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Abstract

Current dialogue systems focus more on tex-
tual and speech context knowledge and are
usually based on two speakers. Some re-
cent work has investigated static image-based
dialogue. However, several real-world hu-
man interactions also involve dynamic visual
context (similar to videos) as well as dia-
logue exchanges among multiple speakers. To
move closer towards such multimodal con-
versational skills and visually-situated appli-
cations, we introduce a new video-context,
many-speaker dialogue dataset based on live-
broadcast soccer game videos and chats from
Twitch.tv. This challenging testbed allows us
to develop visually-grounded dialogue mod-
els that should generate relevant temporal and
spatial event language from the live video,
while also being relevant to the chat his-
tory. For strong baselines, we also present
several discriminative and generative mod-
els, e.g., based on tridirectional attention
flow (TriDAF). We evaluate these models
via retrieval ranking-recall, automatic phrase-
matching metrics, as well as human evalua-
tion studies. We also present dataset analyses,
model ablations, and visualizations to under-
stand the contribution of different modalities
and model components.

1 Introduction

Dialogue systems or conversational agents which
are able to hold natural, relevant, and coherent in-
teractions with humans have been a long-standing
goal of artificial intelligence and machine learn-
ing. There has been a lot of important previ-
ous work in this field for decades (Weizenbaum,
1966; Isbell et al., 2000; Rambow et al., 2001;
Rieser et al., 2005; Georgila et al., 2006; Rieser
and Lemon, 2008; Ritter et al., 2011), includ-

We release all data, code, and models at: https://

github.com/ramakanth-pasunuru/video-dialogue

S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

Figure 1: Sample example from our many-speaker,
video-context dialogue dataset, based on live soccer
game chat. The task is to predict the response (bottom-
right) using the video context (left) and the chat context
(top-right).

ing recent work on introduction of large textual-
dialogue datasets (e.g., Lowe et al. (2015); Ser-
ban et al. (2016)) and end-to-end neural network
based models (Sordoni et al., 2015; Vinyals and
Le, 2015; Su et al., 2016; Luan et al., 2016; Li
et al., 2016; Serban et al., 2017a,b).

Current dialogue tasks are usually focused on
the textual or verbal context (conversation his-
tory). In terms of multimodal dialogue, speech-
based spoken dialogue systems have been widely
explored (Eckert et al., 1997; Singh et al., 2000;
Young, 2000; Janin et al., 2003; Celikyilmaz et al.,
2017; Wen et al., 2015; Su et al., 2016; Mrkšić
et al., 2016), as well as work on gesture and hap-
tics based dialogue (Johnston et al., 2002; Cassell,
1999; Foster et al., 2008). In order to address the
additional advantage of using visually-grounded
context knowledge in dialogue, recent work intro-
duced the visual dialogue task (Das et al., 2017;
de Vries et al., 2017; Mostafazadeh et al., 2017).
However, the visual context in these tasks is lim-

https://github.com/ramakanth-pasunuru/video-dialogue
https://github.com/ramakanth-pasunuru/video-dialogue
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ited to one static image. Moreover, the interac-
tions are between two speakers with fixed roles
(one asks questions and the other answers).

Several situations of real-world dialogue among
humans involve more ‘dynamic’ visual context,
i.e., video-style information of the world moving
around us (both spatially and temporally). Fur-
ther, several human conversations involve more
than two speakers, with changing roles. In order
to develop such dynamically-visual multimodal
dialogue models, we introduce a new ‘many-
speaker, video-context chat’ testbed, along with
a new dataset and models for the same. Our
dataset is based on live-broadcast soccer (FIFA-
18) game videos from the ‘Twitch.tv’ live video
streaming platform, along with the spontaneous,
many-speaker live chats about the game. This
challenging testbed allows us to develop dialogue
models where the generated response is required
to be relevant to the temporal and spatial events
in the live video, as well as be relevant to the
chat history (with potential impact towards video-
grounded applications such as personal assistants,
intelligent tutors, and human-robot collaboration).

