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Abstract

In this paper we address the problem of learn-
ing multimodal word representations by in-
tegrating textual, visual and auditory inputs.
Inspired by the re-constructive and associa-
tive nature of human memory, we propose
a novel associative multichannel autoencoder
(AMA). Our model first learns the associa-
tions between textual and perceptual modali-
ties, so as to predict the missing perceptual in-
formation of concepts. Then the textual and
predicted perceptual representations are fused
through reconstructing their original and asso-
ciated embeddings. Using a gating mechanism
our model assigns different weights to each
modality according to the different concepts.
Results on six benchmark concept similarity
tests show that the proposed method signifi-
cantly outperforms strong unimodal baselines
and state-of-the-art multimodal models.

1 Introduction

Representing the meaning of a word is a prereq-
uisite to solve many linguistic and non-linguistic
problems, such as retrieving words with the same
meaning, finding the most relevant images or
sounds of a word and so on. In recent years we
have seen a surge of interest in building computa-
tional models that represent word meanings from
patterns of word co-occurrence in corpora (Turney
and Pantel, 2010; Mikolov et al., 2013; Penning-
ton et al., 2014; Clark, 2015; Wang et al., 2018b).
However, word meaning is also tied to the phys-
ical world. Many behavioral studies suggest that
human semantic representation is grounded in the
external environment and sensorimotor experience
(Landau et al., 1998; Barsalou, 2008). This has
led to the development of multimodal representa-
tion models that utilize both textual and perceptual
information (e.g., images, sounds).

As evidenced by a range of evaluations (An-
drews et al., 2009; Bruni et al., 2014; Silberer

et al., 2016), multimodal models can learn bet-
ter semantic word representations (a.k.a. embed-
dings) than text-based models. However, most ex-
isting models still have a number of drawbacks.
First, they ignore the associations between modal-
ities, and thus lack the ability of information trans-
ferring between modalities. Consequently they
cannot handle words without perceptual informa-
tion. Second, they integrate textual and perceptual
representations with simple concatenation, which
is insufficient to effectively fuse information from
various modalities. Third, they typically treat the
representations from different modalities equally.
This is inconsistent with many psychological find-
ings that information from different modalities
contributes differently to the meaning of words
(Paivio, 1990; Anderson et al., 2017).

In this work, we introduce the associative multi-
channel autoencoder (AMA), a novel multimodal
word representation model that addresses all the
above issues. Our model is built upon the stacked
autoencoder (Bengio et al., 2007) to learn seman-
tic representations by integrating textual and per-
ceptual inputs. Inspired by the re-constructive
and associative nature of human memory, we pro-
pose two associative memory modules as exten-
sions. One is to learn associations between modal-
ities (e.g., associations between textual and visual
features), so as to reconstruct corresponding per-
ceptual information of concepts. The other is to
learn associations between related concepts, by re-
constructing embeddings of both target words and
their associated words. Furthermore, we propose a
gating mechanism to learn the importance weights
of different modalities to each word.

To summarize, our main contributions in this
work are two-fold:

• We present a novel associative multichannel
autoencoder for multimodal word represen-
tation, which is capable of utilizing associa-
tions between different modalities and related
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concepts, and assigning different importance
weights to each modality according to differ-
ent words. Results on six standard bench-
marks demonstrate that our methods outper-
form strong unimodal baselines and state-of-
the-art multimodal models.

• Our model successfully integrates cognitive
insights of the re-constructive and associative
nature of semantic memory in humans, sug-
gesting that rich information contained in hu-
man cognitive processing can be used to en-
hance NLP models. Furthermore, our results
shed light on the fundamental questions of
how to learn semantic representations, such
as the plausibility of reconstructing percep-
tual information, associating related concepts
and grounding word symbols to external en-
vironment.

2 Background and Related Work

2.1 Cognitive Grounding

A large body of research evidences that human se-
mantic memory is inherently re-constructive and
associative (Collins and Loftus, 1975; Anderson
and Bower, 2014). That is, memories are not exact
static copies of reality, but are rather reconstructed
from their stimuli and associated concepts each
time they are retrieved. For example, when we see
a dog, not only the concept itself, but also the cor-
responding perceptual information and associated
words will be jointly activated and reconstructed.
Moreover, various theories state that the different
sources of information contribute differently to the
semantic representation of a concept (Wang et al.,
2010; Ralph et al., 2017). For instance, Dual Cod-
ing Theory (Hiscock, 1974) posits that concrete
words are represented in the brain in terms of a
perceptual and linguistic code, whereas abstract
words are encoded only in the linguistic modality.

