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Abstract

We construct a multilingual common semantic
space based on distributional semantics, where
words from multiple languages are projected
into a shared space via which all available re-
sources and knowledge can be shared across
multiple languages. Beyond word alignment,
we introduce multiple cluster-level alignments
and enforce the word clusters to be consis-
tently distributed across multiple languages.
We exploit three signals for clustering: (1)
neighbor words in the monolingual word em-
bedding space; (2) character-level informa-
tion; and (3) linguistic properties (e.g., appo-
sition, locative suffix) derived from linguis-
tic structure knowledge bases available for
thousands of languages. We introduce a new
cluster-consistent correlational neural network
to construct the common semantic space by
aligning words as well as clusters. Intrin-
sic evaluation on monolingual and multilin-
gual QVEC tasks shows our approach achieves
significantly higher correlation with linguis-
tic features which are extracted from manually
crafted lexical resources than state-of-the-art
multi-lingual embedding learning methods do.
Using low-resource language name tagging as
a case study for extrinsic evaluation, our ap-
proach achieves up to 14.6% absolute F-score
gain over the state of the art on cross-lingual
direct transfer. Our approach is also shown to
be robust even when the size of bilingual dic-
tionary is small.1

1 Introduction

More than 3,000 languages have electronic record,
e.g., at least a portion of the Christian Bible had
been translated into 2,508 different languages.
However, the training data for mainstream natu-
ral language processing (NLP) tasks such as Infor-
mation Extraction (IE) and Machine Translation

1The resources and programs are available for research
purpose: https://github.com/wilburOne/CommonSpace/

(MT) is only available for dozens of dominant lan-
guages. In this paper we aim to construct a mul-
tilingual common semantic space where words in
multiple languages are mapped into a distributed,
language-agnostic semantic continuous space, so
that resources and knowledge can be shared across
languages.

Previous multilingual embedding methods align
the semantic distributions of words from multi-
ple languages within the common semantic space.
Though several recent attempts (Artetxe et al.,
2017, 2018; Conneau et al., 2017) have shown that
it is possible to extract multilingual word embed-
ding from a pair of potentially unaligned corpora
in multiple languages, we claim that it is necessary
to impose more constraints to preserve linguistic
properties and facilitate downstream NLP tasks,
such as cross-lingual IE, and MT. We find that
words also can be clustered through explicit (e.g.,
sharing affixes of certain linguistic functions) or
implicit clues (e.g., sharing neighbors from mono-
lingual word embedding) and such clusters should
also be consistent across multiple languages. To
do so, we design a new algorithm, called cluster-
consistent multilingual word embedding, that ex-
tracts multilingual word embedding vectors which
preserve the natural clustering structures of words
across multiple languages.

We propose to create clusters through three
kinds of signals as follows, without any extra hu-
man annotation effort. Then we aggregate the em-
bedding vectors of words in each cluster and en-
sure that the clusters (or the words therein) are
consistent across multiple languages.

Neighbor based clustering and alignment.
We build our common space based on correla-
tional neural network (CorrNet) which is an ex-
tension of autoencoder framework by enabling
cross-lingual reconstruction. In contrast to previ-
ous work (Chandar et al., 2016; Rajendran et al.,
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2015), we extend CorrNet to neighbor-consistent
correlation network by using each word’s neigh-
bors (the nearest words within monolingual se-
mantic space) to ensure that the cross-lingual map-
ping from and to the common semantic space is lo-
cally smooth. For instance, the neighboring words
of China in English (Japan, India and Taiwan)
should be close to the neighboring words of Cina
in Italian (Beijing, Korea, Japan) in the common
semantic space. In other words, we encourage the
consistency of neighborhoods across multiple lan-
guages.

Character based clustering and alignment.
Many related languages share very similar char-
acter set, and many words that refer to the same
concept share similar compositional characters or
patterns, e.g., China (English), Kina (Danish), and
Cina (Italian).

Linguistic property based clustering and
alignment. Many languages also share linguistic
properties, e.g., apposition, conjunction, and plu-
ral suffix (English (-s / -es), Turkish (-lar / -ler),
Somali (-o)). Linguists have created a wide variety
of linguistic property knowledge bases, which are
readily available for thousands of languages. For
example, the CLDR (Unicode Common Locale
Data Repository)2 includes closed word classes
and affixes indicating various linguistic properties.
We propose to take advantage of these language-
universal resources to create clusters, where the
words within one cluster share the same linguis-
tic property, and build alignment between clusters
for common semantic space construction.