We also present several strong discriminative
and generative baselines that learn to retrieve and
generate bimodal-relevant responses. We first
present a triple-encoder discriminative model to
encode the video, chat history, and response, and
then classify the relevance label of the response.
We then improve over this model via tridirec-
tional attention flow (TriDAF). For the generative
models, we model bidirectional attention flow be-
tween the video and textual chat context encoders,
which then decodes the response. We evaluate
these models via retrieval ranking-recall, phrase-
matching metrics, as well as human evaluation
studies. We also present dataset analysis as well
as model ablations and attention visualizations to
understand the contribution of the video vs. chat
modalities and the model components.

2 Related Work

Early dialogue systems had components of nat-
ural language (NL) understanding unit, dia-
logue manager, and NL generation unit (Bates,
1995). Statistical learning methods were used
for automatic feature extraction (Dowding et al.,
1993; Mikolov et al., 2013), dialogue managers
incorporated reward-driven reinforcement learn-
ing (Young et al., 2013; Shah et al., 2016), and the

generation units have been extended with seq2seq
neural network models (Vinyals and Le, 2015;
Serban et al., 2016; Luan et al., 2016).

In addition to the focus on textual dialogue con-
text, using multimodal context brings more poten-
tial for having real-world grounded conversations.
For example, spoken dialogue systems have been
widely explored (Singh et al., 2000; Gurevych and
Strube, 2004; Georgila et al., 2006; Eckert et al.,
1997; Young, 2000; Janin et al., 2003; De Mori,
2007; Wen et al., 2015; Su et al., 2016; Mrkšić
et al., 2016; Hori et al., 2016; Celikyilmaz et al.,
2015, 2017), as well as gesture and haptics based
dialogue (Johnston et al., 2002; Cassell, 1999;
Foster et al., 2008). Additionally, dialogue sys-
tems for digital personal assistants are also well
explored (Myers et al., 2007; Sarikaya et al., 2016;
Damacharla et al., 2018). In the visual modal-
ity direction, some important recent attempts have
been made to use static image based context in di-
alogue systems (Das et al., 2017; de Vries et al.,
2017; Mostafazadeh et al., 2017), who proposed
the ‘visual dialog’ task, where the human can ask
questions on a static image, and an agent interacts
by answering these questions based on the previ-
ous chat context and the image’s visual features.
Also, Celikyilmaz et al. (2014) used visual display
information for on-screen item resolution in utter-
ances for improving personal digital assistants.

In contrast, we propose to employ dynamic
video-based information as visual context knowl-
edge in dialogue models, so as to move to-
wards video-grounded intelligent assistant appli-
cations. In the video+language direction, previ-
ous work has looked at video captioning (Venu-
gopalan et al., 2015) as well as Q&A and fill-in-
the-blank tasks on videos (Tapaswi et al., 2016;
Jang et al., 2017; Maharaj et al., 2017) and
interactive 3D environments (Das et al., 2018;
Yan et al., 2018; Gordon et al., 2017; Ander-
son et al., 2017). There has also been early
related work on generating sportscast commen-
taries from simulation (RoboCup) soccer videos
represented as non-visual state information (Chen
and Mooney, 2008). Also, Liu et al. (2016a)
presented some initial ideas on robots learning
grounded task representations by watching and in-
teracting with humans performing the task (i.e.,
by converting human demonstration videos to
Causal And-Or graphs). On the other hand,
we propose a new video-chat dataset where the
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Figure 2: Sample page of live broadcast of FIFA-18
game on twitch.tv with concurrent user chat.

dialogue models need to generate the next re-
sponse in the sequence of chats, conditioned both
on the raw video features as well as the pre-
vious textual chat history. Moreover, our new
dataset presents a many-speaker conversation set-
ting, similar to previous work on meeting un-
derstanding and Computer Supported Cooperative
Work (CSCW) (Janin et al., 2003; Waibel et al.,
2001; Schmidt and Bannon, 1992). In the live
video stream direction, Fu et al. (2017) and Ping
and Chen (2017) used real-time comments to pre-
dict the frame highlights in a video, and Barbieri
et al. (2017) presented emotes and troll prediction.