In these respects, our method employs a re-
trieval and representation process analogous to
that of humans, in which the retrieval of percep-
tual information and associated words is triggered
and mediated by a linguistic input. The learned
cross-modality mapping and reconstruction of as-
sociated words are inspired by the human mental
model of associations between different modali-
ties and related concepts. Moreover, word mean-
ing is tied to both linguistic and physical environ-
ment, and relies differently on each modality in-

puts (Wang et al., 2018a). These are also captured
by our multimodal representation model.

2.2 Multimodal Models

The existing multimodal representation models
can be generally classified into two groups: 1)
Jointly training models build multimodal repre-
sentations with raw inputs of textual and percep-
tual resources. 2) Separate training models inde-
pendently learn textual and perceptual representa-
tions and integrate them afterwards.

2.2.1 Jointly training models
A class of models extends Latent Dirichlet Alloca-
tion (Blei et al., 2003) to jointly learn topic distri-
butions from words and perceptual units (Andrews
et al., 2009; Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013). Recently introduced
work is an extension of the Skip-gram model
(Mikolov et al., 2013). For instance, Hill and
Korhonen (2014) propose a corpus fusion method
that inserts the perceptual features of concepts in
the training corpus, which is then used to train the
Skip-gram model. Lazaridou et al. (2015) propose
MMSkip model, which injects visual information
in the process of learning textual representations
by adding a max-margin objective to minimize the
distance between textual and visual vectors. Kiela
and Clark (2015) adopt the MMSkip to learn mul-
timodal vectors with auditory perceptual inputs.

These methods can implicitly propagate percep-
tual information to word representations and at
the same time learn multimodal representations.
However, they utilize raw text corpus in which
words having perceptual information account for a
small portion. This weakens the effect of introduc-
ing perceptual information and consequently leads
to the slight improvement of textual vectors.

2.2.2 Separate training models
The simplest approach is concatenation which
fuses textual and visual vectors by concatenat-
ing them. It has been proven to be effective in
learning multimodal representations (Bruni et al.,
2014; Hill et al., 2014; Collell et al., 2017). Vari-
ations of this method employ transformation and
dimension reduction on the concatenation result,
including application of singular value decom-
position (SVD) (Bruni et al., 2014) or canoni-
cal correlation analysis (CCA) (Hill et al., 2014).
There is also work using deep learning methods to
project different modality inputs into a common
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space, including restricted Boltzman machines
(Ngiam et al., 2011; Srivastava and Salakhutdinov,
2012), autoencoders (Silberer and Lapata, 2014;
Silberer et al., 2016), and recursive neural net-
works (Socher et al., 2013). However, the above
methods can only generate multimodal vectors of
those words that have perceptual information, thus
reducing multimodal vocabulary drastically.

An empirically superior model addresses this
problem by predicting missing perceptual infor-
mation firstly. This includes Hill et al. (2014) who
utilize the ridge regression method to learn a map-
ping matrix from textual modality to visual modal-
ity, and Collell et al. (2017) who employ a feed-
forward neural network to learn the mapping re-
lation between textual vectors and visual vectors.
Applying the mapping function on textual repre-
sentations, they obtain the predicted visual vectors
for all words in textual vocabulary. Then they cal-
culate multimodal representations by concatenat-
ing textual and predicted visual vectors. However,
the above methods learn separate mapping func-
tions and fusion models, which are somewhat in-
elegant. In this paper we employ a neural-network
mapping function to integrate these two processes
into a unified multimodal models.

According to this classification, our method
falls into the second group. However, exist-
ing models ignore either the associative relations
among modalities, associative relations among rel-
ative words, or the different contributions of each
modality. This paper aims to integrate more per-
ceptual information and the human-like associa-
tive memory into a unified multimodal model to
learn better word representations.