We evaluate our approach on monolingual and
multilingual QVEC (Tsvetkov et al., 2015) tasks,
which measure the quality of word embeddings
based on the alignment of the embeddings to lin-
guistic feature vectors extracted from manually
crafted linguistic resources, as well as an extrinsic
evaluation on name tagging for low-resource lan-
guages. Experiments demonstrate that our frame-
work is effective at capturing linguistic proper-
ties and significantly outperforms state-of-the-art
multi-lingual embedding learning methods.

2 Related Work

Multilingual word embeddings have advanced
many multilingual NLP tasks, such as machine
translation (Zou et al., 2013; Mikolov et al.,
2013b; Madhyastha and España-Bonet, 2017), de-

2cldr.unicode.org

pendency parsing (Guo et al., 2015; Ammar et al.,
2016a), and name tagging (Zhang et al., 2017a;
Tsai and Roth, 2016; Zhang et al., 2018; Che-
ung et al.; Zhang et al., 2017b; Feng et al.,
2017). Using bilingual aligned words, previ-
ous methods project multiple monolingual embed-
dings into a shared semantic space using linear
mappings (Mikolov et al., 2013b; Rothe et al.,
2016; Zhang et al., 2016; Baroni et al., 2015; Xing
et al., 2015; Smith et al., 2017) or canonical cor-
relation analysis (CCA) (Ammar et al., 2016b;
Faruqui and Dyer, 2014; Lu et al., 2015). Com-
pared with CCA, which only optimizes the corre-
lation for each individual pair of languages, lin-
ear mapping based methods can jointly optimize
all the languages in the common semantic space.
We focus on learning linear mappings to construct
the common semantic space and adopt correla-
tional neural networks (CorrNet) (Chandar et al.,
2016; Rajendran et al., 2015) as the basic model.
In contrast to previous work which only exploited
monolingual word semantics, we introduce mul-
tiple cluster-level alignments and design a new
cluster consistent CorrNet to align both words and
clusters.

Another branch of approaches for multilingual
word embeddings are based on parallel or compa-
rable data, such as parallel sentences (AP Chan-
dar et al., 2014; Gouws et al., 2015; Luong et al.,
2015; Hermann and Blunsom, 2014; Schwenk
et al., 2017), phrase translations (Duong et al.,
2016) and comparable documents (Vulic and
Moens, 2015). Moreover, to reduce the need of
bilingual alignment, several approaches have been
designed to learn cross-lingual embeddings based
on a small seed dictionary (Vulic and Korhonen,
2016; Zhang et al., 2016; Artetxe et al., 2017), or
even with no supervision (Cao et al., 2016; Zhang
et al., 2017d,c; Conneau et al., 2017; Artetxe et al.,
2018). However, such methods are still limited to
bilingual word embedding learning and remaining
to be explored for common semantic space con-
struction.

3 Approach

3.1 Overview

Figure 1 shows the overview of our neural archi-
tecture. We project all monolingual word em-
beddings into a common semantic space based
on word-level as well as cluster-level alignments
and learn the transformation functions. First, on
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Figure 1: Architecture Overview. In each monolingual semantic space, the words within solid rectangle denote a
neighbor based cluster and the words within dotted rectangle denote a linguistic property based cluster.

word-level, we build a neighborhood-consistent
CorrNet to augment word representations with
neighbor based clusters and align them in the
common semantic space. In addition, we apply
a language-independent convolutional neural net-
works to compose character-level word represen-
tation and concatenate it with word representation
in the common semantic space. Finally, we con-
struct clusters based on linguistic properties, in-
cluding closed word classes and affixes, and align
them in the common semantic space. We jointly
optimize for all the alignments in the common se-
mantic space for each pair of languages.

3.2 Basic Model
We briefly describe the basic model for learning
the common semantic space: correlational neural
networks (CorrNets) (Chandar et al., 2016; Rajen-
dran et al., 2015). It combines the advantages of
canonical correlation analysis (CCA) and autoen-
coder (AE).

