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Abstract

The encode-decoder framework has shown re-
cent success in image captioning. Visual atten-
tion, which is good at detailedness, and seman-
tic attention, which is good at comprehensive-
ness, have been separately proposed to ground
the caption on the image. In this paper, we
propose the Stepwise Image-Topic Merging
Network (simNet) that makes use of the two
kinds of attention at the same time. At each
time step when generating the caption, the de-
coder adaptively merges the attentive informa-
tion in the extracted topics and the image ac-
cording to the generated context, so that the vi-
sual information and the semantic information
can be effectively combined. The proposed ap-
proach is evaluated on two benchmark datasets
and reaches the state-of-the-art performances.1

1 Introduction

Image captioning attracts considerable attention in
both natural language processing and computer vi-
sion. The task aims to generate a description in
natural language grounded on the input image. It
is a very challenging yet interesting task. On the
one hand, it has to identify the objects in the im-
age, associate the objects, and express them in a
fluent sentence, each of which is a difficult sub-
task. On the other hand, it combines two impor-
tant fields in artificial intelligence, namely, natural
language processing and computer vision. More
importantly, it has a wide range of applications,
including text-based image retrieval, helping visu-
ally impaired people see (Wu et al., 2017), human-
robot interaction (Das et al., 2017), etc.

Models based on the encoder-decoder frame-
work have shown success in image captioning.
According to the pivot representation, they can be

∗Equal Contributions
1 The code is available at https://github.com/

lancopku/simNet

Soft-Attention: a open laptop
computer sitting on top of a ta-
ble
ATT-FCN: a dog sitting on a
desk with a laptop computer
and mouse
simNet: a open laptop com-
puter and mouse sitting on a ta-
ble with a dog nearby

Figure 1: Examples of using different attention mecha-
nisms. Soft-Attention (Xu et al., 2015) is based on vi-
sual attention. The generated caption is detailed in that
it knows the visual attributes well (e.g. open). How-
ever, it omits many objects (e.g. mouse and dog). ATT-
FCN (You et al., 2016) is based on semantic attention.
The generated caption is more comprehensive in that
it includes more objects. However, it is bad at associ-
ating details with the objects (e.g. missing open and
mislocating dog). simNet is our proposal that effec-
tively merges the two kinds of attention and generates
a detailed and comprehensive caption.

roughly categorized into models based on visual
information (Vinyals et al., 2015; Chen and Zit-
nick, 2015; Mao et al., 2014; Karpathy and Li,
2015, 2017), and models based on conceptual in-
formation (Fang et al., 2015; You et al., 2016; Wu
et al., 2016). The later explicitly provides the vi-
sual words (e.g. dog, sit, red) to the decoder in-
stead of the image features, and is more effective
in image captioning according to the evaluation on
benchmark datasets. However, the models based
on conceptual information have a major drawback
that it is hard for the model to associate the details
with the specific objects in the image, because the
visual words are inherently unordered in seman-
tics. Figure 1 shows an example. For semantic
attention, although open is provided as a visual
word, due to the insufficient use of visual infor-
mation, the model gets confused about what ob-
jects open should be associated with and thus dis-
cards open in the caption. The model may even
associate the details incorrectly, which is the case

https://github.com/lancopku/simNet
https://github.com/lancopku/simNet
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Figure 2: Illustration of the main idea. The visual in-
formation captured by CNN and the conceptual infor-
mation in the extracted topics are first condensed by
attention mechanisms respectively. The merging gate
then adaptively adjusts the weight between the visual
information and the conceptual information for gener-
ating the caption.

for the position of the dog. In contrast, models
based on the visual information often are accurate
in details but have difficulty in describing the im-
age comprehensively and tend to only describe a
subregion.

In this work, we get the best of both worlds and
integrate visual attention and semantic attention
for generating captions that are both detailed and
comprehensive. We propose a Stepwise Image-
Topic Merging Network as the decoder to guide
the information flow between the image and the
extracted topics. At each time step, the decoder
first extracts focal information from the image.
Then, it decides which topics are most probable
for the time step. Finally, it attends differently to
the visual information and the conceptual informa-
tion to generate the output word. Hence, the model
can efficiently merge the two kinds of information,
leading to outstanding results in image captioning.