3 Associative Multichannel Autoencoder

We first provide a brief description of the basic
multichannel autoencoder for learning multimodal
word representations (Figure 1). Then we extend
the model with two associative memory modules
and a gating mechanism (Figure 2) in the next sec-
tions.

3.1 Basic Mutichannel Autoencoder

An autoencoder is an unsupervised neural net-
work which is trained to reconstruct a given in-
put from its latent representation (Bengio, 2009).
In this work, we propose a variant of autoen-
coder called multichannel autoencoder, which
maps multimodal inputs into a common space.
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Figure 1: Architecture of the multichannel autoen-
coder with inputs of textual, visual and auditory
sources.

Our model extends the unimodal and bimodal au-
toencoder (Ngiam et al., 2011; Silberer and Lap-
ata, 2014) to induce semantic representations in-
tegrating textual, visual and auditory information.
As shown in Figure 1, our model first transforms
input textual vector xt, visual vector xv and audi-
tory vector xa to hidden representations:

ht = g(Wtxt + bt)

hv = g(Wvxv + bv)

ha = g(Waxa + ba).

(1)

Then the hidden representations are concatenated
together and mapped to a common space:

hm = g(Wm[ht;hv;ha] + bm). (2)

The model is trained to reconstruct the hidden
representations of the three modalities from the
multimodal representation hm:

[ĥt; ĥv; ĥa] = g(W ′mhm + bm̂), (3)

and finally to reconstruct the original embeddings
of textual, visual and auditory inputs:

x̂t = g(W ′t ĥt + bt̂)

x̂v = g(W ′vĥv + bv̂)

x̂a = g(W ′aĥa + bâ),

(4)

where x̂t, x̂v, x̂a are the reconstruction of
input vectors xt, xv, xa, and ĥt, ĥv, ĥa
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are the reconstruction of hidden representa-
tions ht, hv, ha. The learning parameters
{Wt,Wv,Wa,W

′
t ,W

′
v,W

′
a,Wm,W

′
m} are weight

matrices, {bt, bv, ba, bt̂, bv̂, bâ, bm, bm̂} are bias
vectors. Here [· ; ·] denotes the vector concatena-
tion, and g denotes the non-linear function which
we use tanh(·).

Training a single-layer autoencoder corre-
sponds to optimizing the learning parameters to
minimize the overall loss between inputs and their
reconstructions. Following (Vincent et al., 2010),
we use squared loss:

min
θ1

n∑
i=1

(||xit− x̂it||2+ ||xiv− x̂iv||2+ ||xia− x̂ia||2),

(5)
where i denotes the ith word, and the model pa-
rameters are θ1 = {Wt,Wv,Wa,Wm,W

′
t ,W

′
v,

W ′a,W
′
m, bt, bv, ba, bm, bt̂, bv̂, bâ, bm̂}.

Autoencoders can be stacked to create deep net-
works. To enhance the quality of semantic repre-
sentations, we employ a stacked multichannel au-
toencoder, which is composed of multiple hidden
layers that are stacked together.

3.2 Integrating Modality Associations
In reality, the words that have corresponding im-
ages or sounds are only a small subset of the tex-
tual vocabulary. To obtain the perceptual vec-
tors for each word, we need associations between
modalities (i.e., text-to-vision and text-to-audition
mapping functions), that transform the textual vec-
tors into visual and auditory ones. Previous meth-
ods learn separate mapping functions and fusion
models, which are somewhat inelegant. Here we
employ a neural-network mapping function to in-
corporate this modality association module into
multimodal models.

Take text-to-vision mapping as an example.
Suppose that T ∈ Rmt×nt is the textual repre-
sentation containing mt words, V ∈ Rmv×nv is
the visual representation containing mv (� mt)
words, where nt and nv are dimensions of the tex-
tual and visual representations respectively. The
textual and visual representations of the ith con-
cept are denoted as Ti and Vi respectively. Our
goal is to learn a mapping function f : g(WpT +
bp) from textual to visual space such that the pre-
diction f(Ti) is similar to the actual visual vec-
tor Vi. The set of visual representations along
with their corresponding textual representations
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Figure 2: Architecture of the proposed associative
multichannel autoencoder.

are used to learn the mapping function. To train
the model, we employ a square loss:

min
θ2

mv∑
i=1

||f(Ti)− Vi||2, (6)

where the training parameters are θ2 = {Wp, bp}.
We adopt the same method to learn the text-to-
audition mapping function.