Given the bilingual aligned word pairs between
two languages l1 and l2, we first use their mono-
lingual word embeddings to initialize each word
with a vector and obtain Ml1 ∈ R|Vl1 |×dl1 and
Ml2 ∈ R|Vl2 |×dl2 , where Vl1 and Vl2 are the bilin-
gual dictionary of l1 and l2. V i

l1
is the translation

of V i
l2

, and dl1 and dl2 are the vector dimensionali-
ties. Then for each language we learn a linear pro-
jection function to project Ml1 and Ml2 into the
common semantic space:

Hl1 = σ(Ml1 ·Wl1 + bl1) ,

Hl2 = σ(Ml2 ·Wl2 + bl2) ,

where Hl1 ∈ R|Vl1 |×h and Hl2 ∈ R|Vl2 |×h are the
vector representations for Vl1 and Vl2 in the com-
mon semantic space respectively. h is the vec-
tor dimensionality in the shared semantic space.
Wl1 ∈ Rdl1×h and Wl2 ∈ Rdl2×h are the transfor-
mation matrices, and bl1 and bl2 are the bias vec-
tors. σ denotes Sigmoid function.

After we project the monolingual embeddings
into the common semantic space, we further re-
construct Ml1 and Ml2 from Hl1 and Hl2 sepa-
rately:

M
′
l1 = σ(Hl1 ·W>l1 + b

′
l1) ,

M∗l1 = σ(Hl2 ·W>l1 + b
′
l1) ,

M
′
l2 = σ(Hl2 ·W>l2 + b

′
l2) ,

M∗l2 = σ(Hl1 ·W>l2 + b
′
l2) ,

where b
′
l1

, b
′
l2

are the bias vectors. M
′
l1

and M
′
l2

are the monolingual reconstructions of Ml1 and
Ml2 from the common space, and M∗l1 and M∗l2
are cross-lingual reconstructions. W>l1 and W>l2
are the transposes of Wl1 and Wl2 respectively.

To learn the common semantic representations,
we minimize the distance between the aligned
word vectors as well as the loss of monolingual
and cross-lingual reconstruction:

OW =
∑

{li,lj}∈A

L(M
′
li
,Mli) + L(M∗li ,Mli)

+ L(M
′
lj
,Mlj ) + L(M∗lj ,Mlj ) + L(Hli , Hlj ) ,

where l denotes any language that we want to
project into the common semantic space, A de-
notes all bilingual dictionaries, and L denotes a
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similarity metric. In our work, we use cosine sim-
ilarity as the similarity metric.

3.3 Neighborhood-Consistent CorrNet
CorrNet can project multiple monolingual word
embeddings into a common semantic space using
bilingual word alignment. However, the same con-
cepts may have different semantic bias in various
languages. For example, the top five nearest words
of the concept “China” are: (Japan, India, Taiwan,
Chinese, Asia) in English, (Cosco, Shenzhen, Aus-
tralian, Shanghai, manufacturing) in Danish, and
(Beijing, Korea, Japan, aluminum, copper) in Ital-
ian respectively. In order to ensure the consistency
of the neighborhoods within the common seman-
tic space and make the cross-lingual mapping lo-
cally smooth, we propose to augment monolingual
word representation with its top-N nearest neigh-
boring words from the original monolingual se-
mantic space.3

Given the monolingual embeddings of the bilin-
gual aligned words for two languages l1 and l2,
Ml1 and Ml2 , for each word, we extract the top-N
nearest neighbors and construct the neighborhood
clusters. Each cluster tl = {w1, w2, ..., w|tl|} in
language l is represented by

ctl =
1

|tl|
∑
w∈tl

Ew ,

where Ew denotes the monolingual word embed-
ding for w.

We obtain all the neighborhood cluster vector
representations Cl1 , Cl2 for l1 and l2. We incorpo-
rate the neighborhood cluster information into the
common semantic space when projecting mono-
lingual embeddings:

Hl1 = σ(Ml1 ·Wl1 + Cl1 · Ul1 + bl1),

Hl2 = σ(Ml2 ·Wl2 + Cl2 · Ul2 + bl2), (1)

Besides the monolingual and cross-lingual re-
constructions for Ml1 and Ml2 in CorrNets, we
also add monolingual and cross-lingual recon-
structions for the neighborhood clusters:

C
′
l1 = σ(Hl1 · U>l1 + b∗l1) ,

C∗l1 = σ(Hl2 · U>l1 + b∗l1) ,

C
′
l2 = σ(Hl2 · U>l2 + b∗l2) ,

3We set N = 10 in our experiments since it performed
best on the intrinsic evaluation among {2, 5, 10, 20, 50}.

