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Abstract

We present QUINT, a live system for
question answering over knowledge bases.
QUINT automatically learns role-aligned
utterance-query templates from user ques-
tions paired with their answers. When
QUINT answers a question, it visualizes
the complete derivation sequence from the
natural language utterance to the final an-
swer. The derivation provides an explana-
tion of how the syntactic structure of the
question was used to derive the structure
of a SPARQL query, and how the phrases
in the question were used to instantiate dif-
ferent parts of the query. When an an-
swer seems unsatisfactory, the derivation
provides valuable insights towards refor-
mulating the question.

1 Introduction

Motivation. A KB-QA system takes a natural lan-
guage utterance as input and produces one or more
crisp answers as output (Bast and Haussmann,
2015; Berant et al., 2013; Reddy et al., 2014; Yih
et al., 2015). This is usually done through seman-
tic parsing: translating the utterance to a formal
query in a language such as SPARQL, and execut-
ing this query over a KB like Freebase (Bollacker
et al., 2008) or YAGO (Suchanek et al., 2007) to
return one or more answer entities.

In addition to answering questions, a KB-QA
system should ideally be able to explain how an
answer was derived i.e., how the system under-
stood the users’ questions. While rapid progress is
being made on the KB-QA task, the quality of an-
swers obtained from KB-QA systems are far from
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perfect. This is due to a combination of factors
related to the ambiguity of natural language, the
underlying data (e.g., KB incompleteness, gaps in
lexicon coverage) and the KB-QA systems them-
selves (e.g., errors in named entity recognition
and disambiguation, query ranking). Explanations
help address this gap in two ways: (i) helping
users gain confidence when correct answers are re-
turned, and (ii) making sense of the limitations of
the system by looking at explanations for wrong
answers, possibly providing cues to work around
them. For an expert user, explanations also con-
tribute to traceability: identifying the exact point
of failure in the KB-QA system pipeline, which
can be used for subsequent debugging.

In this work, we demonstrate QUINT (Abujabal
et al., 2017), a state-of-the-art KB-QA system that
gives step-by-step explanations of how it derives
answers for questions. Furthermore, when QUINT
is unable to link a specific phrase in the question
to a KB item, it asks the user to reformulate the
phrase. Such reformulations can be used to im-
prove various components in the KB-QA pipeline
such as underlying lexicons. QUINT takes the first
step towards enabling interactive QA in the future,
where the system can ask the user about parts of
the question that it is unsure about.

Example. Take the question “Where was Mar-
tin Luther raised?”: QUINT returns Eisleben

in Germany as the top answer. A quick
look by the user at the derivation reveals that
(i) ‘Martin Luther’ was mapped to the KB
entity MartinLuther, the theologist, and (ii)
‘raised’ was interpreted as the KB predicate
placeOfBirth. For (i), if the user had intended
the US activist MartinLutherKing instead, a sim-
ple reformulation with “martin luther king” in the
input returns Atlanta, the US city where Luther
King was born. On the other hand, for (ii), if
the birthplace was not the specific intent, a quick
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rephrasing of the question to “Where did Martin
Luther live?” results in Saxony-Anhalt, which is
derived from the predicate placesLived.

Motivated by the need for interpretable question
answering, QUINT’s approach to KB-QA relies
on role-aligned templates, where each template
consists of an utterance template based on a de-
pendency parse pattern and a corresponding query
template based on the SPARQL query language.
The template (i) specifies how to chunk an utter-
ance into phrases, (ii) guides how these phrases
map to KB primitives by specifying their seman-
tic roles as predicates, entities, or types, and (iii)
aligns syntactic structure in the utterance to the se-
mantic predicate-argument structure of the query.
Limitations of past work. Prior template-based
approaches rely on a set of manually defined
rules or templates to handle user questions (Be-
rant et al., 2013; Fader et al., 2013, 2014; Unger
et al., 2012; Yahya et al., 2013; Yao and Durme,
2014; Zou et al., 2014). The main drawback
of these approaches is the limited coverage of
templates, making them brittle when it comes to
unconventional question formulations. In con-
trast, QUINT automatically learns templates from
question-answer pairs.

Embedding-based methods (Bordes et al., 2014;
Dong et al., 2015; Yang et al., 2014; Xu et al.,
2016) map questions, KB entities, and subgraphs
to a shared space for KB-QA without explic-
itly generating a semantic representation. This
makes it difficult for such systems to generate fine-
grained explanations to users.