3 Twitch-FIFA Dataset

3.1 Dataset Collection and Processing

For our new video-context dialogue task, we used
the publicly accessible Twitch.tv live broadcast
platform, and collected videos of soccer (FIFA-
18) games along with the users’ live chat conver-
sations about the game. This dataset has videos in-
volving various realistic human actions and events
in a complex sports environment and hence serves
as a good testbed and first step towards multimodal
video-based dialogue data. An example is shown
in Fig. 1 (and an original screenshot example in
Fig. 2), where the users perform a complex ‘many-
speaker’, ‘multimodal’ dialogue. Overall, we col-
lected 49 FIFA-18 game videos along with their
users’ chat, and divided them into 33 videos for
training, 8 videos for validation, and 8 videos for
testing. Each such video is several hours long, pro-
viding a good amount of data (Table 2).

To extract triples (instances) of video context,
chat context, and response from this data, we di-
vide these videos based on the fixed time frames
instead of fixed number of utterances in order to
maintain conversation topic clusters (because of
the sparse nature of chat utterances count over
the time). First, we use 20-sec context windows
to extract the video clips and users utterances in

Relevance to Video+Chat
filtered response wins 34%
1st response wins 3%
Non-distinguishable 63% (56 both-good, 7 both-bad)

Table 1: Human evaluation of our dataset, comparing
our filtered responses versus the first response in the
window (for relevance w.r.t. video and chat contexts).

this time frame, and use it as our video and chat
contexts, resp. Next, the chat utterances in the
immediately-following 10-sec window (response
window) that do not overlap with the next in-
stance’s context window are considered as poten-
tial responses.1 Hence, there are only two in-
stances (triples) in a 60-sec long video, i.e., 20-sec
video+chat context window and 10-sec response
window, and there is no overlap between the in-
stances. Now, out of these potential responses, to
only allow the response that has at least some good
coherence and relevance with the chat context’s
topic, we choose the first (earliest) response that
has high similarity with some other utterance in
this response window (using 0.5 BLEU-4 thresh-
old, based on manual inspection).2

Human Quality Evaluation of Data Filtering
Process: To evaluate the quality of the responses
that result from our filtering process described
above, we performed an anonymous (randomly
shuffled w/o identity) human comparison between
the response selected by our filtering process vs.
the first response from the response window with-
out any filtering, based on relevance w.r.t. video
and chat context. Table 1 presents the results on
100 sample size, showing that humans in a blind-
test found 90% (34+56) of our filtered responses
as valid responses, verifying that our response se-
lection procedure is reasonable. Furthermore, out
of these 90% valid responses, we found that 55%
are chat-only relevant, 11% are video-only rele-
vant, and 24% are both video+chat relevant.

In order to make the above procedure safe and
to make the dataset more challenging, we also dis-
courage frequent responses (top-20 most-frequent

1We use non-overlapping windows because: (1) the ut-
terances are non-uniformly distributed in time and hence if
we have a shifting window, sometimes a particular data in-
stance/chunk becomes very sparse and contains almost zero
utterances; (2) we do not want overlap between response of
one window with the context of the next window, so as to
avoid the encoder already having seen the response (as part
of context) that the decoder needs to generate for the other
window.