3.3 Integrating Word Associations
Word associations are a proxy for an aspect of
human semantic memory that is not sufficiently
captured by the usual training objectives of multi-
modal models. Therefore we assume that incorpo-
rating the objective of word associations helps to
learn better semantic representations. To achieve
this, we propose to reconstruct the vector of as-
sociated word from the corresponding multimodal
semantic representation. Specifically, in the de-
coding process we change the equation (3) to:

[ĥt, ĥv, ĥa, ĥasc] = g(W ′mhm + bm̂), (7)

and equation (4) to:

x̂t = g(W ′t ĥt + bt̂)

x̂v = g(W ′vĥv + bv̂)

x̂a = g(W ′aĥa + bâ)

x̂asc = g(Wascĥasc + basc).

(8)

To train the model, we add an additional ob-
jective function, which is the mean square error
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between the embeddings of the associated word y
and their re-constructive embeddings x̂asc:

min
θ3

n∑
i=1

||yi − x̂iasc||2, (9)

where yi and xi are the embeddings of a pair of
associated words. Here, y is the concatenation
of three unimodal vectors [yt; yv; ya]. The pa-
rameters of word association module are θ3 =
{Wt,Wv,Wa,Wm, Ŵm,Wasc, bt, bv, ba, bm, bm̂,
basc}. This additional criterion drives the learn-
ing towards a semantic representation capable of
reconstructing its associated representation.

3.4 Integrating a Gating Mechanism

Considering that the meaning of each word has
different dependencies on textual and perceptual
information, we propose the sample-specific gate
to assign different weights to each modality ac-
cording to different words. The weight parame-
ters are calculated by the following feed-forward
neural networks:

gt = g(Wgtxt + bgt)

gv = g(Wgvxv + bgv)

ga = g(Wgaxa + bga),

(10)

where gt, gv and ga are value or vector gate of tex-
tual, visual and auditory representations respec-
tively. For the value gate, Wgt, Wgv and Wga are
vectors, and bgt, bgv and bga are value parameters.
For the vector gate, the parameters Wgt, Wgv and
Wga are matrices, bgt, bgv and bga are vectors. The
value gate controls the importance weights of dif-
ferent input representations as a whole, whereas
the vector gate can adjust the importance weights
of each dimension of input representations.

Finally, we compute element-wise multiplica-
tion of the textual, visual and auditory represen-
tations with their corresponding gates:

xgt = xt � gt
xgv = xv � gv
xga = xa � ga.

(11)

The xgt, xgv and xga can be seen as the weighted
textual, visual and auditory representations. The
parameters of our gating mechanism is trained to-
gether with that of the proposed model.

3.5 Model Training

To train the AMA model, we use overall objec-
tive function of equation (5) + (6) + (9). In the
training phase, model inputs are textual vectors,
the corresponding visual vectors, auditory vectors,
and association words (Figure 2). In the testing
phase, we only need textual inputs to generate
multimodal word representations.

4 Experimental Setup

4.1 Datasets

Textual vectors. We use 300-dimensional GloVe
vectors1 which are trained on the Common Crawl
corpus consisting of 840B tokens and a vocabulary
of 2.2M words2.

Visual vectors. Our source of visual vectors
are collected from ImageNet (Russakovsky et al.,
2015) which covers a total of 21,841 WordNet
synsets (Fellbaum, 1998) that have 14,197,122 im-
ages. For our experiments, we delete words with
fewer than 50 images or words not in the Glove
vectors, and sample at most 100 images for each
word. To generate a visual vector for each word,
we use the forward pass of a pre-trained VGG-
net model3 and extract the hidden representation
of the last layer as the feature vector. Then we
use averaged feature vectors of the multiple im-
ages corresponding to the same word. Finally, we
get 8,048 visual vectors of 128 dimensions.

Auditory vectors. For auditory data, we gather
audio files from Freesound4, in which we select
words with more than 10 audio files and sample at
most 50 sounds for one word. To extract auditory
features, we use the VGG-net model which is pre-
trained on Audioset5. The final auditory vectors
are averaged feature vectors of multiple audios of
the same word, which contains 9,988 words of 128
dimensions6.