Other approaches to KB-QA (Bast and Hauss-
mann, 2015; Yih et al., 2015) over-generate
query candidates for a given utterance with no
fine-grained alignments to map natural language
phrases in a question onto different KB items,
making explainability challenging.
Contribution. The key contribution of this demo
paper is a live online KB-QA system that visu-
alizes the derivation steps for generating an an-
swer, and thus takes the first steps towards ex-
plainable question-answering. The demo is avail-
able at the following URL: https://gate.
d5.mpi-inf.mpg.de/quint/quint.

2 QUINT

We now give a brief overview of QUINT (Abu-
jabal et al., 2017), the KB-QA system driving
our demonstration. QUINT has a training phase
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dependency parse, 
backbone query)

(Utterance, gold answer)

(Utterance dependency 
parse, backbone query)
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template, query template)
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execution

Learning to rank

Template matching 
and instantiation

Figure 1: Overview of QUINT.

for automatically learning templates and a query
ranking function, and an answering phase where
templates are used to instantiate queries that are
ranked by the learned function. Figure 1 shows a
block diagram for QUINT.

2.1 Training phase
The input to QUINT’s training phase is a set
of natural language utterances u ∈ U and the
corresponding gold answer set Au from a KB
such as the one shown in Figure 2. An ex-
ample of a training utterance is u =“Where
was Obama educated?”, which is paired with
the answer set Au = {ColumbiaUniversity,
HarvardUniversity, PunahouSchool}. First,
entity mentions in each utterance u are detected
and disambiguated to Freebase entities using the
AIDA system (Hoffart et al., 2011).

Next, QUINT heuristically constructs a query
to capture the question, the guiding intuition be-
ing that the correct query connects entities in a
question u to an answer entity a ∈ Au. To do
this, QUINT starts by finding, for each answer en-
tity a ∈ Au, the smallest subgraph in the KB that
contains all the entities detected in u and a (black
nodes in Fig. 2 for a = ColumbiaUniversity).
This subgraph is then extended by augmenting it
with all type nodes connected to a (gray nodes
Organization and EducationalInstitution in
Fig. 2). This subgraph is transformed into a back-
bone query q̂ by replacing the answer node (a) and
any cvt nodes with distinct variables (cvt nodes
are used to represent n-ary relations in Freebase).
The resulting q̂ is shown in Figure 3. This is fol-
lowed by aligning the components of q̂ and the de-
pendency parse of u. The alignment problem is
formulated as a constrained optimization and the
best alignment m is obtained using Integer Linear
Programming (ILP).
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Figure 2: An example KB fragment.

To connect natural language phrases in a ques-
tion to KB items, QUINT uses two kinds of
weighted lexicons, a predicate lexicon LP and a
type lexicon LC . Entities, as mentioned above,
are dealt with using an off-the-shelf named en-
tity recognition and disambiguation system. The
output of the ILP solver tells us which tokens in
u are used to instantiate which KB items in the
backbone query q̂. Nodes in the dependency parse
of u as well as nodes and edges in q̂ that are not
part of the alignment m are removed from the de-
pendency parse of u and q̂, respectively. In our
running example, this results in dropping the node
EducationalInstitution from q̂ (Fig. 3). The
obtained alignment is then generalized by drop-
ping concrete values in both u and q̂, which are
referred to as an utterance template ut and a query
template qt, respectively. This role-aligned tem-
plate pair of (ut, qt) is added to a template repos-
itory T . The process is repeated for each train-
ing instance (u, Au). However, since several ut-
terances are likely to have similar syntactic struc-
ture, the number of templates |T | � |U |. Figure 4
shows the generated template from this instance.

Finally, as part of the training phase, QUINT
trains a ranking function to rank the queries gener-
ated from matching a question against the template
repository T . A learning-to-rank framework with
a random forest classifier (Bast and Haussmann,
2015) is used to model a preference function for a
pair of queries, given an input utterance.

2.2 Answering phase

When the trained system receives a new utterance
u′ from the user, the dependency parse of u′ is
matched against the utterance templates in T . For
every match, the paired query template is instanti-
ated using the alignment information together with
the underlying lexicons. Thus, a set of candidate
queries are obtained which are then ranked using
the learning-to-rank framework. Finally, the an-
swer of the top-ranked query is shown to the user.
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Figure 3: Backbone query q̂ generated from the
utterance “Where was Obama educated?” and the
answer entity ColumbiaUniversity.