2Based on intuition that if multiple speakers are saying the
same response in that 10-second window, then this response
should be more meaningful/relevant w.r.t. chat context.
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Statistics Train Val Test
#Videos 33 8 8
Total Hours 58.4 11.9 15.4
Final Filtered #Instances 10,150 2,153 2,780
Avg. Chat Context Length 69.0 63.5 71.2
Avg. Response Length 6.5 6.5 6.1

Table 2: Twitch-FIFA dataset’s chat statistics (lengths
are defined in terms of number of words).

generic utterances) unless no other response satis-
fies the similarity condition, hence suppressing the
frequent responses.3 If we couldn’t find any utter-
ance based on the multi-response matching pro-
cedure described above, then we just consider the
first utterance in the 10-second window as the re-
sponse.4 We also make sure that the chat context
window has at least 4 utterances, otherwise we
exclude that context window and also the corre-
sponding response window from the dataset. After
all this processing, our final resulting dataset con-
tains 10, 510 samples in training, 2, 153 samples
in validation, and 2, 780 samples in test.5

3.2 Dataset Analysis

Dataset Statistics Table 2 presents the full statis-
tics on train, validation, and test sets of our
Twitch-FIFA dataset, after the filtering process de-
scribed in Sec. 3.1. As shown, the average chat
context length in the dataset is around 68 words,
and the average response length is 6.3 words.
Chat Context Size Fig. 3 presents the study of
number of utterances in the chat context vs. the
number of such training samples. As we limit the
minimum number of utterances to 4, chat context
with less than 4 utterances is not present in the
dataset. From the Fig. 3, it is clear that as the num-
ber of utterances in the chat context increases, the
number of such training samples decrease.
Frequent Words Fig. 4 presents the top-20 fre-
quent words (excluding stop words) and their cor-
responding frequency in our Twitch-FIFA dataset.
Most of these frequent words are related to soccer
vocabulary. Also, some of these frequent words
are twitch emotes (e.g. ‘kappa’, ‘inceptionlove’).

3Note that this filtering suppresses the performance of
simple frequent-response baseline described in Sec. 4.1.

4Other preprocessing steps include: omit the utterances
in the response window which refer to a speaker name out
of the current chat context; remove non-representative utter-
ances, e.g., those with hyperlinks; replace (anonymize) all
the user identities mentioned in the utterances with a com-
mon tag (i.e., anonymizing due to similar intuitions from the
Q&A community (Hermann et al., 2015)).

5Note that this is substantially larger than or comparable
to most current video captioning datasets. We plan to further
extend our dataset based on diverse games and video types.
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Figure 4: Frequent words in our Twitch-FIFA dataset.

4 Models

Let v = {v1, v2, .., vm} be the video context
frames, u = {u1, u2, .., un} be the textual chat
(utterance) context tokens, and r = {r1, r2, .., rk}
be response tokens generated (or retrieved).

4.1 Baselines

Our simple non-trained baselines are Most-
Frequent-Response (re-rank the candidate re-
sponses based on their frequency in the training
set), Chat-Response-Cosine (re-rank the candidate
responses based on their similarity score w.r.t. the
chat context), and Nearest-Neighbor (find the K-
best similar chat contexts in the training set, take
their corresponding responses, and then re-rank
the candidate responses based on mean similar-
ity score w.r.t. this K-best response set). For
trained baselines, we use logistic regression and
Naive Bayes methods. We use the final state of a
Twitch-trained RNN Language Model to represent
the chat context and response. Please see supple-
mentary for full details.

4.2 Discriminative Models

4.2.1 Triple Encoder
For our simpler discriminative model, we use a
‘triple encoder’ to encode the video context, chat
context, and response (see Fig. 5), as an exten-
sion of the dual encoder model in Lowe et al.
(2015). The task here is to predict the given train-
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Figure 5: Overview of our ‘triple encoder’ discrimi-
native model, with bidirectional-LSTM-RNN encoders
for video, chat context, and response.

ing triple (v, u, r) as positive or negative. Let hvf ,
huf , and hrf be the final state information of the
video, chat, and response LSTM-RNN (bidirec-
tional) encoders respectively; then the probability
of a positive training triple is defined as follows:

p(v, u, r; θ) = σ([hvf ;h
u
f ]