C∗l2 = σ(Hl1 · U>l2 + b∗l2) ,

In addition to optimizing the loss functions de-
scribed in the Section 3.2, we further optimize the
monolingual and cross-lingual reconstruction for
neighborhood clusters:

ON =
∑

{li,lj}∈A

L(C
′
li
, Cli) + L(C∗li , Cli)

+ L(C
′
lj
, Clj ) + L(C∗lj , Clj ) ,

3.4 Character-Level Word Alignment

Bilingual word alignment is not always enough or
available to induce a common semantic space, es-
pecially for low-resource languages. Although the
words that refer to the same concept are not ex-
actly the same in multiple languages, they often
share a set of similar characters, especially in re-
lated languages written in the same script. For
example, the same entity is spelled slightly dif-
ferently in three languages: Semsettin Gunaltay
in English, Şemsettin Günaltay in Turkish, and
Semsetin Ganoltey in Somali. Beyond word-level
alignment, we introduce character-level alignment
by composing word representations from its com-
positional characters using convolutional neural
networks (CNN). For each language, we adopt a
language-independent CNN to generate character-
level word representation.
Character Lookup Embeddings Let Sl be the
character set for language l and ESl

∈ R|Sl|×d

be the character lookup embeddings, where d is
the dimensionality of each character embedding.
Here, we use a simple yet effective method to
induce character embeddings from word embed-
dings4. For each character c, we initialize its em-
bedding by averaging the embeddings of all words
which contain the character. The character embed-
dings will be further tuned by the model.
Character-Level CNN (Kim et al., 2016) The
input layer is a sequence of characters of length k
for each word. Each character is represented by a
d-dimensional lookup embedding. Thus each in-
put sequence is represented as a feature map of
dimensionality d× k.

We use the convolution layer to learn the repre-
sentation for each sliding n-gram characters. We
make pi as the concatenated embeddings of n con-
tinuous columns from the input matrix, where n

4This approach is proved to be better than random initial-
ization of character embeddings.
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is the filter width. We then apply the convolution
weights W ∈ Rd×nd to pi with a biased vector
b ∈ Rd, i.e., p

′
i = tanh(W · pi + b). All n-gram

representations p
′
i are used to generate the word

representation y by max-pooling.
In our experiments, we apply multiple filters

with various widths to obtain the representation
for word wli. The final character-level word repre-
sentation ŵli is the concatenation of all word rep-
resentations with varying filter widths.
Cross-lingual Mapping Given the bilingual
aligned word pairs, we directly minimize the dis-
tance of the character-level word representations
in the common semantic space by:

Ochar =
∑

{li,lj}∈A L(Ŵ char
li

, Ŵ char
lj

)

The final word representation of wli in the
common semantic space is the concatenation of
character-level word presentation ŵli and projected
word representation hli.

3.5 Linguistic Property Alignment

Linguists have made great efforts at building lin-
guistic property knowledge bases for thousands of
languages in the world. These knowledge bases
include a large number of topological properties
(phonological, lexical and grammatical) which we
will use to build a high-level alignment between
words across languages. We exploit the following
resources:

• CLDR (Unicode Common Locale Data
Repository)5 which includes multilingual
gazetteers for months, weekdays, cardinal
and ordinal numbers;

• Wiktionary6 which is a multilingual, web-
based collaborative project to create an En-
glish content dictionary, includes word and
prefix/suffix dictionaries for 1,247 languages;

• Panlex7 database which contains 1.1 billion
pairwise translations among 21 million ex-
pressions in about 10,000 language varieties.

We mainly exploit two types of linguistic prop-
erties to extract word clusters. The first type is
language-independent closed word classes, such
as colors, weekdays, and months. Table 1 shows

5http://cldr.unicode.org/index/charts
6https://en.wiktionary.org
7http://panlex.org/

Class Name Words / Word Pairs

Colors white, yellow, red, blue, green ...
Weekdays monday, tuesday, friday, sunday ...
Months january, february, march, april ...
numbers one, two, three, four, five ...
pronouns i, me, you, he, she, her, they ...
prepositions of, in, on, for, from, about ...
conjunctions but, and, so, or, when, while ...
clothes hat, shirt, pants, skirt, socks ...

-like (god, godlike), (bird, birdlike) ...
-able (accept, acceptable), (adopt, adoptable) ...
micro- (gram, microgram), (chip, microchip) ...
auto- (maker, automaker), (gas, autogas) ...