Word associations. We use the word associ-
ation data collected by (De Deyne et al., 2016),
in which each word pair is generated by at least

1http://nlp.stanford.edu/projects/
glove

2We have tried skip-gram vectors and get the same con-
clusions.

3http://www.vlfeat.org/matconvnet/
4http://www.freesound.org/
5https://research.google.com/audioset
6We build auditory vectors with the released code

at: https://github.com/tensorflow/models/
tree/master/research/audioset

http://nlp.stanford.edu/projects/glove
http://nlp.stanford.edu/projects/glove
http://www.vlfeat.org/matconvnet/
http://www.freesound.org/
https://research.google.com/audioset
https://github.com/tensorflow/models/tree/master/research/audioset
https://github.com/tensorflow/models/tree/master/research/audioset
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one subject7. This dataset includes mostly words
with similar meaning (e.g., occasionally & some-
times, adored & loved, supervisor & boss) and re-
lated words (e.g., eruption & volcano, cortex &
brain, umbrella & rain). We calculate the associ-
ation score for each word pair (cue word + target
word) as: the number of person who generated the
word pair divided by the total number of people
who were presented with the cue word. For train-
ing, we select pairs of associated words above a
threshold of 0.15 and delete those that are not in
the Glove vocabulary, which results in 7,674 word
association data sets8. For the development set,
we randomly sample 5,000 word association col-
lections together with their association scores.

4.2 Model Settings

Our models are implemented with PyTorch
(Paszke et al., 2017), optimized with Adam
(Kingma and Ba, 2014). We set the initial learn-
ing rate to 0.05, and batch size to 64. We tune the
number of layers over 1, 2, 3, the size of multi-
modal vectors over 100, 200, 300, and the size of
each layer in textual channel over 300, 250, 200,
150, 100 and in visual/auditory channel over 128,
120, 90, 60. We train the model for 500 epochs
and select the best parameters on the development
set. All models are trained for 3 times and the av-
erage results are reported in Table 1.

To test the effect of each module, we sep-
arately train the following models: multichan-
nel autoencoder with modality association (AMA-
M), with modality and word associations (AMA-
MW), with modality and word associations plus
value/vector gate (AMA-MW-Gval/vec).

For AMA-M model, we initialize the text-to-
vision and text-to-audition mapping functions
with pre-trained mapping matrices, which are
parameters of one-layer feed-forward neural
networks. The network uses input of the textual
vectors, output of visual or auditory vectors,
and is trained with SGD for 100 epochs. We
initialize the network biases as zeros and network
weights with He-initialisation (He et al., 2015).
The best parameters of AMA-M model are 2
hidden layers, with textual channel size of 300,
250 and 150, visual/auditory channel size of 128,

7The dataset can be found at: https://
simondedeyne.me/data.

8We have done experiments with Synonyms (which are
extracted from WordNet and PPDB corpora), and the results
are not as good as using word associations.

90, 60. For AMA-MW model, we use the best
AMA-M model parameters as initialization, and
train the model with word association data. The
optimal parameter of association channel size is
300, 350, 556 (or 428 for bimodal inputs). For
AMA-MW-Gval and AMA-MW-Gvec, we adopt
the same training strategy as AMA-MW model.
The code for training and evaluation can be found
at: https://github.com/wangshaonan/
Associative-multichannel-autoencoder.

5 Experiments

5.1 Evaluation Tasks

We test the baseline and proposed models on six
standard evaluation benchmarks, covering two dif-
ferent tasks: (i) Semantic relatedness: Men-3000
(Bruni et al., 2014) and Wordrel-252 (Agirre et al.,
2009); (ii) Semantic similarity: Simlex-999 (Hill
et al., 2016), Semsim-7576 (Silberer and Lap-
ata, 2014), Wordsim-203 and Simverb-3500 (Gerz
et al., 2016). All test sets contain a list of word
pairs along with their subject ratings.

We employ Spearman’s correlation method to
evaluate the performance of our models. This
method calculates the correlation coefficients be-
tween model predictions and subject ratings, in
which the model prediction is the cosine similarity
between semantic representations of two words.

