KB-Mono56 56 languages

Table 2: The languages of each testing corpora
in our experiments. The first three sets primarily
include codemixed texts while the last one (KB-
Mono56) is monolingual.

an overall single language with words from a sec-
ond language in the middle. To generate an exam-
ple, we uniformly draw phrases from our monolin-
gual corpus for the chosen target languages, and
then concatenate or mix phrases randomly. The
shorter phrase in inter-mix examples contains one
or two tokens, and the maximum length of each
example is eight tokens.

Manual annotations on real-world codemixed
text. We obtain candidates by sampling
codemixed public posts from Google+5 and
video comments from YouTube,6 limited to
three language pairs with frequent code switch-
ing: English-Spanish, English-Hindi7 and
English-Indonesian. All texts are tokenized and
lowercased by a simple rule-based model before
annotation. Both the candidate selection and
the annotation procedures are done by linguists
proficient in both languages. The final annotated
corpus contains 24.7k sentences with 334k tokens;
30% are monolingual, 67% are bilingual and 3%
have more than two languages. Finally, we create
an 80/10/10 split (based on tokens) for training,
development and testing, respectively. Table 1
gives the token and sentence counts per language.
In the rest of the paper, we refer to this dataset as
GY-Mix.

Evaluation datasets. We evaluate on four
datasets, three codemixed and one monolingual.
For a fair comparison, we report accuracies on

5
https://plus.google.com/

6
https://www.youtube.com/

7Hindi texts found in both Devanagari and Latin scripts.
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Figure 1: Basic feed-forward network unit for scor-
ing each token in the input and predicting possible
languages. Multiple features are embedded, con-
catenated, and fed into a hidden layer with ReLU
activation.

subsets of these test sets that include languages
supported by all tested models. Examples with
Hindi words written in Latin script are also re-
moved because the benchmark systems we com-
pare to do not support it.

• Twitter-Mix: Codemixed data from the
EMNLP 2016 shared task (Molina et al.,
2016b).

• Web-Mix6: Codemixed data crawled from
multilingual web pages (King and Abney,
2013), using a subset of six languages.

• GY-Mix: The test set of our token-level
codemixed data (en-es, en-hi, and en-id).

• KB-Mono56: Monolingual test set of Kocmi
and Bojar (2017), using a subset of 56 lan-
guages.

Table 2 summarizes the final language setting of
each test set used in our experiments.

3 Identifying Language Spans in
Codemixed Text

CMX uses two stages to assign language codes to
every token in a sentence. First, it predicts a dis-
tribution over labels for each token independently
with a feed-forward network that uses character
and token features from a local context window.
Then, it finds the best assignment of token labels
for an entire sentence using greedy search, sub-
ject to a set of global constraints. Compared to
sequence models like CRFs or RNNs, this two-
stage strategy has several major advantages for
fine-grained language ID: (1) it does not require
annotated codemixed text over hundreds of lan-
guages and their mixed pairings, (2) learning in-
dependent classifiers followed by greedy decoding

https://plus.google.com/
https://www.youtube.com/
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Features Window D V

Character n-gram +/- 1 16 1000-5000
Script 0 8 27
Lexicon +/- 1 16 100

Table 3: Feature spaces of CMX. The window col-
umn indicates that CMX uses character n-gram
and lexicon features extracted from the previous
and following tokens as well as the current one.

is significantly faster than structured training (es-
pecially considering the large label set inherent in
language ID), and (3) it is far easier to implement.

3.1 Token Model
Simple feed-forward networks have achieved near
state-of-the-art performance in a wide range of
NLP tasks (Botha et al., 2017; Weiss et al., 2015).
CMX follows this strategy, with embedding, hid-
den, and softmax layers as shown in Figure 1. The
inputs to the network are grouped feature matrices,
e.g. character, script and lexicon features. Each
group g’s features are represented by a sparse ma-
trix Xg ∈ RFg×Vg , where Fg is the number of
feature templates and Vg is the vocabulary size
of the feature group. The network maps sparse
features to dense embedding vectors and concate-
nates them to form the embedding layer:

h0 = vec[XgEg|∀g] (1)

where Eg ∈ RVg×Dg is a learned embedding ma-
trix per group. The final size of the embedding
layer |h0| =

∑
g FgDg is the sum of all embedded

feature sizes. CMX uses both discrete and contin-
uous features. We use a single hidden layer with
size 256 and apply a rectified linear unit (ReLU)
over hidden layer outputs. A final softmax layer
outputs probabilities for each language. The net-
work is trained per-token with cross-entropy loss.

