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Abstract

Semantic specialization is a process of fine-
tuning pre-trained distributional word vectors
using external lexical knowledge (e.g., Word-
Net) to accentuate a particular semantic re-
lation in the specialized vector space. While
post-processing specialization methods are ap-
plicable to arbitrary distributional vectors, they
are limited to updating only the vectors of
words occurring in external lexicons (i.e., seen
words), leaving the vectors of all other words
unchanged. We propose a novel approach to
specializing the full distributional vocabulary.
Our adversarial post-specialization method
propagates the external lexical knowledge to
the full distributional space. We exploit words
seen in the resources as training examples for
learning a global specialization function. This
function is learned by combining a standard
L2-distance loss with a adversarial loss: the
adversarial component produces more realis-
tic output vectors. We show the effectiveness
and robustness of the proposed method across
three languages and on three tasks: word sim-
ilarity, dialog state tracking, and lexical sim-
plification. We report consistent improvements
over distributional word vectors and vectors
specialized by other state-of-the-art special-
ization frameworks. Finally, we also propose
a cross-lingual transfer method for zero-shot
specialization which successfully specializes a
full target distributional space without any lex-
ical knowledge in the target language and with-
out any bilingual data.

1 Introduction

Word representation learning is a mainstay of mod-
ern Natural Language Processing (NLP), and its
usefulness has been proven across a wide spectrum
of NLP applications (Collobert et al., 2011; Chen
and Manning, 2014; Melamud et al., 2016b, inter
alia). Standard distributional word vector models

∗Both authors equally contributed to this work.

are grounded in the distributional hypothesis (Har-
ris, 1954), that is, they leverage information about
word co-occurrences in large text corpora (Mikolov
et al., 2013; Pennington et al., 2014; Levy and Gold-
berg, 2014; Bojanowski et al., 2017). This depen-
dence on contextual signal results in a well-known
tendency to conflate semantic similarity with other
types of semantic association (Hill et al., 2015;
Schwartz et al., 2015; Vulić et al., 2017) in the
induced word vector spaces.1

A common remedy is to move beyond purely
unsupervised word representation learning, in a
process referred to as semantic specialization or
retrofitting. Specialization methods exploit lexical
knowledge from external resources, such as Word-
Net (Fellbaum, 1998) or the Paraphrase Database
(Ganitkevitch et al., 2013) to refine the seman-
tic properties of pre-trained vectors and specialize
the distributional spaces for a particular relation,
e.g., synonymy (i.e., true similarity) (Faruqui et al.,
2015; Mrkšić et al., 2017) or hypernymy (Nickel
and Kiela, 2017; Nguyen et al., 2017; Vulić and
Mrkšić, 2018).

The best-performing specialization models (cf.
Mrkšić et al. 2017) are deployed as post-processors
of the vector space: distributional vectors are fine-
tuned to satisfy linguistic constraints extracted
from external resources to offer improved support
to downstream NLP applications (Faruqui, 2016).
Such models are versatile as they can be applied
to arbitrary distributional spaces, but they have a
major drawback: they locally update only vectors
of words present in linguistic constraints (i.e., seen
words), whereas vectors of all other (i.e., unseen)
words remain intact (see Figure 1).

1For instance, it is difficult to discern synonyms from
antonyms in distributional vector spaces: this has a negative
impact on language understanding tasks such as statistical dia-
log modeling or text simplification (Glavaš and Štajner, 2015;
Faruqui et al., 2015; Mrkšić et al., 2016; Kim et al., 2016)
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Figure 1: High-level illustration of the adversarial
post-specialization process and cross-lingual zero-
shot specialization, described in detail in §2.

Vulić et al. (2018) have recently proposed a
model which, based on the updates of vectors of
seen words, learns a global specialization func-
tion that can be applied to the large subspace of
unseen words. Their global method, termed post-
specialization and implemented as a deep feed-
forward network, effectively specializes all distri-
butional vectors.

In this paper, we propose a new approach to
post-specialization which addresses the following
two research questions: a) Is it possible to use a
more sophisticated learning approach to yield more
realistic specialized vectors for the full vocabu-
lary? b) Given that specialization methods inher-
ently require a large number of constraints, is it
possible to specialize distributional word vectors
where such resources are scarce or non-existent?
Our novel model learns the global specialization
function by casting the feed-forward specialization
network as a generator component of an adversar-
ial architecture, see Figure 2. The corresponding
discriminator component learns to discern original
specialized vectors (produced by any local special-
ization model) from vectors produced by transform-
ing distributional vectors with the feed-forward
post-specialization network (i.e., the generator).