5.2 Baseline Multimodal Models

Most of existing multimodal models only utilize
textual and visual modalities. For fair compari-
son, we re-implement several representative sys-
tems with our own textual and visual vectors. The
Concatenation (CONC) model (Kiela and Bot-
tou, 2014) is simple concatenation of normalized
textual and visual vectors. The Mapping (Collell
et al., 2017) and Ridge (Hill et al., 2014) mod-
els first learn a mapping matrix from textual to vi-
sual modality using feed-forward neural network
and ridge regression respectively. After applying
the mapping function on the textual vectors, they
obtain the predicted visual vectors for all words
in textual vocabulary. Then they concatenate the
normalized textual and predicted visual vectors to
get multimodal word representations. The SVD
(Bruni et al., 2014) and CCA (Hill et al., 2014)
models first concatenate normalized textual and
visual vectors, and then conduct SVD or CCA
transformations on the concatenated vectors.

For multimodal models with textual, visual and

https://simondedeyne.me/data
https://simondedeyne.me/data
https://github.com/wangshaonan/Associative-multichannel-autoencoder
https://github.com/wangshaonan/Associative-multichannel-autoencoder
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Table 1: Spearman’s correlations between model predictions and human ratings on six evaluation datasets.
Here T, V, A denote textual, visual and auditory. TV denotes bimodal inputs of textual and visual. TVA
denotes trimodal inputs of textual, visual and auditory. The bold scores are the best results per column
in bimodal models and trimodal models respectively. For each test, ALL corresponds to the whole
testing set, V/A to those word pairs for which we have textual&visual vectors in bimodal models or
textual&visual&auditory in trimodal models, and ZS (zero-shot) denotes word pairs for which we have
only textual vectors. The #inst. denotes the number of word pairs.

 MEN SIMLEX SEMSIM SIMVERB WORDSIMM WORDREL 
 ALL V/A ZS ALL V/A ZS ALL V/A ZS ALLL V/A ZS ALL V/A ZS ALL V/A ZS 

Kiela & Bottou 2014 - 0.72 - - -  - - - - - - - - - - - - 

Silberer & Lapata 2014 - - - - - - 0.70 - - - - - - - - - - - 

Lazaridou et al., 2015 0.75 0.76 - 0.40 0.53 - 0.72 0.72 - - - - - - - - - - 

Collell et al., 2017 0.811 0.819 0.802 0.410 0.388 0.422 0785 0.791 0.764 0.286 0.371 0.285 0.781 0.698 0.766 0.629 0.797 0.601 

Glove-textual (V) 0.802 0.799 0.788 0.408 0.371 0.429 0.744 0.751 0.716 0.283 0.320 0.282 0.798 0.688 0.779 0.682 0.759 0.661 

Glove-textual (A) 0.802 0.801 0.830 0.408 0.399 0.456 0.744 0.715 0.762 0.283 0.129 0.397 0.798 0.805 0.785 0.682 0.708 0.652 

CNN-visual - 0.566 - - 0.406 - - 0.502 - - 0.235 - - 0.526 - - 0.422 - 

Predicted-visual 0.698 0.757 0.656 0.372 0.458 0.347 0.702 0.700 0.709 0.212 0.194 0.211 0.596 0.621 0.557 0.412 0.604 0.384 

CNN-auditory - 0.266 - - 0.053 - - 0.159 - - 0 - - 0.231 - - 0.088 - 

Predicted-auditory 0.558 0.555 0.597 0.270 0.251 0.296 0.547 0.531 0.559 0.157 0.074 0.227 0.515 0.496 0.544 0.388 0.400 0.372 

CONC (TV) - 0.786 - - 0.442 - - 0.709 - - 0.437 - - 0.665 - - 0.666 - 

Mapping (TV) 0.806 0.815 0.782 0.408 0.407 0.410 0.769 0.771 0.709 0.282 0.358 0.272 0.781 0.696 0.768 0.650 0.751 0.594 

Ridge (TV) 0.806 0.816 0.786 0.418 0.405 0.429 0.764 0.766 0.756 0.287 0.329 0.285 0.786 0.689 0.771 0.660 0.765 0.640 