We explain the extraction process of each fea-
ture type below. Table 3 summarizes the three
types of features and their sizes used in CMX.
Character and lexicon features are extracted for
the previous and following tokens as well as the
current token to provide additional context.

Character n-gram features We apply character
n-gram features with n = [1, 4]. RNNs or CNNs
would provide more flexible character feature rep-
resentations, but our initial experiments did not
show significant gains over simpler n-gram fea-
tures. We use a distinct feature group for each

n. The model averages the embeddings accord-
ing to the fractions of each n-gram string in the
input token. For example, if the token is banana,
then one of the extracted trigrams is ana and the
corresponding fraction is 2/6. Note that there are
six trigrams in total due to an additional boundary
symbol at both ends of the token.

Following Botha et al. (2017), we use feature
hashing to control the size V and avoid storing a
big string-to-id map in memory during runtime.
The feature id of an n-gram string x is given by
H(x)mod Vg (Ganchev and Dredze, 2008), where
H is a well-behaved hash function. We set V =
1000, 1000, 5000, 5000 for n = 1, 2, 3, 4 respec-
tively; these values yield good performance and
are far smaller than the number of n-gram types.

Script features Some text scripts are strongly
correlated with specific languages. For example,
Hiragana is only used in Japanese and Hangul is
only used in Korean. Each character is assigned
one of the 27 types of scripts based on its unicode
value. The final feature vector contains the nor-
malized counts of all character scripts observed in
the input token.

Lexicon features This feature group is backed
by a large lexicon table which holds a language
distribution for each token observed in the mono-
lingual training data. For example, the word
mango occurs 48% of the time in English docu-
ments and 18% in Spanish ones. The table con-
tains about 6.2 million entries. We also construct
an additional prefix table of language distributions
for 6-gram character prefixes. If the input token
matches an entry in the lexicon table (or failing
that, the prefix table), our model extracts the fol-
lowing three groups of features.

• Language distribution. The language distri-
bution itself is included as the feature vector.

• Active languages. As above, but feature val-
ues are set to 1 for all non-zero probabili-
ties. For example, the word mango has fea-
ture value 1 on both English and Spanish.

• Singletons. If the token is associated with
only one language, return a one-hot vector
whose only non-zero value is the position in-
dicating that language.

The size of all lexicon feature vectors is equal to
the number of supported languages.
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Figure 2: Example of our decoding algorithm with global constraints for example (4) for two allowed
language pairs, en/ar-Latn and fr/ar-Latn.

50% dropout 

Lexicon-basedN-gram

Hidden Layer

Softmax

Figure 3: Our selective feature dropout method.
The model randomly sets the lexicon feature vec-
tors to zero with 50% probability while n-gram
features are always used.

3.2 Selective Feature Dropout

Preliminary experiments showed poor perfor-
mance, especially on informal texts, when all three
types of features are simply merged. Consider
the following example outputs on misspelled word
Ennnglish, for which no lexicon features fire.

Input: Ennnglish
With Lexicon Features W/o Lexicon Features

• p(sv) = 0.27 • p(en) = 0.74
• p(da) = 0.24 • p(nl) = 0.10
• p(nl) = 0.18 • p(fy) = 0.06
• . . . • . . .

Without dropout, the model with lexicon features
does not make effective use of the token’s charac-
ter n-grams and makes a catastrophically wrong
prediction. The core problem is that lexicon fea-
tures are both prevalent and highly predictive for
language ID; during training, this dampens the up-
dating of weights of n-gram features and thus di-
minishes their overall utility.

To address this issue and make CMX more
robust to noisy inputs, we selectively apply a
grouped feature dropout strategy that stochasti-
cally down-weights lexicon features during train-
ing. Figure 3 illustrates the idea: for each input,
after feature extraction, the vector of lexicon fea-

tures is randomly set to zero. This way, the model
must rely entirely on n-gram features for this par-
ticular input. Note that our feature dropout is dif-
ferent from standard dropout in at least two ways:
(1) dropout happens to entire feature groups rather
than on individual neurons, (2) we selectively ap-
ply dropout only on a subset of features. After
tuning the dropout rate on development data (Fig-
ure 5) we choose a dropout rate of 50%. Section
4.3 explains the tuning procedure.