Table 1: Examples of closed word classes and linguistic
properties based clusters for English

some examples of the word clusters we automat-
ically extracted from CLDR and Wiktionary for
English. The second type of word clusters is
generated based on morphological information,
including affixes that indicate various linguistic
properties. These properties tend to be consistent
across many languages. For example, “-like” is a
suffix denoting “similar to” in English, while in
Danish “-agtig” performs the same function. Wik-
tionary and Panlex include the affix alignments be-
tween English and any other languages. We fil-
tered out the many-to-many affix alignments and
obtained hundreds of alignments between each
language and English. For each affix, we derive a
set of word pairs (basic word, extended word with
affix) by first selecting all the word pairs where ba-
sic word + affix = extended word, then ranking all
word pairs based on the cosine similarity of their
monolingual word embedding. Finally we select
the top ranked 20 word pairs to form the cluster
for each affix.

We extract a set of word clusters from each lan-
guage, and align the clusters based on their func-
tions defined in CLDR, Wiktionary and Panlex.
For each language l, each cluster rli ∈ Rl con-
tains a set of words or word-pairs sharing the same
function. We use the average operation to obtain
an overall vector representation for each cluster
MR
l .8 Then, we project the cluster-level vectors

into the shared semantic space and minimize the
distance between them:

HR
li
= σ(MR

li
·Wli + bRli ) ,

HR
lj
= σ(MR

lj
·Wlj + bRlj ) ,

8For each word pair, we use the vector of the extend word
minus the vector of the basic word as the vector representa-
tion of the word pair.
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Parameter Name Value

Monolingual Word Embedding Size 512
Multilingual Word Embedding Size 512
# of Filters in Convolution Layer 20
Filter Widths 1, 2, 3
Batch Size 500
Initial Learning Rate 0.5
Optimizer Adadelta

Table 2: Hyper-parameters.

OR =
∑

{li,lj}∈A

L(HR
li
, HR

lj
) ,

where W is the same as the W used in Sec-
tion 3.3 for each language. We finally optimize
the sum of the losses by finding the parameters
θ = {Wl, bl, b

′
l, Ul, b

∗
l , CNNl, b

R
l }, where l de-

notes a specific language:

Oθ = OW +ON +Ochar +OR

4 Experiments

4.1 Experiment Setup
Previous work (Ammar et al., 2016b; Duong et al.,
2017) evaluated multilingual word embeddings on
a series of intrinsic (e.g., monolingual and cross-
lingual word similarity, word translation) and
extrinsic (e.g., multilingual document classifica-
tion, multilingual dependency parsing) evaluation
tasks. In order to evaluate the quality of the mul-
tilingual embeddings, we use QVEC (Tsvetkov
et al., 2015) tasks (details will be described in Sec-
tion 4.2) as the intrinsic evaluation platform. In
addition, to demonstrate the effectiveness of our
common semantic space for knowledge transfer,
especially for low-resource scenarios, we adopt
the low-resource language name tagging task for
extrinsic evaluation.

For fair comparison with state-of-the-art meth-
ods on building multi-lingual embeddings (Am-
mar et al., 2016b; Duong et al., 2017), we use the
same monolingual data and bilingual dictionaries
as in their work. We build multilingual word em-
beddings for 3 languages (English, Italian, Dan-
ish) and 12 languages (Bulgarian, Czech, Dan-
ish, German, Greek, English, Spanish, Finnish,
French, Hungarian, Italian, Swedish) respectively.
The monolingual data for each language is the
combination of the Leipzig Corpora Collection9

and Europarl.10 The bilingual dictionaries are the
same as those used in Ammar et al. (2016b).11

9http://wortschatz.uni-leipzig.de/en/download/
10http://www.statmt.org/europarl/index.html
11http://128.2.220.95/multilingual/data/

For each task, we evaluate the performance
of our common semantic space in comparison
with previously published multilingual word em-
beddings (MultiCluster, MultiCCA, MultiSkip,
and MultiCross)12. MultiCluster (Ammar et al.,
2016b) groups multilingual words into clusters
based on bilingual dictionaries and forces all the
words from various languages within one cluster
share the same embedding. MultiCCA (Ammar
et al., 2016b; Faruqui and Dyer, 2014) uses CCA
to estimate linear projections for each pair of lan-
guages. MultiSkip is an extension of the multilin-
gual skip-gram model (Luong et al., 2015), which
requires parallel data. MultiCross is an approach
to unify bilingual word embeddings into a shared
semantic space using post hoc linear transforma-
tions (Duong et al., 2017).