SVD (TV) 0.806 0.816 0.786 0.418 0.405 0.429 0.764 0.766 0.756 0.287 0.330 0.286 0.786 0.689 0.771 0.660 0.764 0.640 

CCA (TV) 0.816 0.833 0.798 0.478 0.507 0.493 0.656 0.666 0.619 0.333 0.276 0.334 0.757 0.754 0.704 0.626 0.733 0.599 

AMA-M (TV) 0.836 0.822 0.834 0.445 0.460 0.471 0.781 0.784 0.769 0.324 0.403 0.323 0.807 0.754 0.769 0.681 0.814 0.648 

AMA-MW (TV) 0.838 0.824 0.822 0.471 0.446 0.509 0.757 0.738 0.723 0.343 0.421 0.340 0.814 0.780 0.737 0.707 0.744 0.659 

AMA-MW-Gval (TV) 0.845 0.835 0.841 0.476 0.472 0.506 0.776 0.778 0.767 0.352 0.396 0.352 0.808 0.758 0.763 0.726 0.796 0.705 

AMA-MW-Gvec (TV) 0.840 0.831 0.835 0.485 0.486 0.505 0.766 0.769 0.778 0.343 0.523 0.342 0.811 0.769 0.778 0.694 0.846 0.661 

CONC (TVA) - 0.778 - - 0.451 - - 0.661 - - 0.503 - - 0.687 - - 0.593 - 

Ridge (TVA) 0.805 0.812 0.791 0.417 0.428 0.420 0.764 0.725 0.781 0.286 0.557 0.285 0.785 0.733 0.762 0.659 0.716 0.646 

 AMA-M (TVA) 0.831 0.814 0.832 0.452 0.488 0.472 0.778 0.741 0.793 0.333 0.531 0.332 0.805 0.751 0.784 0.685 0.703 0.670 

AMA-MW (TVA) 0.838 0.826 0.838 0.481 0.508 0.508 0.762 0.726 0.777 0.358 0.605 0.357 0.814 0.821 0.787 0.734 0.819 0.711 

AMA-MW-Gval (TVA) 

(TVA) (TVA) (TVA) 

(TVA) 

0.849 0.832 0.851 0.488 0.500 0.509 0.772 0.729 0.790 0.347 0.598 0.347 0.810 0.806 0.782 0.730 0.761 0.710 

AMA-MW-Gvec (TVA) 
(TVA) (TVA) 

0.843 0.815 0.843 0.477 0.505 0.497 0.767 0.733 0.781 0.346 0.564 0.346 0.812 0.779 0.788 0.723 0.729 0.705 

#inst.-visual 3000 1065 1935 999 261 738 7546 5757 1789 3500 41 3459 201 45 158 245 28 224 

#inst.-auditory 3000 2732 268 999 741 258 7546 2816 4730 3500 1362 2138 201 129 72 245 153 92 

#inst.-visual-auditory 3000 964 2036 999 238 761 7546 2322 5224 3500 22 3478 201 30 171 245 25 220 
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auditory inputs, we implement CONC and Ridge
as baseline models. The trimodal CONC model
simply concatenates normalized textual, visual
and auditory vectors. The trimodal Ridge model
first learns text-to-vision and text-to-audition map-
ping matrices with ridge regression method. Then
it applies the mapping functions on the textual vec-
tors to get the predicted visual and auditory vec-
tors. Finally, the normalized textual, predicted-
visual and predicted-auditory vectors are concate-
nated to get the multimodal representations.

All above baseline models are implemented
with Sklearn9. Same as the proposed AMA model,

9http://scikit-learn.org/

the hyper-parameters of baseline models are tuned
on the development set using Spearman’s correla-
tion method. In Ridge model, the optimal regular-
ization parameter is 0.6. The Mapping model is
trained with SGD for maximum 100 epochs with
early stopping, and the optimal learning rate is
0.001. The output dimension of SVD and CCA
models are 300.

5.3 Results and Discussion

As shown in Table 1, we divide all models into
six groups: (1) existing multimodal models (with
textual and visual inputs) in which results are
reprinted from Collell et al. (2017). (2) Unimodal
models with textual, (predicted) visual or (pre-

http://scikit-learn.org/
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dicted) auditory inputs. (3) Our re-implementation
of baseline bimodal models with textual and vi-
sual inputs (TV). (4) Our AMA models with tex-
tual and visual inputs. (5) Our implementation of
trimodal baseline models with textual, visual and
auditory inputs (TVA). (6) Our AMA model with
textual, visual and auditory inputs.