3.3 Decoding with Global Constraints

Given a trained model, the goal of decoding is to
find the sequence of per-token languages that max-
imizes the overall score. The simple, greedy strat-
egy of picking the top prediction for each token
over-predicts too many languages in a single sen-
tence. For example, on average the greedy method
predicts more than 1.7 languages per sentence on
monolingual inputs. Because the token classier
uses a window including only the previous, cur-
rent, and next token, it has a quite limited view on
the entire sequence.

Motivated by this observation, we add the
following global constraint in decoding: only
monolingual outputs or codemixed outputs from
a fixed set of language pairs are permitted. We
choose a set of 100 language pairs, primarily in-
cluding the combination of English and a non-
English language. The full set is listed in the sup-
plemental material.

Finally, we introduce a straightforward variant
of greedy decoding that finds the optimal language
assignment in the presence of these global con-
straints. We independently find the best assign-
ment under each allowed language combination
(monolingual or language pair) and return the one
with the highest score.

Figure 2 shows paths for example (4) with
two allowed language pairs: en/ar-Latn and
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DATASET Twitter-Mix Web-Mix6 GY-Mix
Average

LANGUAGES es/en 6 Langs es/en hi/en hi/hi-Latn/en id/en

LanideNN 71.3 52.1 65.7 79.6 – 22.9 58.3
EquiLID 87.9 63.5 71.0 81.9 – 64.9 73.9
CMX-small 88.8 91.0 89.9 98.2 85.0 86.7 90.9
CMX 92.4 93.2 91.8 98.4 87.4 91.1 93.4

Table 4: Codemixed Texts: Token-level accuracy (%) of different approaches on codemixed texts.
“CMX-small” corresponds to our small model without lexicon features and vocabulary tables. The hi/hi-
Latn/en column shows the accuracy on texts in English, Latin Hindi and Devanagari Hindi; the baseline
models do not support identification of text in Hindi in Latin script. Average shows averaged accuracy
on all sets except hi/hi-Latn/en. Boldface numbers indicate the best accuracy for each testing set.

fr/ar-Latn.8 The two paths in dashed and solid
lines indicate the best assignment for each lan-
guage pair respectively. Because scoring is in-
dependent across tokens, each subtask is com-
puted in O(N) time. The total decoding time is
O(N |L|) where L is the constraint set, and the
global optimality of this algorithm is guaranteed
because the assignment found in each subtask is
optimal.

4 Experiments

4.1 Training Setup

We train CMX on the concatenation of three
datasets: (a) GY-Mix’s training portion, (b) syn-
thetic codemixed data and (c) a monolingual cor-
pus that covers 100 languages. Every token in the
training set spawns a training instance. Our train-
ing set consists of 38M tokens in total, which is on
the same magnitude as the sizes of training data
reported in previous work (Jurgens et al., 2017;
Joulin et al., 2016).

We use mini-batched averaged stochastic gra-
dient descent (ASGD) (Bottou, 2010) with mo-
mentum (Hinton, 2012) and exponentially decay-
ing learning rates to learn the parameters of the
network. We fix the mini-batch size to 256 and the
momentum rate to 0.9. We tune the initial learning
rate and the decay step using development data.

4.2 Main Results

Codemixed Texts Table 4 lists our main results
on the codemixed datasets. We primarily compare
our approach against two benchmark systems:
EquiLID (Jurgens et al., 2017) and LanideNN

8Scores are sorted. Some languages omitted for illustra-
tion purposes.

(Kocmi and Bojar, 2017). Both achieved state-
of-the-art performance on several monolingual
and codemixed language ID datasets. LanideNN
makes a prediction for every character, so we con-
vert its outputs to per-token predictions by a vot-
ing method over characters in each word. For both
benchmarks, we use the public pre-trained model
provided by the authors. The EquiLID model uses
53M parameters, LanideNN uses 3M, and CMX
only uses 0.28M parameters.9

Across all datasets, CMX consistently outper-
forms both benchmark systems by a large mar-
gin. On average, our full model (CMX) is 19.5%
more accurate than EquiLID (93.4% vs. 73.9%);
the gain is even larger compared to LanideNN.
Note that none of the models are trained on the
Twitter-Mix or the Web-Mix6 dataset, so these
two datasets provide an evaluation on the out-
domain performance of each approach. In this set-
ting CMX also yields significant improvement in
accuracy, e.g. a 4.5% (absolute) gain over Equi-
LID on the Twitter-Mix dataset.