Table 2 lists the hyper-parameters used in the
experiments.

4.2 Intrinsic Evaluation: QVEC

In order to evaluate the quality of multilingual
embeddings, we adopt QVEC (Tsvetkov et al.,
2015) as the intrinsic evaluation measure. It eval-
uates the quality of word embeddings based on
the alignment of distributional word vectors to
linguistic feature vectors extracted from manu-
ally crafted lexical resources, e.g., SemCor (Miller
et al., 1993). For each word, each dimension
of its linguistic feature vector defines the proba-
bility of that word belongs to a supersense (e.g.,
NN.FOOD) which is summarized from Word-
Net (Fellbaum, 1998).

QVEC is computed as

QVEC = max∑
j aij≤1

D∑
i=1

P∑
j=1

r(xi, sj)× aij ,

where x ∈ RD×1 denotes a distributional word
vector and s ∈ RP×1 denotes a linguistic word
vector. D and P denote the sizes of vectors re-
spectively. aij = 1 iff xi is aligned to sj , other-
wise aij = 0. r(xi, sj) is the Pearson’s correlation
between xi and sj . QVEC-CCA (Ammar et al.,
2016b) is extended from QVEC by using CCA to
measure the correlation between the distributional
matrix and the linguistic vector matrix, instead of
cumulative dimension-wise correlation.

12For fair comparison, we use the development sets of the
intrinsic evaluation tasks in Ammar et al. (2016b) to select
the best model.
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3 Languages 12 Languages

Monolingual Multilingual Monolingual Multilingual

QVEC QVEC-CCA QVEC QVEC-CCA QVEC QVEC-CCA QVEC QVEC-CCA

MultiCluster 10.8 63.6 9.1 45.8 10.4 62.7 9.3 44.5
MultiCCA 10.8 63.8 8.5 43.9 10.8 63.9 8.5 43.7
MultiSkip 7.8 57.3 7.3 36.2 8.4 59.1 7.2 36.5
MultiCross - - - - 11.9 46.4 8.6 31.0

C
or

rN
et

W 14.8 63.6 11.3 43.4 14.7 63.8 13.2 43.9
W+N 15.8 64.2 13.1 43.9 15.8 64.6 14.0 44.8
W+N+C 15.3 66.2 12.2 44.5 16.0 66.6 14.0 44.7
W+N+L 16.2 66.1 13.1 44.8 16.1 64.7 13.8 44.9
W+N+C+L 16.2 67.3 12.4 45.4 16.3 66.7 14.1 45.2

Table 3: QVEC and QVEC-CCA scores. W: word alignment. N: neighbor based clustering and alignment. C:
character based clustering and alignment. L: linguistic property based clustering and alignment.

As shown in Table 3, our approaches outper-
form previous approaches in almost all cases13.
Specifically, by augmenting word representation
with neighboring words in the common semantic
space as in Eq. (1), the performance for mono-
lingual and multilingual QVEC and QVEC-CCA
tasks is consistently improved. In addition, by
aligning character-level compositional representa-
tions and linguistic property based clusters in the
shared semantic space, the monolingual and multi-
lingual representation quality is further improved.

4.3 Impact of Bilingual Dictionary Size

In order to show the impact of the size of bilingual
lexicons, we use three languages as a case study,
and gradually reduce the size of the lexicons for
each pair of languages from 40,000 to 10,000 and
further to 2,000, 1,000, 500 and 250. For follow-
ing experiments, we use MultiCluster and Multi-
CCA as baselines 14. Table 4 shows the results.
We observe that both MultiCCA and CorrNet ap-
proaches are sensitive to the size of the bilingual
lexicons. Our approach on the other hand can
maintain high performance, even when the size
of bilingual lexicons is reduced to 250. The per-
formances of MultiCluster based on various sizes
of bilingual dictionary are close because it jointly
trains the embedding of multiple languages from
scratch and by default takes advantage of identical
strings among all the languages.

13We conduct paired t-test between CorrNet W+N+Ch+L
and all the other models on 10 randomly sampled subsets.
The differences are all statistically significant while all p-
values are less than 0.05

14MultiSkip requires parallel corpora to train cross-lingual
embeddings while the original implementation of MultiCross
is not public.