We show that the proposed adversarial model
yields state-of-the-art performance on standard
word similarity benchmarks, outperforming the
post-specialization model of Vulić et al. (2018).
We further demonstrate the effectiveness of the pro-

posed model in two downstream tasks: lexical text
simplification and dialog state tracking. Finally,
we demonstrate that, by coupling our adversarial
specialization model with any unsupervised model
for inducing bilingual vector spaces, such as the
algorithm proposed by Conneau et al. (2018), we
can successfully perform zero-shot language trans-
fer of the specialization, that is, we can specialize
distributional spaces of languages without any lin-
guistic constraints in those languages, and without
any bilingual data.

2 Methodology

The post-specialization procedure (Vulić et al.,
2018) is a two-step process. First, a subspace of
vectors for words observed in external resources
is fine-tuned using any off-the-shelf specializa-
tion model, such as the original retrofitting model
(Faruqui et al., 2015), counter-fitting (Mrkšić et al.,
2016), dLCE (Nguyen et al., 2016), or state-of-the-
art ATTRACT-REPEL (AR) specialization (Mrkšić
et al., 2017; Vulić et al., 2017). We outline the
initial specialization algorithms in §2.1. In the sec-
ond step, the initial specialization is propagated
to the entire vocabulary, including words not ob-
served in the resources, relying on an adversarial
architecture augmented with a distance loss. This
adversarial post-specialization model, compatible
with any specialization model, is described in §2.2.

Finally, in §2.3, we introduce a cross-lingual
zero-shot specialization model which transfers the
specialization to a target language without any lexi-
cal resources. An overview of the proposed method-
ology from this section is provided in Figure 1.

2.1 Initial Specialization

Linguistic Constraints. Adopting the nomencla-
ture from Mrkšić et al. (2017), post-processing
models are generally guided by two broad sets of
constraints: 1) ATTRACT constraints specify which
words should be close to each other in the fine-
tuned vector space (e.g. synonyms like graceful
and amiable); 2) REPEL constraints describe which
words should be pulled away from each other (e.g.
antonyms like innocent and sinful). Earlier post-
processors (Faruqui et al., 2015; Jauhar et al., 2015;
Wieting et al., 2015) operate only with ATTRACT

constraints, and are thus not suited to model both
aspects contributing to the specialization process.

We first outline the state-of-the-art ATTRACT-
REPEL specialization model (Mrkšić et al., 2017)
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which leverages both sets of constraints. Here, we
again stress two important aspects relevant to our
post-specialization model: a) all initial specializa-
tion models fine-tune only representations for the
subspace of words seen in the external constraints,
while all other words remain unaffected by spe-
cialization; b) post-specialization is not tied to
ATTRACT-REPEL in particular; it is applicable on
top of any other post-processor.2

Specialization of Seen Words. The key idea is
to inject the knowledge from linguistic constraints
into pre-trained distributional word vectors. Given
a set A of ATTRACT word pairs and a set R of
REPEL word pairs, each word pair (vl, vr) from the
vocabulary Vs of seen words present in these sets
can be represented as a vector pair (xl, xr).

The optimization is driven by mini-batches
of ATTRACT pairs BA (batch size kA), and of
REPEL pairs BR (size kR). For both of these,
two sets of negative example pairs of equal size
are drawn from the 2(kA + kR) vectors oc-
curring in BA and BR. This defines the mini-
batches TA(BA) = [(t1l , t

1
r) . . . (t

kA
l , tkAr )] and

TR(BR) = [(t1l , t
1
r) . . . (t

kR
l , tkRr )]. Negative ex-

amples tl and tr for ATTRACT (or REPEL) pairs are
the nearest (or farthest) neighbours by cosine sim-
ilarity to xl and xr, respectively. They ensure that
the paired vectors for words in the constraints are
closer to each other (or more distant for antonyms)
than to their respective negative examples.

The overall objective function consists of three
terms. The first term pulls ATTRACT pairs together:

Att(BA, TA) =
kA∑
i=1

[
τ
(
δA + xi

lt
i
l − xi

lx
i
r

)
+

+ τ
(
δA + xi

rt
i
r − xi

lx
i
r

)]
(1)

τ(z) = max(0, z) is the standard rectifier (Nair and
Hinton, 2010). δA is the ATTRACT margin: it speci-
fies the tolerance for the difference between the two
distances (with the other pair member and with the
negative example). The second term,Rep(BR, TR),
is similar but now pushes REPEL pairs away from
each other, relying on the REPEL margin δR:

2We have empirically validated the robustness of the pro-
posed adversarial post-specialization by applying it also on top
of other post-processing methods: retrofitting (Faruqui et al.,
2015) and counter-fitting (Mrkšić et al., 2016). For brevity,
we only report the (best) results with ATTRACT-REPEL, the
best-performing initial/local specialization model.