Overall performance Our AMA models (in
group 4 and 6) clearly outperform their baseline
unimodal and multimodal models (in group 2, 3
and 5). We use Wilcoxon signed-rank test to check
if significant difference exists between two mod-
els. Results show that our multimodal models per-
form significantly better (p < 0.05) than all base-
line models.

As shown clearly, our bimodal and trimodal
AMA models achieve better performance than
baselines in both V/A (visual or auditory, the test-
ing data that have associated visual or auditory
vectors) and ZS (zero-shot, the testing data that do
not have associated visual or auditory vectors) re-
gion. In other words, our models outperform base-
line models on words with or without perceptual
information. The good results in ZS region also
indicate that our models have good generalization
capacity.

Unimodal baselines As shown in group 2,
the Glove vectors are much better than CNN-
visual and CNN-auditory vectors, in which CNN-
auditory has the worst performance on capturing
concept similarities. Comparing with visual and
auditory vectors, the predicted visual and auditory
vectors achieve much better performance. This in-
dicates that the predicted vectors contain richer in-
formation than purely perceptual representations
and are more useful for building semantic repre-
sentations.

Multimodal baselines For bimodal models
(group 3), the CONC model that combines Glove
and visual vectors performs worse than Glove on
four out of six datasets, suggesting that simple
concatenation might be suboptimal. The Mapping
and Ridge models, which combine Glove and pre-
dicted visual vectors, improve over Glove on five
out of six datasets in ALL regions. This reinforces
the conclusion that the predicted visual vectors are
more useful in building multimodal models. The
SVD model gets similar results as Ridge model.
The CCA model maps different modality inputs
into a common space, achieving better results on
some datasets and worse results on the others.

The improvement on three benchmark tests shows
the potential of mapping multimodal inputs into a
common space.

The above results can also be observed in the tri-
modal CONC and Ridge models (group 5). Over-
all, the trimodal models, which utilize additional
auditory inputs, get slightly worse performance
than bimodal models. This is partly caused by
the fusion method of concatenation. Note that our
proposed AMA models are more effective with tri-
modal inputs as shown in group 6.
Our multimodal models With either bimodal or
trimodal inputs, the proposed AMA-M model out-
performs all baseline models by a large margin.
Specifically our AMA-M model achieves an rela-
tive improvement of 4.1% on average (4.5% with
trimodal inputs) over the state-of-the-art Ridge
model. This illustrates that our AMA models can
productively combine textual and perceptual rep-
resentations. Moreover, our AMA-MW model,
which employs word associations, achieves an av-
erage improvement of 1.5% (2.7% with trimodal
inputs) over the AMA-M model. That is to say,
the representation ability of multimodal models
can be clearly improved by learning associative
relations between words. Furthermore, the AMA-
MW-Gval model improves the AMA-MW model
by 1.3% (0.3% with trimodal inputs) on average,
illustrating that the gating mechanism (especially
the value gate) helps to learn better semantic rep-
resentations.

In addition, we explore the effect of word asso-
ciation data size. We find that the decrease of as-
sociation data has no discernible effect on model
performance: when using 100%, 80%, 60%, 40%,
20% of the data, the average results are 0.6479,
0.6409, 0.6361, 0.6430, 0.6458 in bimodal model.
The same trend is observed in trimodal models.

6 Conclusions and Future Work

We have proposed a cognitively-inspired multi-
modal model — associative multichannel autoen-
coder — which utilizes the associations between
modalities and related words to learn multimodal
word representations. Performance improvement
on six benchmark tests shows that our models can
efficiently fuse different modality inputs and build
better semantic representations.

Ultimately, the present paper sheds light on the
fundamental questions of how to learn word mean-
ings, such as the plausibility of reconstructing per-
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ceptual information, associating related concepts
and grounding word symbols to external environ-
ment. We believe that one of the promising fu-
ture directions is to learn from how humans learn
and store semantic word representations to build a
more effective computational model.
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