PRED/[1,3]

ut qt?VAR
PRED/[1,3]W/VERB-1

W/NOUN-4

nsubjpass

ENT/[4]

?ANS

W/VERB-3W/WRB-2 TYPE/[2]

typeadvmod auxpass

Figure 4: A pair of (utterance, query) templates.
Shared numbers indicate alignment. W is a place-
holder for any word. ENT/PRED/TY PE are
the semantic roles of nodes and edges.

3 Demonstration

We now give a walkthrough of our demonstra-
tion which shows QUINT’s ability to explain its
answers to both normal and technically proficient
users through brief and detailed explanations, re-
spectively. We use the question “Where was Mar-
tin Luther raised?” to drive this section.

3.1 Question and Answers
Figure 5 shows the main window of QUINT where
the starting point for a user is the question box or
one of the sample questions provided. An expert
user can make several configuration choices (Fig.
5, bottom right):

• Model to load: a model includes a set of
templates learned offline, and a corresponding
learned query ranking function. The choices
correspond to the training part of the We-
bQuestions (Berant et al., 2013) and Free917
(Cai and Yates, 2013) datasets.

• Whether to add answer type to queries: most
KB-QA systems do not capture fine-grained
types, while QUINT does so by design.

• The number of top-ranked queries to show an-
swers for.

• The number of decision trees for the learning-
to-rank module: this is used for query ranking
during the answering phase (Sec. 2.2).

The answers to each of the top-k ranked queries
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Figure 5: User input.

Rank 1 Query Rank 2 Query Rank 3 Query Rank 4 Query Rank 5 Query

Detailed Explanation

Answer(s)

Eisleben

Eisleben is a town in Saxony-Anhalt, Germany. It is famous as the hometown of 
Martin Luther, hence its official name is Lutherstadt Eisleben. As of 2005, Eisleben 
had a population of 24,552. It lies on the Halle–Kassel railway.\nEisleben is 
divided into old and new towns; the latter of which was created for Eisleben's 
miners in the 14th century.\nEisleben was the capital of the district of Mansfelder 
Land and is the seat of the Verwaltungsgemeinschaft Lutherstadt Eisleben.

Brief Explanation

Figure 6: Retrieved answers from the KB.

in response to a question are given in individual
tabs, as shown in Figure 6. To give more context
to the user, wherever applicable, each answer is
accompanied by a picture, a Wikipedia link and
a short description from Freebase. For our run-
ning example question, the answer is Eisleben,
where Martin Luther was born, for the best query.
If we explore the rank-2 query, the answer is
Saxony-Anhalt, which is the province in Ger-
many where he lived.

3.2 Explanations

Explanations show how the given answers were
derived. The ability to generate and display ex-
planations is the core contribution of this system
demonstration. QUINT generates two types of ex-
planations: (i) a brief explanation geared towards
non-technical users and (ii) a detailed explanation
geared towards more advanced users.

Brief explanations provide an accessible and
quick way for users to see how QUINT understood
various parts of the question, resulting in the given
set of answers. Figure 7 shows such an explana-
tion for our running example. Brief explanations

Brief Explanation

QUINT understood your question as follows:

• The phrase “martin luther” is interpreted as Martin Luther

• The words “was, raised” are interpreted as the relation Place of birth

Figure 7: QUINT’s brief explanation.

are particularly useful for normal users who are
interested in confirming whether a given answer
comes from interpreting the question as they in-
tended. Where this is not the case, such an expla-
nation guides users in reformulating their question
to allow QUINT to better understand it.

Detailed explanations are geared towards ad-
vanced users who are familiar with dependency
parses and SPARQL queries. A detailed expla-
nation shows the derivation steps which roughly
correspond to the right hand side of the diagram
in Figure 1. First, the dependency parse of the in-
put question is shown (Fig. 8). Below that is the
matching template consisting of an utterance tem-
plate that fits the utterance, and the correspond-
ing query template that will be instantiated to gen-
erate a query. Shared numbers between the ut-
terance template and the query template indicate
alignment, i.e., which tokens in the utterance are
used to instantiate which KB items in the query.
In this example, we can see that the verb phrase
‘was raised’ and the noun phrase ‘Martin Luther’
are used to instantiate the KB-predicate and the
KB-entity, respectively.