Rep(BR, TR) =
kR∑
i=1

[τ
(
δR − xi

lt
i
l + xi

lx
i
r

)
+

+ τ
(
δR − xi

rt
i
r + xi

lx
i
r

)
] (2)

The final term is tasked to preserve the quality of
the original vectors through L2-regularization:

Pre(BA,BR) =
∑

xi∈BA∪BR

λP ||yi − xi||2 (3)

yi is the vector specialized from the original dis-
tributional vector xi, and λP is a regularization
hyper-parameter. The optimizer finally minimizes
the following objective: LAR = Att(BA, TA) +
Rep(BR, TR) + Pre(BA,BR).

2.2 Adversarial Post-Specialization
Motivation. The AR method affects only a sub-
set of the full vocabulary V , and consequently only
a (small) subspace of the original space X (see Fig-
ure 1). In particular, it specializes the embeddings
Xs corresponding to Vs, the vocabulary of words
observed in the constraints. It leaves the embed-
dings Xu corresponding to all other (unseen) words
Vu identical.

Nevertheless, the perturbation underwent by the
original observed embeddings can provide evi-
dence about the general effects of specialization. In
particular, it allows to learn a global mapping func-
tion f : X ∈ Rd → Y ∈ Rd for d-dimensional vec-
tors. The parameters for this function can be trained
in a supervised fashion from pairs of original and
initially specialized word embeddings (x(s)i , y(s)i )
from Vs, as illustrated by Figure 2. Subsequently,
the mapping can be applied to distributional word
vectors xu from the vocabulary of unseen words
Vu to predict ŷu, their specialized counterpart. This
procedure, called post-specialization, effectively
propagates the information stored in the external
constraints to the entire word vector space.

However, this mapping should not just model
the inherent transformation, but also ensure that
the resulting vector is ‘natural’. In particular, as-
suming that word representations lie on a manifold,
the mapping should return one of its values. The
intuition behind our formulation of the training ob-
jective is that: a) an L2-distance loss can retrieve
a faithful mapping whereas b) an adversarial loss
can prevent unrealistic outputs, as already proven
in the the visual domain (Pathak et al., 2016; Ledig
et al., 2017; Odena et al., 2017).
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Figure 2: Architecture of the AuxGAN: an adversarial generator-discriminator loss (above) is combined
with a max-margin L2-distance loss with random confounders (below).

Objective Function. The pairs of original and
specialized embeddings for seen words allow to
train the global mapping function. In principle,
this can be any differentiable parametrized func-
tion G(x; θG). Vulić et al. (2018) showed that non-
linear functions ensure a better mapping than linear
transformations which seem inadequate to mimic
the complex perturbations of the specialization pro-
cess, guided by possibly millions of pairwise con-
straints. Our preliminary experiments corroborate
this intuition. Thus, in this work we also opt for
implementing G(x; θG) as a deep neural network.
Each of the l hidden layers of size h non-linearly
transforms its input. The output layer is a linear
transformation into the prediction ŷ ∈ Rd.

The parameters θG are learned by minimizing
theL2 distance between the training pairs. In partic-
ular, the loss is a contrastive margin-based ranking
loss with negative sampling (MM) as proposed by
Weston et al. (2011, inter alia). The gist of this
loss is that the first component increases the cosine
similarity cos of predicted and initially specialized
vectors of the same word up to a margin δMM . On
the other hand, the second component encourages
the predicted vectors to distance themselves from k
random confounders. These are negative examples
sampled uniformly from the batch B excluding the
current vector:

LMM =

||Vs||∑
i=1

k∑
j=1|j 6=i

τ [δMM−cos(G(x
(s)
i ; θG),y

(s)
i )+

+ cos(G(x
(s)
i ; θG),y

(s)
j )] (4)

One of the original contributions of this work is
combining the L2 distance with an adversarial loss,
resulting in an auxiliary-loss Generative Adversar-
ial Network (AuxGAN) as shown in Figure 2. The
role of the adversarial component, as mentioned
above, is to ‘soften’ the mapping and guarantee
realistic outputs from the target distribution.