4.4 Low-Resource Name Tagging

We evaluate the quality of multilingual embed-
dings on a downstream task by using the embed-
dings as input features. Here, we use low-resource
language name tagging as a target task, which
aims to automatically identify and named entities
from text and classify them into certain types, in-
cluding Person (PER), Location (LOC), Organiza-
tion (ORG), and Geo-Political Entities (GPE). We
experiment with two sets of languages. The first
set Amh+Tig consists of Amharic and Tigrinya.
Both languages share the same Ge’ez script and
descend from the proto-Semitic language fam-
ily. The other set Eng+Uig+Tur consists of one
high-resource language (English), one medium-
resource language (Turkish) and one low-resource
language (Uighur). It also consists of two distinct
language scripts: English and Turkish use Latin
script while Uighur uses Arabic script.

We use an LSTM-CRF architecture (Huang
et al., 2015; Lample et al., 2016; Ma and Hovy,
2016) for name tagging. It takes only word em-
bedding as input and predict a tag for each word.
Table 5 shows the statistics of training, develop-
ment, and test sets for each language released by
Linguistic Data Consortium (LDC).15 For each
language pair, we combine the bilingual aligned
words extracted from Wiktionary and monolingual
dictionaries based on identical strings.16 We eval-
uate the quality from several aspects:

15The annotations are from: Amh (LDC2016E87), Tig
(LDC2017E27), Uig (LDC2016E70), Tur (LDC2014E115),
Eng (Tjong Kim Sang and De Meulder, 2003). We combined
these corpora with Wikipedia dump to train word embeddings
with Word2Vec toolkit (Mikolov et al., 2013a).

16We extracted 23,781 pairs of words for Amh and Tig,
16,868 pairs for Eng and Tur, 3,353 pairs for Eng and Uig,
and 3,563 pairs for Tur and Uig.
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QVEC QVEC-CCA
Monolingual Multilingual Monolingual Multilingual

40,000 multiCCA 10.8 8.5 63.8 43.9
multiCluster 10.8 9.1 63.6 45.8
CorrNet W 14.8 11.3 63.6 43.4
CorrNet W+N+C+L 16.2 12.4 67.3 45.4

10,000 multiCCA 9.8 6.5 63.6 42.3
multiCluster 10.6 9.5 62.4 44.7
CorrNet W 14.8 11.3 63.4 43.0
CorrNet W+N+C+L 15.7 12.4 68.0 45.1

2,000 multiCCA 9.9 6.2 63.6 40.9
multiCluster 10.5 9.3 62.5 44.8
CorrNet W 14.5 7.1 62.0 39.2
CorrNet W+N+C+L 14.5 11.4 68.0 44.8

1,000 multiCCA 12.3 6.9 63.5 38.2
multiCluster 10.5 9.3 62.5 44.8
CorrNet W 13.7 9.4 63.0 40.0
CorrNet W+N+C+L 13.6 10.5 66.4 43.0

500 multiCCA 12.3 5.5 63.5 36.0
multiCluster 10.5 9.3 62.6 44.7
CorrNet W 13.3 9.1 62.8 39.4
CorrNet W+N+C+L 13.4 9.5 66.2 42.7

250 multiCCA 12.3 5.3 63.5 35.0
multiCluser 10.5 9.2 62.7 44.9
CorrNet W 13.8 9.3 62.5 39.3
CorrNet W+N+C+L 13.9 9.8 65.9 42.2

Table 4: Results using bilingual lexicons with varying sizes (40,000, 10,000, 2,000, 1,000, 500, 250) and three
languages. CorrNet W+N+C+L is the proposed approach with all the cluster types.

Amh Tig Uig Tur Eng

Train 1,506 1,585 1,500 1,500 14,029
Dev 167 176 190 378 3,250
Test 711 440 476 470 3,453

Table 5: # of Sentences for name tagging

Monolingual embedding quality evaluation
Table 6 shows the name tagging performance for
each language using the original monolingual em-
beddings and multilingual embeddings. For all
languages, the multilingual embeddings learned
from our approach significantly outperform those
learned from MultiCCA and MultiCluster, which
shows the effectiveness of our approach. More
importantly, the multilingual embeddings learned
from our approach also outperform original mono-
lingual embeddings, which demonstrates that by
projecting multiple languages into one common
space, the monolingual embedding quality can be
further improved.
Cross-lingual direct transfer In this setting, we
train a name tagger on one or two languages using
multilingual embeddings and test it on a new lan-
guage without any annotated data. Table 7 shows
the performance. For most testing languages, our