Overall, the main contributions of this work are:

• We propose a novel approach that can effec-
tively merge the information in the image and
the topics to generate cohesive captions that
are both detailed and comprehensive. We re-
fine and combine two previous competing at-
tention mechanisms, namely visual attention
and semantic attention, with an importance-
based merging gate that effectively combines

and balances the two kinds of information.

• The proposed approach outperforms the
state-of-the-art methods substantially on two
benchmark datasets, Flickr30k and COCO,
in terms of SPICE, which correlates the best
with human judgments. Systematic analysis
shows that the merging gate contributes the
most to the overall improvement.

2 Related Work

A large number of systems have been proposed
for image captioning. Neural models based on
the encoder-decoder framework have been attract-
ing increased attention in the last few years in
several multi-discipline tasks, such as neural im-
age/video captioning (NIC) and visual question
answering (VQA) (Vinyals et al., 2015; Karpa-
thy and Li, 2015; Venugopalan et al., 2015; Zhao
et al., 2016; Zhang et al., 2017). State-of-the-
art neural approaches (Anderson et al., 2018; Liu
et al., 2018; Lu et al., 2018) incorporate the atten-
tion mechanism in machine translation (Bahdanau
et al., 2014) to generate grounded image captions.
Based on what they attend to, the models can be
categorized into visual attention models and se-
mantic attention models.

Visual attention models pay attention to the im-
age features generated by CNNs. CNNs are typ-
ically pre-trained on the image recognition task
to extract general visual signals (Xu et al., 2015;
Chen et al., 2017; Lu et al., 2017). The visual at-
tention is expected to find the most relevant image
regions in generating the caption. Most recently,
image features based on predicted bounding boxes
are used (Anderson et al., 2018; Lu et al., 2018).
The advantages are that the attention no longer
needs to find the relevant generic regions by itself
but instead find relevant bounding boxes that are
object orientated and can serve as semantic guides.
However, the drawback is that predicting bound-
ing boxes is difficult, which requires large datasets
(Krishna et al., 2017) and complex models (Ren
et al., 2015, 2017a).

Semantic attention models pay attention to a
predicted set of semantic concepts (Fang et al.,
2015; You et al., 2016; Wu et al., 2016). The se-
mantic concepts are the most frequent words in
the captions, and the extractor can be trained us-
ing various methods but typically is only trained
on the given image captioning dataset. This kind
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(b) The data flow in the proposed simNet.

Figure 3: Illustration of the proposed approach. In the right plot, we use φ, ψ, χ to denote input attention, output
attention, and topic attention, respectively.

of approach can be seen as the extension of the
earlier template-based slotting-filling approaches
(Farhadi et al., 2010; Kulkarni et al., 2013).

However, few work studies how to combine the
two kinds of attention models to take advantage of
both of them. On the one hand, due to the lim-
ited number of visual features, it is hard to provide
comprehensive information to the decoder. On the
other hand, the extracted semantic concepts are
unordered, making it hard for the decoder to por-
tray the details of the objects correctly.

This work focuses on combining the visual at-
tention and the semantic attention efficiently to ad-
dress their drawbacks and make use of their mer-
its. The visual attention is designed to focus on
the attributes and the relationships of the objects,
while the semantic attention only includes words
that are objects so that the extracted topics could
be more accurate. The combination is controlled
by the importance-based merging mechanism that
decides at each time step which kind of informa-
tion should be relied on. The goal is to generate
image captions that are both detailed and compre-
hensive.

3 Approach

Our proposed model consists of an image encoder,
a topic extractor, and a stepwise merging decoder.
Figure 3 shows a sketch. We first briefly introduce
the image encoder and the topic extractor. Then,
we introduce the proposed stepwise image-topic
merging decoder in detail.

3.1 Image Encoder
For an input image, the image encoder expresses
the image as a series of visual feature vectors
V = {v1,v2, . . . ,vk},vi ∈ Rg. Each feature cor-
responds to a different perspective of the image.
The visual features serve as descriptive guides of
the objects in the image for the decoder. We use a

ResNet152 (He et al., 2016), which is commonly
used in image captioning, to generate the visual
features. The output of the last convolutional layer
is used as the visual information:

V =W V,ICNN(I) (1)

where I is the input image, and W V,I shrinks the
last dimension of the output.2

3.2 Topic Extractor

Typically, identifying an object requires a com-
bination of visual features, and considering the
limited capacity of the visual features, it is hard
for the conventional decoder to describe the ob-
jects in the image comprehensively. An advance
in image captioning is to provide the decoder with
the semantic concepts in the image directly so
that the decoder is equipped with an overall per-
spective of the image. The semantic concepts
can be objects (e.g. person, car), attributes (e.g.
off, electric), and relationships (e.g. using, sit-
ting). We only use the words that are objects
in this work, the reason of which is explained
later. We call such words topics. The topic ex-
tractor concludes a list of candidate topic embed-
dings T = {w1,w2, . . . ,wm},wi ∈ Re from
the image, where e is the dimension of the topic
word embeddings. Following common practice
(Fang et al., 2015; You et al., 2016), we adopt the
weakly-supervised approach of Multiple Instance
Learning (Zhang et al., 2006) to build a topic ex-
tractor. Due to limited space, please refer to Fang
et al. (2015) for detailed explanation.

Different from existing work that uses all the
most frequent words in the captions as valid se-
mantic concepts or visual words, we only include
the object words (nouns) in the topic word list.
Existing work relies on attribute words and rela-

2For conciseness, all the bias terms of linear transforma-
tions in this paper are omitted.
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tionship words to provide visual information to the
decoder. However, it not only complicates the ex-
tracting procedure but also contributes little to the
generation. For an image containing many objects,
the decoder is likely to combine the attributes with
the objects arbitrarily, as such words are specific
to certain objects but are provided to the decoder
unordered. In contrast, our model has visual infor-
mation as additional input and we expect that the
decoder should refer to the image for such kind of
information instead of the extracted concepts.

3.3 Stepwise Image-Topic Merging Decoder

The essential component of the decoder is the pro-
posed stepwise image-topic merging network. The
decoder is based on an LSTM (Hochreiter and
Schmidhuber, 1997). At each time step, it com-
bines the textual caption, the attentive visual in-
formation, and the attentive conceptual informa-
tion as the context for generating an output word.
The goal is achieved by three modules, the visual
attention, the topic attention, and the merging gate.

Visual Attention as Output The visual atten-
tion attends to attracting parts of the image based
on the state of the LSTM decoder. In existing work
(Xu et al., 2015), only the previous hidden state
ht−1 ∈ Rd of the LSTM is used in computation of
the visual attention:

Zt = tanh(W Z,V V ⊕W Z,hht−1) (2)

αt = softmax(Ztw
α,Z) (3)

where W Z,V ∈ Rk×g,W Z,h ∈ Rk×d,wα,Z ∈
Rk are the learnable parameters. We denote the
matrix-vector addition as ⊕, which is calculated
by adding the vector to each column of the matrix.
αt ∈ Rk is the attentive weights of V and the
attentive visual input zt ∈ Rg is calculated as

zt = V αt (4)

The visual input zt and the embedding of the pre-
vious output word yt−1 are the input of the LSTM.

ht = LSTM(

[
zt
yt−1

]
,ht−1) (5)

However, there is a noticeable drawback that the
previous output word yt−1, which is a much
stronger indicator than the previous hidden state
ht−1, is not used in the attention. As zt is used
as the input, we call it input attention. To over-
come that drawback, we add another attention that
incorporates the current hidden state ht, which is

based on the last generated word yt−1:

Z̃t = tanh(W̃ Z,V V ⊕ W̃ Z,hht) (6)

α̃t = softmax(Z̃tw̃α,Z) (7)

z̃t = V α̃t (8)

The procedure resembles the input attention, and
we call it output attention. It is worth mention-
ing that the output attention is essentially the same
with the spatial visual attention proposed by Lu
et al. (2017). However, they did not see it from the
input-output point of view nor combine it with the
input attention.

The attentive visual output is further trans-
formed to rt = tanh(W s,zz̃t),W

s,z ∈ Re×g,
which is of the same dimension as the topic word
embedding to simplify the following procedure.

Topic Attention In an image caption, different
parts concern different topics. In the existing work
(You et al., 2016), the conceptual information is
attended based on the previous output word:

βt = softmax(T TUyt−1) (9)

whereU ∈ Re×e,βt ∈ Rm. The profound issue is
that this approach neglects the visual information.
It should be beneficial to provide the attentive vi-
sual information when selecting topics. The hid-
den state of the LSTM contains both the informa-
tion of previous words and the attentive input vi-
sual information. Therefore, the model attends to
the topics based on the hidden state of the LSTM:

Qt = tanh(WQ,TT ⊕WQ,hht) (10)

βt = softmax(Qtw
β,Q) (11)

where WQ,T ∈ Rm×e,WQ,h ∈ Rm×d,wβ,Q ∈
Rm are the parameters to be learned. βt ∈ Rm is
the weight of the topics, from which the attentive
conceptual output qt ∈ Re is calculated:

qt = Tβt (12)

The topic attention qt and the hidden state ht are
combined as the contextual information st:

st = tanh(W s,qqt +W
s,hht) (13)

where W s,q ∈ Re×e,W s,h ∈ Re×d are learnable
parameters.