The mapping can be considered a generator
G(x|θG). On top of this, a discriminator D(x|θD),
implemented also as a multi-layer neural net, tries
to distinguish whether a vector is sampled from the
predicted vectors or the AR-specialized vectors. Its
output layer performs binary classification through
softmax. The objective minimizes the loss LD:

LD = −
n∑

i=1

logP (specialized = 0|G(xi; θG); θD)−

−
m∑
i=1

logP (specialized = 1|yi; θD) (5)

In a two-player game (Goodfellow et al., 2014),
the generator is trained to fool the discriminator by
maximizing log(1 − P (0|G(xi; θG); θD)). How-
ever, to avoid vanishing gradients of G early on,
the loss LG is reformulated by swapping the labels
of Eq. (5) as follows:

LG = −
n∑

i=1

logP (specialized = 1|G(xi; θG); θD)−

−
m∑
i=1

logP (specialized = 0|yi; θD) (6)

During the optimization procedure through stochas-
tic gradient descent, we alternate among s steps for
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LD, one step for LG, and one step for LMM to
avoid the overfitting of D. The reason why s ≥ 1
is that D can be kept close to a minimum of its loss
function by updating G less frequently.

2.3 Zero-shot Transfer to Other Languages

Once the AuxGAN has learned a global mapping
function G(x; θG) in a resource-rich language, it
can be directly applied to unseen words. In this
work, we propose a method to additionally post-
specialize the whole vocabulary Vt of a resource-
poor target language. We assume a real-world sce-
nario where no target language constraints are avail-
able to specialize it directly.

What is more, we assume that no bilingual
data or dictionaries are available either. Hence, we
rely on unsupervised cross-lingual word embed-
ding induction, and in particular on Conneau et al.
(2018)’s method. By virtue of these assumptions,
there is no limitation to the range of potential tar-
get languages that can be specialized. Incidentally,
please note that the proposed transfer method is
equally applicable on top of other cross-lingual
word embedding induction methods. These may re-
quire more bilingual supervision to learn the cross-
lingual vector space.3

After learning the shared cross-lingual word em-
bedding space in an unsupervised fashion (Con-
neau et al., 2018), the global post-specialization
function learnt on the seen source language vectors
is applied to the target language vectors, since they
lie in the same shared space (see Figure 1 again).
By virtue of the transfer, linguistic constraints in
the source language can enhance the distributional
vectors of target language vocabularies.

Conneau et al. (2018) learn a shared cross-
lingual vector space as follows. They first learn
a coarse initial mapping between two monolin-
gual embedding spaces in two different languages
through a GAN where the generator is a linear trans-
formation with an orthogonal matrix Ŵ. Its loss is
identical to Eq. (5) and Eq. (6), but unlike our Aux-
GAN model it discriminates between embeddings
drawn from the source language and the target lan-
guage distributions. Using the shared space, they
extract for each source vector the closest target
vector according to a distance metric designed to
mitigate the hubness problem (Radovanović et al.,

3See the recent survey papers on cross-lingual word em-
beddings and their typology (Upadhyay et al., 2016; Vulić and
Korhonen, 2016; Ruder et al., 2017)

2010), the Cross-Domain Similarity Local Scaling
(CSLS).

This creates a bilingual synthetic dictionary that
allows to further refine the coarse initial mapping.
In particular, the optimal parameters for the lin-
ear mapping minimizing the L2-distance between
source-target pairs are provided by the closed-form
Procrustes solution (Schönemann, 1966) based on
singular value decomposition (SVD):

Ŵ = arg minW ||W Xt −Xs||F = UV>

UΣV> = SVD(XtX
>
s ) (7)

where || · ||F is the Frobenius norm. After mapping
the original target embeddings into the shared space
with this method, we post-specialize them with
the function outlined in §2.2, learnt on the source
language. This yields the specialized target vectors
Ŷt = G(ŴXt; θG).

3 Experimental Setup

Distributional Vectors. We estimate the robust-
ness of adversarial post-specialization by experi-
menting with three widely used collections of dis-
tributional English vectors. 1) SGNS-W2 vectors
are trained on the cleaned and tokenized Polyglot
Wikipedia (Al-Rfou et al., 2013) using Skip-Gram
with Negative Sampling (SGNS) (Mikolov et al.,
2013) by Levy and Goldberg (2014) with bag-of-
words contexts (window size is 2). 2) GLOVE-CC

are GloVe vectors trained on the Common Crawl
(Pennington et al., 2014). 3) FASTTEXT are vec-
tors trained on Wikipedia with a SGNS variant that
builds word vectors by summing the vectors of their
constituent character n-grams (Bojanowski et al.,
2017). All vectors are 300-dimensional.4

Constraints and Initial Specialization. We ex-
periment with the sets of linguistic constraints
used in prior work (Zhang et al., 2014; Ono et al.,
2015; Vulić et al., 2018). These constraints, ex-
tracted from WordNet (Fellbaum, 1998) and Ro-
get’s Thesaurus (Kipfer, 2009), comprise a total
of 1,023,082 synonymy/ATTRACT word pairs and
380,873 antonymy/REPEL pairs.