Multilingual
Train Mono- Multi- Multi- CorrNet
& Test lingual CCA Cluster W W+N+C+L

Amh 52.0 50.6 53.4 52.4 55.8
Tig 78.2 78.4 76.4 77.9 78.5
Uig 63.3 59.6 60.1 61.9 65.2
Tur 62.9 47.7 54.0 59.3 64.9

Table 6: Comparison on Monolingual Embedding
Quality: name tagging performance (F-score, %) using
monolingual embedding and multilingual embeddings.

approach achieves better performance than Mul-
tiCCA and MultiCluster. The closer that the lan-
guages are, such as Amharic and Tigrinya, the bet-
ter performance is achieved.
Cross-lingual mutual enhancement We finally
show the improvement by adding more cross-
lingual annotated data and also using multilingual
embeddings in Table 8. The multilingual embed-
dings learned by our approach consistently outper-
forms MultiCCA and MultiCluster. Particularly,
when there are not enough annotated examples,
the performance could be improved by incorpo-
rating annotated examples from other languages.
This is evident for Amharic, Tigrinya and Uighur.
For Turkish, we notice that a larger extra anno-
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Multi- Multi- CorrNet
Train Test CCA Cluster W W+N+C+L

Amh Tig 15.5 29.7 28.3 33.7
Tig Amh 11.1 24.7 12.8 23.3

Eng Uig 4.8 9.1 13.3 15.5
Tur Uig 0.4 11.4 19.8 25.0
Eng+Tur Uig 8.3 10.5 17.3 23.3

Eng Tur 17.6 21.4 18.3 22.4
Uig Tur 6.9 12.8 13.2 10.7
Eng+Uig Tur 20.4 23.3 14.5 27.0

Table 7: Comparison on Cross-lingual Direct Transfer:
name tagging performance (F-score, %) when the tag-
ger was trained on 1-2 source languages and tested on
a target language.

Multi- Multi- CorrNet
Train Test CCA Cluster W W+N+C+L

Tig+Amh Amh 52.9 54.7 52.1 56.5

Amh+Tig Tig 78.0 76.9 78.1 78.7

Eng+Uig Uig 64.8 62.2 65.1 67.7
Tur+Uig Uig 63.6 58.9 63.6 65.8
Eng+Tur+Uig Uig 65.8 64.8 64.6 68.5

Eng+Tur Tur 50.3 56.1 59.3 65.5
Uig+Tur Tur 51.4 52.7 57.8 62.7
Eng+Uig+Tur Tur 48.1 54.3 56.6 61.5

Table 8: Comparison on Cross-lingual Mutual En-
hancement: name tagging performance (F-score, %)
when the training set for the tagger was enhanced by
annotated examples in other languages.

tated set from other languages (e.g., Uig+Tur or
Eng+Uig+Tur) doesn’t necessarily result in im-
provement. This is partially due to the use of Ara-
bic script in Uighur, which differs from Turkish
and English. Thus we suggest to project closely
related languages using the same script into the
common semantic space.

We take Turkish name tagging as a case study
to show the benefit of the common semantic space
with extra English annotations. The monolingual
model failed to identify Belgrad´da as a geopoliti-
cal entity (GPE) because it doesn’t occur in Turk-
ish training data. However, by adding English an-
notations, the tagger successfully tags it as a GPE
since it’s semantically close to Belgrade in the
common semantic space according to their charac-
ter level compositional embeddings and Belgrade
is frequently tagged as GPE in English annota-
tions. In another example, using Turkish annota-
tions only, Kraliyet Donanması´na is mistakenly
tagged as a GPE since it’s following da and all
entity mentions following da in Turkish annota-
tions are annotated as GPE. After adding English

annotations into training, it is correctly tagged as
an ORG because da is well aligned with in in the
common semantic space according to the linguis-
tic property alignment between Turkish and En-
glish, and many entity mentions following in are
annotated as ORG in English annotations.

5 Conclusions and Future Work

We construct a common semantic space for multi-
ple languages based on a cluster-consistent corre-
lational neural network. It combines word-level
alignment and multi-level cluster alignment, in-
cluding neighbor based clusters, character-level
compositional word representations, and linguistic
property based clusters induced from the readily
available language-universal linguistic knowledge
bases. Our approach achieved significantly higher
performance than state-of-the-art multilingual em-
bedding learning methods through both intrinsic
and extrinsic evaluations. In the future, we will
further extend our approach to multi-lingual multi-
media common semantic space construction.
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