TWhrf + b) (1)

where W and b are trainable parameters. Here, W
can be viewed as a similarity matrix which will
bring the context [hvf ;h

u
f ] into the same space as

the response hrf , and get a suitable similarity score.
For optimizing our discriminative model, we

use max-margin loss function similar to Mao et al.
(2016) and Yu et al. (2017). Given a positive
training triple (v, u, r), let the corresponding neg-
ative training triples be (v′, u, r), (v, u′, r), and
(v, u, r′), i.e., one modality is wrong at a time in
each of these three (see Sec. 5 for the negative ex-
ample selection). The max-margin loss is:

L(θ) =
∑

[max(0,M + log p(v′, u, r)− log p(v, u, r))

+ max(0,M + log p(v, u′, r)− log p(v, u, r))

+ max(0,M + log p(v, u, r′)− log p(v, u, r))]
(2)

where the summation is over all the training triples
in the dataset. M is a tunable margin hyperparam-
eter between positive and negative training triples.

4.2.2 Tridirectional Attention Flow (TriDAF)
Our tridirectional attention flow model learns
stronger joint spaces between the three modalities
in a mutual-information way. We use bidirectional
attention flow mechanisms (Seo et al., 2017) be-
tween the video and chat contexts, between the
video context and the response, as well as between
the chat context and the response, hence enabling
attention flow across all three modalities, as shown
in Fig. 6. We name this model Tridirectional At-
tention Flow or TriDAF. We will next discuss the
bidirectional attention flow mechanism between
video and chat contexts, but the same formula-
tion holds true for bidirectional attention between
video context and response, and between chat con-
text and response. Given the video context hidden

...... ......

response-to-video
 attention

chat-to-video
 attention

......

video-to-chat
 attention

response-to-chat
 attention

video-to-response
 attention

chat-to-response
 attention

Figure 6: Overview of our tridirectional attention flow
(TriDAF) model with all pairwise modality attention
modules, as well as self-attention on video context,
chat context, and response as inputs.

state hvi and chat context hidden state huj at time
steps i and j respectively, the bidirectional atten-
tion mechanism is based on the similarity score:

S
(v,u)
i,j = wT

S(v,u) [h
v
i ;h

u
j ;h

v
i � huj ] (3)

where S
(v,u)
i,j is a scalar, wS(v,u) is a trainable

parameter, and � denote element-wise multi-
plication. The attention distribution from chat
context to video context is defined as αi: =
softmax(Si:), hence the chat-to-video context
vector cv←u

i =
∑

j αi,jh
u
j . Similarly, the attention

distribution from video context to chat context is
defined as βj: = softmax(S:j), hence the video-
to-chat context vector cu←v

j =
∑

i βj,ih
v
i .

We then compute similar bidirectional attention
flow mechanisms between the video context and
response, and between the chat context and re-
sponse. Then, we concatenate each hidden state
and its corresponding context vector from other
two modalities, e.g., ĥvi = [hvi ; c

v←u
i ; cv←r

i ] for the
ith timestep of the video context. Finally, we add
self-attention mechanism (Lin et al., 2017) across
the concatenated hidden states of each of the three
modules.6 If ĥvi is the final concatenated vector
of the video context at time step i, then the self-
attention weights αs for this video context are the
softmax of es:

esi = V v
a tanh(W v

a ĥ
v
i + bva) (4)

where V v
a , W v

a , and bva are trainable self-attention
parameters. The final representation vector of
the full video context after self-attention is ĉv =∑

i α
s
i ĥ

v
i . Similarly, the final representation vec-

tors of the chat context and the response are ĉu

and ĉr, respectively. Finally, the probability that
6In our preliminary experiments, we found that adding

self-attention is 0.92% better in recall@1 and faster than
passing the hidden states through another layer of RNN, as
done in Seo et al. (2017).
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the given training triple (v, u, r) is positive is:

p(v, u, r; θ) = σ([ĉv; ĉu]TWĉr + b) (5)

Again, here also we use max-margin loss (Eqn. 2).