Note that the sets of constraints cover only a frac-
tion of the full distributional vocabulary, providing
direct motivation for post-specialization methods

4Experiments with other standard word vectors, such as
CONTEXT2VEC (Melamud et al., 2016a) and dependency-
based embeddings (Bansal et al., 2014) show similar trends
and lead to same conclusions.
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which are able to specialize the full vocabulary. For
instance, only 15.3% of the SGNS-W2 vocabulary
words are seen words present in the constraints.5

The constraints are initially injected into the dis-
tributional vector space (see Figure 1 again) us-
ing ATTRACT-REPEL, a state-of-the-art specializa-
tion model, for which we adopt the original sug-
gested model setup (Mrkšić et al., 2017).6 Hyper-
parameter values are set to: δA = 0.6, δR = 0.0,
λP = 10−9. The models are trained for 5 epochs
with Adagrad (Duchi et al., 2011), with batch sizes
set to kA = kR = 50, again as in the original work.

AuxGAN Setup and Hyper-Parameters. Both
the generator and the discriminator are feed-
forward nets with l = 2 hidden layers, each of
size h = 2048, and LeakyReLU as non-linear ac-
tivation (Maas et al., 2013). The dropout for the
input and hidden layers of the generator is 0.2 and
for the input layer of the discriminator 0.1. In eval-
uation, the noise is blanketed out in order to ensure
a deterministic mapping (Isola et al., 2017). More-
over, we smooth the golden labels for prediction by
a factor of 0.1 to make the model less vulnerable
to adversarial examples (Szegedy et al., 2016).

We train our model with SGD for 10 epochs of
1 million iterations each, feeding mini-batches of
size 32. For each pair in a batch we generate 25
negative examples; s = 5 (see §2.2). As a way to
normalize the mini-batches (Salimans et al., 2016),
these are constructed to contain exclusively either
original or specialized vectors. At each epoch, the
initial learning rate of 0.1 is decayed by a factor
of 0.98, or 0.5 if the score on the validation set
(computed as the average cosine similarity between
the predicted and AR-specialized embeddings)7 has
not increased. The hyper-parameters k and δMM

are tuned via grid search on the validation set.

Zero-Shot Specialization Setup. The GAN dis-
criminator for learning a shared cross-lingual vec-
tor space (see §2.3) has hyper-parameters identical
to the AuxGAN. The generator instead is a linear
layer initialized as an identity matrix and enforced
to lie on the manifold of orthogonal matrices dur-
ing training (Cisse et al., 2017). No dropout is used.
The unsupervised validation metric for early stop-

5The respective coverage for the 200K most frequent
GLOVE-CC and FASTTEXT words is only 13.3% and 14.6%.

6https://github.com/nmrksic/
attract-repel

7The score is computed as the average cosine similarity
between the original and specialized embeddings.

ping is the cosine distance between dictionary pairs
extracted with the CSLS similarity metric.

4 Results and Discussion

4.1 Word Similarity

Evaluation Setup. We first evaluate adversarial
post-specialization intrinsically, using two standard
word similarity benchmarks for English: SimLex-
999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016), a dataset containing human similarity
ratings for 3,500 verb pairs.8 The evaluation mea-
sure is Spearman’s ρ rank correlation between gold
and predicted word pair similarity scores.

We evaluate word vectors in two settings, sim-
ilar to Vulić et al. (2018). a) In the synthetic DIS-
JOINT setting, we discard all linguistic constraints
that contain any of the words found in SimLex or
SimVerb. This means that all test words from Sim-
Lex and SimVerb are effectively unseen words, and
through this setting we are able to in vitro evaluate
the model’s ability to generalize the specialization
function to unseen words. b) In the FULL setting
we leverage all constraints. This is a standard “real-
life” scenario where some test words do occur in
the constraints, while the mapping is learned for
the remaining words. We use the FULL setting in
all subsequent downstream applications (§4.2).

We compare our model to ATTRACT-REPEL

(AR), which specializes only the vectors of words
occurring in the constraints. We also provide com-
parisons to a post-specialization model of Vulić
et al. (2018) which specializes the full vocabulary,
but substitutes the AuxGAN architecture from §2.2
with a deep 5-layer feed-forward neural net also
based on the max-margin loss (see Eq. (4)) to learn
the mapping function (POST-DFFN).

