
A Unified Framework for Structured Prediction: From Theory to Practice

Wei Lu
Singapore University of Technology and Design

8 Somapah Road, Singapore 487372
luwei@sutd.edu.sg

Structured prediction is one of the most impor-
tant topics in various fields, including machine
learning, computer vision, natural language pro-
cessing (NLP) and bioinformatics. In this tutorial,
we present a novel framework that unifies various
structured prediction models.

The hidden Markov model (HMM) and the
probabilistic context-free grammars (PCFGs) are
two classic generative models used for predicting
outputs with linear-chain and tree structures, re-
spectively. As HMM’s discriminative counterpart,
the linear-chain conditional random fields (CRFs)
(Lafferty et al., 2001) model was later proposed.
Such a model was shown to yield good perfor-
mance on standard NLP tasks such as informa-
tion extraction. Several extensions to such a model
were then proposed afterward, including the semi-
Markov CRFs (Sarawagi and Cohen, 2004), tree
CRFs (Cohn and Blunsom, 2005), as well as dis-
criminative parsing models and their latent vari-
able variants (Petrov and Klein, 2007). On the
other hand, utilizing a slightly different loss func-
tion, one could arrive at the structured support vec-
tor machines (Tsochantaridis et al., 2004) and its
latent variable variant (Yu and Joachims, 2009) as
well. Furthermore, new models that integrate neu-
ral networks and graphical models, such as neural
CRFs (Do et al., 2010) were also proposed.

In this tutorial, we will be discussing how such
a wide spectrum of existing structured predic-
tion models can all be implemented under a uni-
fied framework1 that involves some basic building
blocks. Based on such a framework, we show how
some seemingly complicated structured prediction
models such as a semantic parsing model (Lu et
al., 2008; Lu, 2014) can be implemented conve-
niently and quickly. Furthermore, we also show
that the framework can be used to solve certain
structured prediction problems that otherwise can-
not be easily handled by conventional structured

1http://statnlp.org/statnlp-framework

prediction models. Specifically, we show how to
use such a framework to construct models that are
capable of predicting non-conventional structures,
such as overlapping structures (Lu and Roth, 2015;
Muis and Lu, 2016a). We will also discuss how to
make use of the framework to build other related
models such as topic models and highlight its po-
tential applications in some recent popular tasks
(e.g., AMR parsing (Flanigan et al., 2014)).

This tutorial consists of the following 3 main
sections.2

Foundations of structured prediction models
Duration: 45 minutes

In this section, we introduce the basics of
structured prediction models. We will review
all the above-mentioned structured prediction
models. We then provide a global picture that
shows the underlying connections between
different models.

Unified framework for structured prediction
Duration: 45 minutes

In this section, we formally introduce the
framework that allows all such different
structured prediction models to be unified in
an elegant manner. We start with defining
the basic building blocks required for con-
structing a structured prediction model. Next,
we discuss how to make use of such build-
ing blocks for constructing different types of
models.

Practical guide on model implementation
Duration: 60 minutes

In this section, we present a practical guide
on how to implement seemingly very differ-
ent types of structured prediction models us-
ing our unified framework. We will show

2The material associated with this tutorial will be avail-
able at http://statnlp.org/tutorials/.



how to conveniently implement several struc-
tured prediction models within our frame-
work using real code examples.

The framework has been extensively used by
our research group for developing various struc-
tured prediction models, including models for in-
formation extraction (Lu and Roth, 2015; Muis
and Lu, 2016a; Jie et al., 2017), noun phrase
chunking (Muis and Lu, 2016b), semantic parsing
(Lu, 2015; Susanto and Lu, 2017), and sentiment
analysis (Li and Lu, 2017). It is our hope that
this tutorial will be helpful for many natural lan-
guage processing researchers who are interested
in designing their own structured prediction mod-
els rapidly. We also hope this tutorial allows re-
searchers to strengthen their understandings on the
connections between various structured prediction
models, and that the open release of the framework
will bring value to the NLP research community
and enhance its overall productivity.
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