4.3 Generative Models
4.3.1 Seq2seq with Attention
Our simpler generative model is a sequence-to-
sequence model with bilinear attention mechanism
(similar to Luong et al. (2015)). We have two en-
coders, one for encoding the video context and
another for encoding the chat context, as shown
in Fig. 7. We combine the final state informa-
tion from both encoders and give it as initial state
to the response generation decoder. The two en-
coders and the decoder are all two-layer LSTM-
RNNs. Let hvi and huj be the hidden states of
video and chat encoders at time step i and j re-
spectively. At each time step t of the decoder with
hidden state hrt , the decoder attends to parts of
video and chat encoders and uses the combined
information to generate the next token. Let αt and
βt be the attention weight distributions for video
and chat encoders respectively with video context
vector cvt =

∑
i αt,ih

v
i and chat context vector

cut =
∑

j βt,jh
u
j . The attention distribution for

video encoder is defined as (and the same holds
for chat encoder):

et,i = hrt
TW v

a h
v
i ; αt = softmax(et) (6)

where W v
a is a trainable parameter. Next, we con-

catenate the attention-based context information
(cvt and cut ) and decoder hidden state (hrt ), and do
a non-linear transformation to get the final hidden
state ĥrt as follows:

ĥrt = tanh(Wc[c
v
t ; c

u
t ;h

r
t ]) (7)

where Wc is again a trainable parameter. Fi-
nally, we project the final hidden state informa-
tion to vocabulary size and give it as input to a
softmax layer to get the vocabulary distribution
p(rt|r1:t−1, v, u; θ). During training, we minimize
the cross-entropy loss defined as follows:

LXE(θ) = −
∑∑

t

log p(rt|r1:t−1, v, u; θ) (8)

where the final summation is over all the training
triples in the dataset.

Further, to train a stronger generative model
with negative training examples (which teaches

chat-to-video
 attention

video-to-chat
 attention

Figure 7: Overview of our generative model with bidi-
rectional attention flow between video context and chat
context during response generation.

the model to give higher generative decoder prob-
ability to the positive response as compared to all
the negative ones), we use a max-margin loss (sim-
ilar to Eqn. 2 in Sec. 4.2.1):

LMM(θ) =
∑

[max(0,M + log p(r|v′, u)− log p(r|v, u))

+ max(0,M + log p(r|v, u′)− log p(r|v, u))
+ max(0,M + log p(r′|v, u)− log p(r|v, u))]

(9)

where the summation is over all the training triples
in the dataset. Overall, the final joint loss func-
tion is a weighted combination of cross-entropy
loss and max-margin loss: L(θ) = LXE(θ) +
λLMM(θ), where λ is a tunable hyperparameter.

4.3.2 Bidirectional Attention Flow (BiDAF)
The stronger version of our generative model
extends the two-encoder-attention-decoder model
above to add bidirectional attention flow (BiDAF)
mechanism (Seo et al., 2017) between video and
chat encoders, as shown in Fig. 7. Given the hid-
den states hvi and huj of video and chat encoders at
time step i and j, the final hidden states after the
BiDAF are ĥvi = [hvi ; c

v←u
i ] and ĥuj = [hui ; c

u←v
j ]

(similar to as described in Sec. 4.2.2), respectively.
Now, the decoder attends over these final hidden
states, and the rest of the decoder process is simi-
lar to Sec 4.3.1 above, including the weighted joint
cross-entropy and max-margin loss.

5 Experimental Setup

Evaluation We first evaluate both our discrimi-
native and generative models using retrieval-based
recall@k scores, which is a concrete metric for
such dialogue generation tasks (Lowe et al., 2015).
For our discriminative models, we simply rerank
the given responses (in a candidate list of size 10,
based on 9 negative examples; more details below)
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset

First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results

Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results

Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.
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Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⊗ 3.03 8.84
⊗ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
Seq2seq + Atten. (C+V) wins 41.0 %
BiDAF wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results
Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.10 Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.