Results and Analysis. The results are summa-
rized in Table 1. The scores suggest that the pro-
posed adversarial post-specialization model is uni-
versally useful and robust: we observe gains over
input distributional word vectors for all three vec-
tor collections. The results in the DISJOINT set-
ting illustrate the core limitation of the initial
specialization/post-processing models and indicate
the extent of improvement achieved when general-
izing the specialization function to unseen words

8Unlike WordSim-353 (Finkelstein et al., 2002) or MEN
(Bruni et al., 2014), SimLex and SimVerb provide explicit
guidelines to discern between true semantic similarity and
(more broad) conceptual relatedness, so that related but non-
similar words (e.g. tiger and jungle) have a low rating.

https://github.com/nmrksic/attract-repel
https://github.com/nmrksic/attract-repel
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Setting: DISJOINT Setting: FULL

GLOVE-CC FASTTEXT SGNS-W2 GLOVE-CC FASTTEXT SGNS-W2

SL SV SL SV SL SV SL SV SL SV SL SV

Distributional (X) .407 .280 .383 .247 .414 .272 .407 .280 .383 .247 .414 .272
Specialized: ATTRACT-REPEL .407 .280 .383 .247 .414 .272 .781 .761 .764 .744 .778 .761
Post-Specialized: POST-DFFN .645 .531 .503 .340 .553 .430 .785 .764 .768 .745 .781 .763
Post-Specialized: AUXGAN .652 .552 .513 .394 .581 .434 .789 .764 .766 .741 .782 .762

Table 1: Spearman’s ρ correlation scores for three standard English distributional vectors spaces on
English SimLex-999 (SL) and SimVerb-3500 (SV). POST-DFFN (Vulić et al., 2018) uses a deep non-linear
feed-forward network to learn the mapping function f . AUXGAN is our adversarial model (see §2.2).

through adversarial post-specialization. Moreover,
the scores suggest that the more sophisticated ad-
versarial post-specialization method (AUXGAN)
outperforms POST-DFFN across a large number of
experimental runs, verifying its effectiveness.

We observe only modest and inconsistent gains
over ATTRACT-REPEL and POST-DFFN in the FULL

setting. However, the explanation of this finding
is straightforward: 99.2% of SimLex words and
99.9% of SimVerb words are present in the external
constraints, making this an unrealistic evaluation
scenario. The usefulness of the initial ATTRACT-
REPEL specialization is less pronounced in real-
life downstream applications in which such high
coverage cannot be guaranteed, as shown in §4.2.

4.2 Downstream Tasks

We next evaluate the embedding spaces specialized
with the AuxGAN method in two tasks in which
discerning semantic similarity from semantic relat-
edness is crucial: lexical text simplification (LS)
and dialog state tracking (DST).

4.2.1 Lexical Text Simplification
The goal of lexical simplification is to replace com-
plex words (typically words that are used less often
in language and are therefore less familiar to read-
ers) with their simpler synonyms, without infring-
ing the grammaticality and changing the meaning
of the text. Replacing complex words with related
words instead of true synonyms affects the original
meaning (e.g., Ferrari pilot Vettel vs Ferrari air-
plane Vettel) and often yields ungrammatical text
(e.g., they drink all pizzas).

LS Using Word Vectors. We use Light-LS, a
publicly available LS tool based on word embed-
dings (Glavaš and Štajner, 2015). Light-LS gener-
ates and then ranks substitution candidates based
on similarity in the input word vector space. The

GLOVE-CC FASTTEXT SGNS-W2

Vector space Acc Acc Acc

Distributional .660 .578 .560
Specialized: AR .676 .698 .644
Post-Specialized:
POST-DFFN .723 .723 .709
AUXGAN .717 .739 .721

Table 2: Lexical simplification results for three
(post-specialized) distributional spaces.

quality of the space thus directly affects LS per-
formance: by plugging any word vector space into
Light-LS, we extrinsically evaluate that embedding
space for LS. Furthermore, the better the embed-
ding space captures true semantic similarity, the
better the substitutions made by Light-LS.

Evaluation Setup. We use the standard LS
dataset of Horn et al. (2014). It contains 500 sen-
tences with indicated complex words (one word
per sentence) that have to be substituted with sim-
pler synonyms. For each word, simplifications were
crowdsourced from 50 human annotators. Follow-
ing prior work (Horn et al., 2014; Glavaš and Šta-
jner, 2015), we evaluate the performance of Light-
LS using the metric that quantifies both the quality
and the frequency of word replacements: Accur-
racy (Acc) metric is the number of correct sim-
plifications made divided by the total number of
complex words.