Merging Gate We have prepared both the visual
information rt and the contextual information st.
It is not reasonable to treat the two kinds of in-
formation equally when the decoder generates dif-
ferent types of words. For example, when generat-
ing descriptive words (e.g., behind, red), rt should
matter more than st. However, when generating
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object words (e.g., people, table), st is more im-
portant. We introduce a novel score-based merg-
ing mechanism to make the model adaptively learn
to adjust the balance:

γt = σ(S(st)− S(rt)) (14)

ct = γtst + (1− γt)rt (15)

where σ is the sigmoid function, γt ∈ [0, 1] in-
dicates how important the topic attention is com-
pared to the visual attention, and S is the scoring
function. The scoring function needs to evaluate
the importance of the topic attention. Noticing that
Eq. (10) and Eq. (11) have a similar purpose, we
define S similarly:

S(st) = tanh(W S,hht +W
S,sst) ·wS (16)

S(rt) = tanh(W S,hht +W
S,rrt) ·wS (17)

where · denotes dot product of vectors, W S,s ∈
Rm×e,W S,r ∈ Rm×e are the parameters to
be learned, and W S,h,ws share the weights of
WQ,h,wβ,Q from Eq. (10) and Eq. (11), respec-
tively.

Finally, the output word is generated by:

yt ∼ pt = softmax(W p,cct) (18)

where each value of pt ∈ R|D| is a probability in-
dicating how likely the corresponding word in vo-
cabulary D is the current output word. The whole
model is trained using maximum log likelihood
and the loss function is the cross entropy loss.

In all, our proposed approach encourages the
model to take advantage of all the available infor-
mation. The adaptive merging mechanism makes
the model weigh the information elaborately.

4 Experiment

We describe the datasets and the metrics used for
evaluation, followed by the training details and the
evaluation of the proposed approach.

4.1 Datasets and Metrics

There are several datasets containing images and
their captions. We report results on the popular
Microsoft COCO (Chen et al., 2015) dataset and
the Flickr30k (Young et al., 2014) dataset. They
contain 123,287 images and 31,000 images, re-
spectively, and each image is annotated with 5 sen-
tences. We report results using the widely-used
publicly-available splits in the work of Karpathy
and Li (2015). There are 5,000 images each in the
validation set and the test set for COCO, 1,000 im-
ages for Flickr30k.

We report results using the COCO captioning
evaluation toolkit (Chen et al., 2015) that reports
the widely-used automatic evaluation metrics
SPICE, CIDEr, BLEU, METEOR, and ROUGE.
SPICE (Anderson et al., 2016), which is based
on scene graph matching, and CIDEr (Vedantam
et al., 2015), which is based on n-gram match-
ing, are specifically proposed for evaluating im-
age captioning systems. They both incorporate the
consensus of a set of references for an example.
BLEU (Papineni et al., 2002) and METOR (Baner-
jee and Lavie, 2005) are originally proposed for
machine translation evaluation. ROUGE (Lin and
Hovy, 2003; Lin, 2004) is designed for automatic
evaluation of extractive text summarization. In the
related studies, it is concluded that SPICE corre-
lates the best with human judgments with a re-
markable margin over the other metrics, and is
expert in judging detailedness, where the other
metrics show negative correlations, surprisingly;
CIDEr and METEOR follows with no particular
precedence, followed by ROUGE-L, and BLEU-
4, in that order (Anderson et al., 2016; Vedantam
et al., 2015).