An Even Smaller Model We further compare
between CMX and a variant we call CMX-small,
which has no access to lexicon resources or lex-
icon features. This smaller variant has only
237k parameters and reduces the memory foot-
print from 30M to 0.9M during runtime, while
the (average) loss on accuracy is only 2.5%. This
comparison demonstrates that our approach is also
an excellent fit for resource-constrained environ-
ments, such as on mobile phones.

Monolingual Texts In addition to EquiLID and
LanideNN, we further compare CMX against

9We explain how we compute the number of parameters
of our model in the supplemental material.
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MODEL Sent Acc. Char/Sec

CODEMIXING MODELS

LanideNN 94.6 0.17k
EquiLID 95.1 0.25k
CMX-small 94.6 265.5k
CMX 96.6 206.1k

MONOLINGUAL MODELS

Langid.py 92.8 183.8k
fastText-small 92.5 2,671.1k
fastText-full 94.4 2,428.3k
CLD2 95.5 4,355.0k

Table 5: Monolingual Texts: Sentence-level ac-
curacy (%) on KB-Mono56. Monolingual models
make per-sentence predictions only.

Langid.py (Lui and Baldwin, 2012), CLD210 and
fastText (Joulin et al., 2016, 2017)—all are pop-
ular off-the-shelf tools for monolingual language
ID. Sentence-level predictions for EquiLID and
LanideNN models are obtained by simple vot-
ing. Table 5 summarizes sentence-level accuracy
of different approaches on the KB-Mono56 test
set. CMX achieves the best sentence-level accu-
racy over all monolingual and codemixing bench-
mark systems. The resource-constrained CMX-
small also performs strongly, obtaining 94.6% ac-
curacy on this test set.

Our approach also maintains high performance
on very short texts, which is especially important
for many language identification contexts such as
user-generated content. This is demonstrated in
Figure 4, which plots the cumulative accuracy
curve on KB-Mono56 over sentence length (as
measured by the number of non-whitespace char-
acters). For example, points at x=50 show the
averaged accuracies over sentences with no more
than 50 characters. We compare CMX against
the best performing monolingual and codemixing
benchmark systems. The relative gain is more
prominent on shorter sentences than on longer
ones. For example, the improvement is 4.6% on
short sentences (≤30 characters), while the gain
on segments≤150 characters is 1.9%. Similar pat-
terns are seen with respect to other systems.

Inference Speed Table 5 also shows the infer-
ence speed of each method in characters per sec-
ond, tested on a machine with a 3.5GHz Intel

10https://github.com/CLD2Owners/cld2

Figure 4: Sentence-level accuracy (y-axis) on KB-
Mono56 as a function of the maximum number of
non-whitespace characters in a sentence (x-axis).
For example, the point at x = 50 denotes the ac-
curacy on all the sentences with ≤ 50 characters.

Figure 5: Accuracy on development sets with vari-
ous feature dropout rate values p.

Xeon processor and 32GB RAM. CMX (written
in C++) is far faster than other fine-grained sys-
tems, e.g. it has an 800x speed-up over Equi-
LID. It is not surprising that monolingual mod-
els are faster than CMX, which makes a predic-
tion for every token rather than once for the entire
sequence. Of course, monolingual models do not
support language ID on codemixed inputs, and fur-
thermore CMX performs the best even on mono-
lingual texts.

4.3 Analysis
Feature Dropout Rate To analyze how the fea-
ture dropout rate impacts the model performance,
we create a set of synthetically misspelled tokens
by random duplication or replacement of one or
two characters. In addition, we ensure that every
token has at least one language-unique character,
so a model with character n-gram features should
be able to easily identify the language of this to-
ken. Figure 5 shows the tuning results for dropout
values on misspelled tokens and the GY-Mix de-
velopment set. Without feature dropout (p=0.0),
our model only gets 72.1% on misspelled tokens,

https://github.com/CLD2Owners/cld2
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TRAINING DATA Twitter-Mix Web-Mix6 GY-Mix (Test) KB-Mono56

All Training Corpora 92.4 93.2 93.6 95.1
w/o GY-Mix (Train) 88.5 92.9 89.3 95.0
w/o Synthetic 92.1 88.8 92.5 95.1

Table 6: Token-level accuracy of our full model with different training sets, removing either GY-Mix
annotations or synthetic codemixed corpus at a time.