Results and Analysis. Scores for all three pre-
trained vector spaces are shown in Table 2. Similar
to the word similarity task, embedding spaces pro-
duced with post-specialization models outperform
the vectors produced with AR and original distribu-
tional vectors. The gains are now more pronounced
in the real-life FULL setup, as only 59.6 % of all in-
dicated complex words and substitution candidates
from the LS dataset are covered in the external con-
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GLOVE-CC word vectors JGA

Distributional .797
Specialized: ATTRACT-REPEL .817
Post-Specialized: POST-DFFN .829
Post-Specialized: AUXGAN .836

Table 3: English DST performance (joint goal accu-
racy). GLOVE-CC word vectors.

straints. Adversarial post-specialization (AUXGAN)
has a slight edge over the post-specialization with
a simple feed-forward network (POST-DFFN) for
FASTTEXT and SGNS-W2 embeddings, but not for
GLOVE-CC vectors. In general, the fact that both
post-specialization methods outperform ATTRACT-
REPEL by a wide margin shows the importance of
specializing the full word vector space for down-
stream NLP applications.

4.2.2 Dialog State Tracking

Finally, we evaluate the importance of full-
vocabulary (adversarial) post-specialization in an-
other language understanding task: dialog state
tracking (DST) (Henderson et al., 2014; Williams
et al., 2016), which is a standard task to measure
the impact of specialization in prior work (Mrkšić
et al., 2017). A DST model is typically the first com-
ponent of a dialog system pipeline (Young, 2010),
tasked with capturing user’s goals and updating the
dialog belief state at each dialog turn. Distinguish-
ing similarity from relatedness is crucial for DST
(e.g., a dialog system should not recommend an

“expensive restaurant in the west” when asked for
an “affordable pub in the north”).

Evaluation Setup. To evaluate the effects of spe-
cialized word vectors on DST, following prior work
we utilize the Neural Belief Tracker (NBT), a sta-
tistical DST model that makes inferences purely
based on pre-trained word vectors (Mrkšić et al.,
2017).9 Again, as in prior work the DST evalu-
ation is based on the Wizard-of-Oz (WOZ) v2.0
dataset (Wen et al., 2017; Mrkšić et al., 2017), com-
prising 1,200 dialogues split into training (600 di-
alogues), development (200), and test data (400).
We report the standard DST metric: joint goal ac-
curacy (JGA), the proportion of dialog turns where
all the user’s search goal constraints were correctly
identified, computed as average over 5 NBT runs.

9https://github.com/nmrksic/
neural-belief-tracker; For full model details,
we refer the reader to the original paper.

Similarity (ρ) LS (Acc) DST (JGA)

Vector space IT DE IT DE IT DE

Distrib. .297 .417 .308 - .681 .621
AUXGAN .431 .525 .392 - .714 .651

Table 4: Results of zero-shot specialization applied
to IT and DE FASTTEXT distributional vectors.

Results and Analysis. We show English DST
performance in the FULL setting in Table 3. Only
NBT performance with GLOVE-CC vectors is re-
ported for brevity, as similar performance gains
are observed with the other two pre-trained vec-
tor collections. The results confirm our findings
established in the other two tasks: a) initial AR spe-
cialization of distributional vectors is useful, but b)
it is crucial to specialize the full vocabulary for im-
proved performance (e.g., 57% of all WOZ words
are present in the constraints), and c) the more so-
phisticated AUXGAN model yields additional gains.

4.3 Cross-Lingual Zero-Shot Specialization

Evaluation Setup. Large collections of linguis-
tic constraints do not exist for many languages.
Therefore, we test if the specialization knowledge
from a resoure-rich language (i.e., English) can
be transferred to resource-lean target languages
(see §2.3). We simulate resource-lean scenarios us-
ing two target languages: Italian (IT) and German
(DE).10 We evaluate zero-specialized IT and DE
FASTTEXT vectors, using English FASTTEXT vec-
tors as the source, on the same three tasks as before.
We report the same evaluation measures, using the
following evaluation data: 1) IT and DE SimLex-
999 datasets (Leviant and Reichart, 2015) for word
similarity; 2) IT lexical simplification data (SIMPI-
TIKI) (Tonelli et al., 2016); 3) IT and DE WOZ
data (Mrkšić et al., 2017) for DST.

Results and Analysis. The results are summa-
rized in Table 4. The gains over the original dis-
tributional vectors are substantial across all three
tasks and for both languages. This finding indicates
that the semantic content of distributional vectors
can be enriched even for languages without any
readily available lexical resources.