4.2 Settings

Following common practice, the CNN used is the
ResNet152 model (He et al., 2016) pre-trained on
ImageNet.3 There are 2048 7 × 7 feature maps,
and we project them into 512 feature maps, i.e. g
is 512. The word embedding size e is 256 and the
hidden size d of the LSTM is 512. We only keep
caption words that occur at least 5 times in the
training set, resulting in 10,132 words for COCO
and 7,544 for Flickr30k. We use the topic ex-
tractor pre-trained by Fang et al. (2015) for 1,000
concepts on COCO. We only use 568 manually-
annotated object words as topics. For an image,
only the top 5 topics are selected, which means
m is 5. The same topic extractor is used for
Flickr30k, as COCO provides adequate general-
ity. The caption words and the topic words share
the same embeddings. In training, we first train the
model without visual attention (freezing the CNN
parameters) for 20 epochs with the batch size of
80. The learning rate for the LSTM is 0.0004.
Then, we switch to jointly train the full model
with a learning rate of 0.00001, which exponen-
tially decays with the number of epochs so that it
is halved every 50 epochs. We also use momen-

3We use the pre-trained model from torchvision.

https://github.com/pytorch/vision
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Flickr30k SPICE CIDEr METEOR ROUGE-L BLEU-4

HardAtt (Xu et al., 2015) - - 0.185 - 0.199
SCA-CNN (Chen et al., 2017) - - 0.195 - 0.223
ATT-FCN (You et al., 2016) - - 0.189 - 0.230
SCN-LSTM (Gan et al., 2017) - - 0.210 - 0.257
AdaAtt (Lu et al., 2017) 0.145 0.531 0.204 0.467 0.251
NBT (Lu et al., 2018) 0.156 0.575 0.217 - 0.271

SR-PL (Liu et al., 2018)∗† 0.158 0.650 0.218 0.499 0.293

simNet 0.160 0.585 0.221 0.489 0.251

Table 1: Performance on the Flickr30k Karpathy test split. The symbol ∗ denotes directly optimizing CIDEr. The
symbol † denotes using extra data for training, thus not directly comparable. Nonetheless, our model supersedes
all existing models in SPICE, which correlates the best with human judgments.

COCO SPICE CIDEr METEOR ROUGE-L BLEU-4

HardAtt (Xu et al., 2015) - - 0.230 - 0.250
ATT-FCN (You et al., 2016) - - 0.243 - 0.304
SCA-CNN (Chen et al., 2017) - 0.952 0.250 0.531 0.311
LSTM-A (Yao et al., 2017) 0.186 1.002 0.254 0.540 0.326
SCN-LSTM (Gan et al., 2017) - 1.012 0.257 - 0.330
Skeleton (Wang et al., 2017) - 1.069 0.268 0.552 0.336
AdaAtt (Lu et al., 2017) 0.195 1.085 0.266 0.549 0.332
NBT (Lu et al., 2018) 0.201 1.072 0.271 - 0.347

DRL (Ren et al., 2017b)∗ - 0.937 0.251 0.525 0.304
TD-M-ATT (Chen et al., 2018)∗ - 1.116 0.268 0.555 0.336
SCST (Rennie et al., 2017)∗ - 1.140 0.267 0.557 0.342
SR-PL (Liu et al., 2018)∗† 0.210 1.171 0.274 0.570 0.358
Up-Down (Anderson et al., 2018)∗† 0.214 1.201 0.277 0.569 0.363

simNet 0.220 1.135 0.283 0.564 0.332

Table 2: Performance on the COCO Karpathy test split. Symbols, ∗ and †, are defined similarly. Our model
outperforms the current state-of-the-art Up-Down substantially in terms of SPICE.

tum of 0.8 and weight decay of 0.999. We use
Adam (Kingma and Ba, 2014) for parameter opti-
mization. For fair comparison, we adopt early stop
based on CIDEr within maximum 50 epochs.

4.3 Results

We compare our approach with various represen-
tative systems on Flickr30k and COCO, including
the recently proposed NBT that is the state-of-the-
art on the two datasets in comparable settings. Ta-
ble 1 shows the result on Flickr30k. As we can
see, our model outperforms the comparable sys-
tems in terms of all of the metrics except BLEU-4.
Moreover, our model overpasses the state-of-the-
art with a comfortable margin in terms of SPICE,
which is shown to correlate the best with human
judgments (Anderson et al., 2016).