METHOD GY-Mix KB-Mono56 #Lang/Sent

Independent 87.8 91.9 1.78
Switching Penalty 89.4 93.1 1.58
Bilingually Constrained 93.6 95.1 1.27

Gold - - 1.15

Table 7: Token-level accuracy of different decod-
ing methods on GY-Mix and KB-Mono56, as well
as the averaged number of predicted languages in
each sentence.

indicating that n-gram features are not properly
trained. The proposed feature dropout method ef-
fectively addresses this issue, improving the accu-
racy to 95.3% with p ≥ 0.5. We choose p = 0.5
(Figure 3) because it gives the best trade-off on the
two tuning sets. The curves in Figure 5 also show
that model performance is robust across a wide
range of dropout rates between the two extremes,
so the strategy is effective, but is not highly sensi-
tive and does not require careful tuning.

Impact of Decoding Algorithm Table 7 shows
a comparison over different decoding strategies,
including (a) independent greedy prediction for
each token, (b) adding a switching penalty and de-
coding with Viterbi, (c) and our bilingually con-
strained decoding. For the second method, we
add a fixed transition matrix that gives a penalty
score log p for every code switch in a sentence.
We choose p = 0.5, which gives the best over-
all results on the development set. Our approach
outperforms switching penalty by more than 2%
on both GY-Mix and KB-Mono56. To analyze the
reason behind this difference we show the average
number of languages in each sentence in Table 7.
Both baseline approaches on average predict more
than 1.5 languages per sentence while the oracle
number based on gold labels is only 1.15. Our
global bilingual constraints effectively address this
over-prediction issue, reducing the average num-
ber of predicted languages to 1.27. We also mea-
sure the running time of all methods. The decod-

ing speed of our method is 206k char/sec (Table
5), while the independent method is 220k char/sec.
Our decoding with global constraints thus only in-
creases the running time by a factor of 1.07.

Codemixed Training Datasets Our training
data consists of two codemixed corpora: manual
annotations on real-world data (GY-Mix) and a
synthetic corpus. To analyze their contribution, we
remove each corpus in turn from the training set
and report the results in Table 6. Adding the GY-
Mix training set mainly improves accuracy on GY-
Mix test and Twitter-Mix, while the gains from
the synthetic data are greatest on Web-Mix6. This
shows that synthetic data helps CMX generalize
to a broader range of languages since GY-Mix has
language overlap only with Twitter-Mix, not Web-
Mix6. The two examples below further demon-
strate the benefit of synthetic examples:

With Synthetic Data
• [ Translate ]en [ maçã ]pt [ to English ]en
• [ Translate ]en [ Apfel ]de [ to English ]en

Without Synthetic Data
• [ Translate maçã to ]pt [ English ]en
• [ Translate Apfel to English ]en

Both examples are likely potential queries
“Translate apple to English” with apple replaced
by its translation in German(de) or Portuguese(pt).
The underlying language pairings never appear in
GY-Mix. CMX with synthetic training data is able
to correctly identify the single token inter-mixed
in a sentence, while the model trained without syn-
thetic data fails on both cases.

Contribution of Features CMX has three types
of features: character n-gram, script, and lexicon
features. n-gram features play a crucial role as
back-off from lexicon features. Consider infor-
mal Latin script inputs, like hellooooo, for which
no lexicon features fire. Foregoing n-gram fea-
tures results in abysmal performance (<20%) on
this type of input because script features alone are
inadequate. The main impact of script features is
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to avoid embarrassing mistakes on inputs that can
be easily identified from their scripts. Finally, note
that removing lexicon features corresponds to the
CMX-small model. On monolingual inputs (Table
5), the lexicon features in CMX provide a 2.0%
absolute improvement in accuracy.

5 Conclusions

CMX is a fast and compact model for fine-
grained language identification. It outperforms re-
lated models on codemixed and monolingual texts,
which we show on several datasets covering text in
a variety of languages and gathered from diverse
sources. Furthermore, it is particularly robust to
the idiosyncrasies of short informal text.
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