The gap between performances of language
transfer and the monolingual setting is explained

10Note that the two languages are not resource-poor, but we
treat them as such in our experiments. This choice of languages
was determined by the availability of high-quality evaluation
data to measure the effects of zero-shot specialization.

https://github.com/nmrksic/neural-belief-tracker
https://github.com/nmrksic/neural-belief-tracker
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by the noise introduced by the bilingual vector
alignment and the different ways concepts are lex-
icalized across languages, as studied by semantic
typology (Ponti et al., 2018). Nonetheless, in the
long run, these transfer results hold promise to sup-
port the specialization of vector spaces even for
resource-lean languages, and their applications.

5 Related Work

Vector Space Specialization. Specialization meth-
ods embed external information into vector spaces.
Some of them integrate external linguistic con-
straints into distributional training and jointly op-
timize distributional and non-distributional objec-
tives: they modify the prior or the regularization
(Yu and Dredze, 2014; Xu et al., 2014; Bian et al.,
2014; Kiela et al., 2015), or use a variant of the
SGNS-style objective (Liu et al., 2015; Ono et al.,
2015; Osborne et al., 2016).

Other models inject external knowledge from
available lexical resources (e.g., WordNet, PPDB)
into pre-trained word vectors as a post-processing
step (Faruqui et al., 2015; Rothe and Schütze, 2015;
Wieting et al., 2015; Nguyen et al., 2016; Mrkšić
et al., 2016; Cotterell et al., 2016; Mrkšić et al.,
2017). They offer a portable, flexible, and light-
weight approach to incorporating external knowl-
edge into arbitrary vector spaces, outperforming
less versatile joint models and yielding state-of-the-
art results on language understanding tasks (Mrkšić
et al., 2016; Kim et al., 2016; Vulić et al., 2017).
By design, these methods fine-tune only vectors of
words seen in external resources.

Vulić et al. (2018) suggest that specializing the
full vocabulary is beneficial for downstream appli-
cations. Comparing to their work, we show that a
more sophisticated adversarial post-specialization
can yield further gains across different tasks and
boost full-vocabulary specialization in resource-
lean settings through cross-lingual transfer.

Generative Adversarial Networks. GANs were
originally devised to generate images from input
noise variables (Goodfellow et al., 2014). The gen-
eration process is typically conditioned on discrete
labels or data from other modalities, such as text
(Mirza and Osindero, 2014). Otherwise, the condi-
tion can take the form of real data in input rather
than (or in addition to) noise: in this case, the gener-
ator parameters are better conceived as a mapping
function. For instance, it can bridge between pixel-
to-pixel (Isola et al., 2017) or character-to-pixel

(Reed et al., 2016) transformations.
The GAN objective can be mixed with more

traditional loss functions: in these cases, apart from
trying to fool the discriminator, the generator also
minimizes the distance between input and target
data (Pathak et al., 2016; Li and Wand, 2016; Ledig
et al., 2017). The distance can be formulated as
the mean squared error between the input and the
target (Pathak et al., 2016), their feature maps (Li
and Wand, 2016), both (Zhu et al., 2016), or a loss
calculated on feature maps of a deep convolutional
network (Ledig et al., 2017).

In the textual domain, adversarial models have
been proven to support domain adaptation (Ganin
et al., 2016) and language transfer (Chen et al.,
2016) by learning domain/language-invariant latent
features. Adversarial training also powers unsuper-
vised mapping between monolingual vector spaces
to learn cross-lingual word embeddings (Zhang
et al., 2017; Conneau et al., 2018). In this work, we
show how to apply adversarial techniques to the
problem of vector specialization, which has a sub-
stantial impact on language understanding tasks.

6 Conclusion and Future Work

We have presented adversarial post-specialization,
a novel model supported by adversarial training
which specializes word vectors for the full vocabu-
lary of the input distributional vector space, includ-
ing words unseen in external lexical resources. We
have also introduced a method for zero-shot spe-
cialization of word vectors in languages without
any external resources. The benefits of adversarial
post-specialization and its zero-shot transfer have
been demonstrated across three tasks (word simi-
larity, lexical text simplification, and dialog state
tracking) and for three languages.

In future work, we will explore more sophis-
ticated adversarial models such as Cycle-GAN
(Zhu et al., 2017). Moreover, we will experiment
with bootstrapping approaches to extract new lexi-
cal constraints from post-specialized embeddings.
We also plan to extend the method to asymmet-
ric relations (e.g., hypernymy) and to more target
(resource-lean) languages. The code is available
at https://github.com/cambridgeltl/
adversarial-postspec.
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Ivan Vulić and Anna Korhonen. 2016. On the role of
seed lexicons in learning bilingual word embeddings.
In Proceedings of ACL, pages 247–257.

Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
vectors for lexical entailment. In Proceedings of
NAACL-HLT, pages 1134–1145.
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