Models recall@1 recall@2 recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.11

6.5 Human Evaluation of Models

Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs

We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

11Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al., 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.
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bloodtrail bloodtrail bloodtrail bloodtrail bloodtrail || 
yoooo || kappapride || xxuxx skillzzzz , favourite player
you have used this year ? || pl3ad aa9love || are you 
playin with ksi ? ? kappa xxuxx || bought okocha cuz of 
you ant . first game 2 goals 3 assists ! game changer
thank you m8 || play || ! pause || resume || twerkchoke 
twerkchoke twerkchoke || lul

1) good pass jebaited

2) shawn mendez kreygasm 
kreygasm

3) can say that i am american

4) ! camera

5) can you notice me

6) do you have a main squad

7) otw nelson for 47k imma buy 
right now on xbox

8) do *

9) inceptionderp inceptionlove

10) bpl is over priced

chat is aids || where has all thr challenges gone aswell ? || 
did mat yet messi ? || hellllllllllllllllllllllllllllllllllllllllllo || put messi 
on get in behind if u can || chris is getting ronaldo and messi
|| no one wants jamies coctail sausage haha || free kick with 
messi

Ground-truth: play it to messi he makes 
                      good runs

Generated: get messi for the other team

Figure 8: Output retrieval (left) and generative (right) examples from TriDAF and BiDAF models, resp.

Chat Context: xxuxx haha 19 is not bad brotha . i didnt even qualify lol feelbad ||

pogchamp || siiiii pogchamp || boooooooooooooo lul || you guys think i

should get dembele or if alessandrini

Response: comeback goal

Figure 9: Attention visualization: generated word ‘goal’ in response is intuitively aligning to goal-related video
frames (top-3-weight frames highlighted) and context words (top-10-weight words highlighted).

training triple (with just a negative response) vs.
three negative training triples (one with negative
video context, one with negative chat context, and
another with negative response), showing that us-
ing the 3-negative examples setup is substantially
better.

7.2 Discriminative Loss Functions
Table 7 shows the performance comparison be-
tween the classification loss and max-margin loss
on our TriDAF with self-attention discriminative
model (Sec. 4.2.2). We observe that max-margin
loss performs better than the classification loss,
which is intuitive because max-margin loss tries to
differentiate between positive and negative train-
ing example triples.

Models recall@1 recall@2 recall@5
Classification loss 19.32 33.72 66.60
Max-margin loss 22.20 35.90 68.09

Table 7: Ablation of classification vs. max-margin loss
on our TriDAF discriminative model (on dev set).

7.3 Generative Loss Functions
For our best generative model (BiDAF), Table 8
shows that using a joint loss of cross-entropy
and max-margin is better than just using only
cross-entropy loss optimization (Sec. 4.3.1). Max-
margin loss provides knowledge about the nega-
tive samples for the generative model, hence im-
proves the retrieval-based recall@k scores.

7.4 Attention Visualization and Examples
Finally, we show some interesting output exam-
ples from both our discriminative and generative
models as shown in Fig. 8. Additionally, Fig. 9

Models recall@1 recall@2 recall@5
Cross-entropy (XE) 13.12 23.45 54.78
XE+Max-margin 15.61 27.39 57.02

Table 8: Ablation of cross-entropy loss vs. cross-
entropy+maxmargin loss for our BiDAF-based gener-
ative model (on dev set).

visualizes that our models can learn some cor-
rect attention alignments from the generated out-
put response word to the appropriate (goal-related)
video frames as well as chat context words.

8 Conclusion
We presented a new game-chat based video-
context, many-speaker dialogue task and dataset.
We also presented several baselines and state-of-
the-art discriminative and generative models on
this task. We hope that this testbed will be a
good starting point to encourage future work on
the challenging video-context dialogue paradigm.
In future work, we plan to investigate the effects of
multiple users, i.e., the multi-party aspect of this
dataset. We also plan to explore advanced video
features such as activity recognition, person iden-
tification, etc.
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