Table 2 shows the results on COCO. Among the
directly comparable models, our model is arguably
the best and outperforms the existing models ex-
cept in terms of BLEU-4. Most encouragingly, our
model is also competitive with Up-Down (Ander-

son et al., 2018), which uses much larger dataset,
Visual Genome (Krishna et al., 2017), with dense
annotations to train the object detector, and di-
rectly optimizes CIDEr. Especially, our model
outperforms the state-of-the-art substantially in
SPICE and METEOR. Breakdown of SPICE F-
scores over various subcategories (see Table 3)
shows that our model is in dominant lead in almost
all subcategories. It proves the effectiveness of our
approach and indicates that our model is quite data
efficient.

For the methods that directly optimize CIDEr,
it is intuitive that CIDEr can improve signifi-
cantly. The similar improvement of BLEU-4 is
evidence that optimizing CIDEr leads to more n-
gram matching. However, it comes to our notice
that the improvements of SPICE, METEOR, and
ROUGE-L are far less significant, which suggests
there may be a gaming situation where the n-gram
matching is wrongfully exploited by the model in
reinforcement learning. As shown by Liu et al.
(2017), it is most reasonable to jointly optimize
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Methods
SPICE

CIDEr METEOR ROUGE-L BLEU-4
All Objects Attributes Relations Color Count Size

Baseline (Plain Encoder-Decoder Network) 0.150 0.295 0.048 0.039 0.022 0.004 0.023 0.762 0.220 0.495 0.251
Up-Down (Anderson et al., 2018)∗† 0.214 0.391 0.100 0.065 0.114 0.184 0.032 1.201 0.277 0.569 0.363

Baseline + Input Att. 0.164 0.316 0.060 0.044 0.030 0.038 0.024 0.840 0.233 0.512 0.273
Baseline + Output Att. 0.181 0.329 0.094 0.053 0.089 0.184 0.044 0.968 0.253 0.534 0.301
Baseline + Input Att. + Output Att. 0.187 0.338 0.101 0.055 0.115 0.161 0.048 1.038 0.259 0.542 0.311

Baseline + Topic Att. 0.184 0.348 0.074 0.051 0.047 0.064 0.037 0.915 0.250 0.517 0.260
Baseline + Topic Att. + MGate 0.189 0.355 0.080 0.051 0.055 0.090 0.033 0.959 0.256 0.527 0.281

Baseline + Input Att. + Output Att. + Topic Att. 0.206 0.381 0.091 0.060 0.075 0.094 0.045 1.068 0.273 0.556 0.320

simNet (Full Model) 0.220 0.394 0.109 0.070 0.088 0.202 0.045 1.135 0.283 0.564 0.332

Table 3: Results of incremental analysis. For a better understanding of the differences, we further list the break-
down of SPICE F-scores. Objects indicates comprehensiveness, and the others indicate detailedness. Additionally,
we report the performance of the current state-of-the-art Up-Down for further comparison, which uses extra dense-
annotated data for pre-training and directly optimizes CIDEr.

Method Precision Recall F1

Topics (m=5) 49.95 38.91 42.48

All words (m=5) 84.01 17.99 29.49
All words (m=10) 70.90 30.18 42.05
All words (m=20) 52.51 44.53 47.80

Table 4: Performance of visual word extraction.

Method S C M R B

Topics (m=5) 0.220 1.135 0.283 0.564 0.332

All words (m=5) 0.197 1.047 0.264 0.550 0.314
All words (m=10) 0.201 1.076 0.256 0.528 0.293
All words (m=20) 0.209 1.117 0.276 0.561 0.329

Table 5: Effect of using different visual words.

all the metrics at the same time.
We also evaluate the proposed model on the

COCO evaluation server, the results of which are
shown in Appendix A.1, due to limited space.

5 Analysis

In this section, we analyze the contribution of each
component in the proposed approach, and give ex-
amples to show the strength and the potential im-
provements of the model. The analysis is con-
ducted on the test set of COCO.

Topic Extraction The motivation of using ob-
jects as topics is that they are easier to identify
so that the generation suffers less from erroneous
predictions. This can be proved by the F-score of
the identified topics in the test set, which is shown
in Table 4. Using top-5 object words is at least
as good as using top-10 all words. However, us-
ing top-10 all words introduces more erroneous
visual words to the generation. As shown in Ta-

Figure 4: Average merging gate values according to
word types. As we can see, object words (noun) dom-
inate the high value range, while attribute and relation
words are assigned lower values, indicating the merg-
ing gate learns to efficiently combine the information.

ble 5, when extracting all words, providing more
words to the model indeed increases the caption-
ing performance. However, even when top-20 all
words are used, the performance is still far behind
using only top-5 object words and seems to reach
the performance ceiling. It proves that for seman-
tic attention, it is also important to limit the abso-
lute number of incorrect visual words instead of
merely the precision or the recall. It is also inter-
esting to check whether using other kind of words
can reach the same effect. Unfortunately, in our
experiments, only using verbs or adjectives as se-
mantic concepts works poorly.

To examine the contributions of the sub-
modules in our model, we conduct a series of ex-
periments. The results are summarized in Table 3.
To help with the understanding of the differences,
we also report the breakdown of SPICE F-scores.

Visual Attention Our input attention achieves
similar results to previous work (Xu et al., 2015),
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Figure 5: Examples of the generated captions. The left plot compares simNet with visual attention and topic
attention. Visual attention is good at portraying the relations but is less specific in objects. Topic attention includes
more objects but lacks details, such as material, color, and number. The proposed model achieves a very good
balance. The right plot shows the error analysis of the proposed simNet.

if not better. Using only the output attention
is much more effective than using only the in-
put attention, with substantial improvements in all
metrics, showing the impact of information gap
caused by delayed input in attention. Combining
the input attention and the output attention can fur-
ther improve the results, especially in color and
size descriptions.

Topic Attention As expected, compared with
visual attention, the topic attention is better at
identifying objects but worse at identifying at-
tributes. We also apply the merging gate to the
topic attention, but it now merges qt and ht in-
stead of st and rt. With the merging gate, the
model can balance the information in caption text
and extracted topics, resulting in better overall
scores. While it overpasses the conventional vi-
sual attention, it lags behind the output attention.

Merging Gate Combing the visual attention and
the topic attention directly indeed results in a huge
boost in performance, which confirms our moti-
vation. However, directly combining them also
causes lower scores in attributes, color, count, and
size, showing that the advantages are not fully
made use of. The most dramatic improvements
come from applying the merging gate to the com-
bined attention, showing that the proposed balance
mechanism can adaptively combine the two kinds
of information and is essential to the overall per-
formance. The average merging gate value sum-
marized in Figure 4 suggests the same.

We give some examples in the left plot of Fig-
ure 5 to illustrate the differences between the mod-
els more intuitively. From the examples, it is clear
that the proposed simNet generates the best cap-
tions in that more objects are described and many
informative and detailed attributes are included,
such as the quantity and the color.

Visualization Figure 6 shows the visualization
of the topic attention and the visual attention with
running examples. As we can see, the topic atten-
tion is active when generating a phrase containing
the related topic. For example, bathroom is always
most attended when generating a bathroom. The
merging gate learns to direct the information flow
efficiently. When generating words such as on and
a, it gives lower weight to the topic attention and
prefers the visual attention. As to the visual at-
tention, the output attention is much more focused
than the input attention. As we hypothesized, the
conventional input attention lacks the information
of the last generated word and does not know what
to look for exactly. For example, when generating
bathroom, the input attention does not know the
previous generated word is a, and it loses its fo-
cus, while the output attention is relatively more
concentrated. Moreover, the merging gate learns
to overcome the erroneous topics, as shown in the
second example. When generating chair, the topic
attention is focused on a wrong object bed, while
the visual attention attends correctly to the chair,
and especially the output attention attends to the
armrest. The merging gate effectively remedies
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Figure 6: Visualization. Please view in color. Here, we give two running examples. The upper part of each example
shows the attention weights of each of 5 extracted topics. Deeper color means larger in value. The middle part
shows the value of the merging gate that determines the importance of the topic attention. The lower part shows
the visualization of visual attention. The attended region is covered with color. The blue shade indicates the output
attention. The red shade indicates the input attention.

the misleading information from the topic atten-
tion and outputs a lower weight, resulting in the
model correctly generating the word chair.

Error Analysis We conduct error analysis using
the proposed (full) model on the test set to pro-
vide insights on how the model may be improved.
We find 123 out of 1000 generated captions that
are not satisfactory. There are mainly three types
of errors, i.e. distance (32, 26%), movement (22,
18%), and object (60, 49%), with 9 (7%) other er-
rors. Distance error takes place when there is a
lot of objects and the model cannot grasp the fore-
ground and the background relationship. Move-
ment error means that the model fails to describe
whether the objects are moving. Those two kinds
of errors are hard to eliminate, as they are funda-
mental problems of computer vision waiting to be
resolved. Object error happens when there are in-
correct extracted topics, and the merging gate re-
gards the topic as grounded in the image. In the
given example, the incorrect topic is garden. The
tricky part is that the topic is seemingly correct
according to the image features or otherwise the
proposed model will choose other topics. A more
powerful topic extractor may help with the prob-
lem but it is unlikely to be completely avoided.

6 Conclusions

We propose the stepwise image-topic merging net-
work to sequentially and adaptively merge the vi-
sual and the conceptual information for improved
image captioning. To our knowledge, we are the
first to combine the visual and the semantic atten-
tion to achieve substantial improvements. We in-
troduce the stepwise merging mechanism to effi-
ciently guide the two kinds of information when
generating the caption. The experimental results
demonstrate the effectiveness of the proposed ap-
proach, which substantially outperforms the state-
of-the-art image captioning methods in terms of
SPICE on COCO and Flickr30k datasets. Quanti-
tative and qualitative analysis show that the gener-
ated captions are both detailed and comprehensive
in comparison with the existing methods.
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COCO BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

HardAtt (Xu et al., 2015) 0.705 0.881 0.528 0.779 0.383 0.658 0.277 0.537 0.241 0.322 0.516 0.654 0.865 0.893
ATT-FCN (You et al., 2016) 0.731 0.900 0.565 0.815 0.424 0.709 0.316 0.599 0.250 0.335 0.535 0.682 0.943 0.958
SCA-CNN (Chen et al., 2017) 0.712 0.894 0.542 0.802 0.404 0.691 0.302 0.579 0.244 0.331 0.524 0.674 0.912 0.921
LSTM-A (Yao et al., 2017) 0.739 0.919 0.575 0.842 0.436 0.740 0.330 0.632 0.256 0.350 0.542 0.700 0.984 1.003
SCN-LSTM (Gan et al., 2017) 0.740 0.917 0.575 0.839 0.436 0.739 0.331 0.631 0.257 0.348 0.543 0.696 1.003 1.013
AdaAtt (Lu et al., 2017)† 0.748 0.920 0.584 0.845 0.444 0.744 0.336 0.637 0.264 0.359 0.550 0.705 1.042 1.059

TD-M-ATT (Chen et al., 2018)∗† 0.757 0.913 0.591 0.836 0.441 0.726 0.324 0.609 0.259 0.342 0.547 0.689 1.059 1.090
SCST (Rennie et al., 2017)∗† 0.781 0.937 0.619 0.860 0.470 0.759 0.352 0.645 0.270 0.355 0.563 0.707 1.147 1.167
Up-Down (Anderson et al., 2018)∗†‡ 0.802 0.952 0.641 0.888 0.491 0.794 0.369 0.685 0.276 0.367 0.571 0.724 1.179 1.205

simNet 0.766 0.941 0.605 0.874 0.462 0.778 0.350 0.671 0.267 0.362 0.558 0.716 1.087 1.111

Table 6: Performance on the online COCO evaluation server. The SPICE metric is unavailable for our model,
thus not reported. c5 means evaluating against 5 references, and c40 means evaluating against 40 references.
The symbol ∗ denotes directly optimizing CIDEr. The symbol † denotes model ensemble. The symbol ‡ denotes
using extra data for training, thus not directly comparable. Our submission does not use the three aforementioned
techniques. Nonetheless, our model is second only to Up-Down and surpasses almost all the other models in
published work, especially when 40 references are considered.

A Supplementary Material

A.1 Results on COCO Evaluation Server
Table 6 shows the performance on the online
COCO evaluation server4. We put it in the ap-
pendix because the results are incomplete and the
SPICE metric is not available for our submission,
which correlates the best with human evaluation.
The SPICE metrics are only available at the leader-
board on the COCO dataset website5, which, un-
fortunately, has not been updated for more than a
year. Our submission does not directly optimize
CIDEr, use model ensemble, or use extra training
data. The three techniques typically result in or-
thogonal improvements (Lu et al., 2017; Rennie
et al., 2017; Anderson et al., 2018). Moreover,
the SPICE results are missing, in which the pro-
posed model has the most advantage. Nonethe-
less, our model is second only to Up-Down (An-
derson et al., 2018) and surpasses almost all the
other models in published work, especially when
40 references are considered.

4https://competitions.codalab.org/
competitions/3221

5http://cocodataset.org/
#captions-leaderboard
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