For a user to understand why QUINT maps a
certain syntactic structure to a certain semantic
form in a template, the user can view some train-
ing instances that produced the template. This is
achieved by clicking Template Provenance (Fig.
9). For our example, two such instances are the
questions “Where was Obama educated?” and
“Where are Riddell Helmets manufactured?”.

Finally, the user is shown the SPARQL query
that was executed to retrieve the shown answers
(Fig. 10). The node labeled ?ANS is the tar-
get answer node, and nodes marked as ?VAR
are intermediate join variables. Additionally, an
alignment table with KB items is shown based
on the alignments induced from the template
(lower part of Fig. 10). For KB items, we
find that ‘Martin Luther’ was mapped to the
theologist MartinLuther (other possibilities in-
clude the German diplomat with the same name
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Detailed Explanation

raised/VERB

where/WRB

nsubjpass

was/VERB Martin Luther/NOUN

advmod auxpass

Question
Where was Martin Luther raised?

Dependency parse tree

Matching Template Template Provenance

?VARPRED/[1,2] ?ANSPRED/[1,2]

W/VERB-1

W/NOUN-3

nsubjpass

Utterance Template

Query Template

ENT/[3]

shared numbers indicate alignment among utterance template's nodes 
and query template's nodes and edges

W/VERB-2

auxpass

Figure 8: Question dependency parse and matched
utterance and query template.

and MartinLutherKing), and the lemmatized
phrase ‘be raise’ was mapped to the KB-predicate
placeOfBirth. Looking at the rank-2 query, we
find that ‘raise’ was interpreted as placesLived

in the KB. This is an alternative intention when
the slightly ambiguous phrase ‘raised’ is used.

4 Use Cases

When QUINT returns the correct answer, expla-
nations allow the user to confirm its correctness
by seeing how it was derived. When, on the other
hand, things go wrong and an answer seems in-
correct, explanations can give the user a better un-
derstanding of the limitations of the system (e.g.,
data incompleteness), and insights into overcom-
ing these limitations (e.g., question rephrasing).
We discuss some of these possible scenarios be-
low, accompanied by real examples.

Incomplete lexicon. QUINT uses different lex-
icons to map the phrases in an utterance onto KB
items (Sec. 2). These lexicons are inherently in-
complete. For example, QUINT could not cor-
rectly answer the utterance “countries of euro-
union” (implying the European Union) since the
phrase ‘euro-union’ does not have an entry in
QUINT’s lexicons. Therefore it shows the fol-

Training Utterance: where was obama educated?

educated/VERB-4

where/WRB-1

nsubjpass

was/VERB-2 obama/NOUN-3

advmod auxpass

obama/[3] ?VAR ?ANS
education/[2,4] institution/[2,4]

Training Query

Training Utterance: where are riddell helmets manufactured?

manufactured/VERB-4

where/WRB-1

nsubjpass

are/VERB-2 riddell helmets/NOUN-3

auxpass

riddell helmets/[3] ?VAR ?ANS
headquarters/[2,4] citytown/[2,4]

Training Query

advmod

Figure 9: Structurally similar training instances to
“Where was Martin Luther raised?”.

en.martin_luther ?VAR ?ANS
birth city

Query

Alignment
Lemmatized Phrase Semantic Item Type of Semantic Item
“Martin Luther”
“raise be”

en.martin_luther
birth, city

Entity
Predicate

Figure 10: SPARQL KB-query and KB items.

lowing message urging the user to reformulate the
phrase: The phrase euro-union in your input ques-
tion could not be interpreted. Please reformulate
the phrase.

Incorrect query ranking. QUINT uses a
learning-to-rank framework for ranking SPARQL
queries. Sometimes, the most appropriate query
is not ranked at the top. For example, for the
utterance “What is the former currency of Ger-
many?”, the top answer is Euro, which is incor-
rect. This is because the alignment information
in the matching template fails to capture ‘former’.
However, if the user explores the top-5 SPARQL
queries, she finds that a query with the correct
predicate currencyFormerlyUsed (as opposed
to the incorrect currencyUsed) is indeed there
and retrieves the desired answers DeutscheMark,
GermanRentenmark and GermanPapiermark.

Incorrect disambiguation to KB items.
Sometimes, the phrases in the input utterance are
linked to wrong KB items as originally intended
by the user. For example, for the utterance “What
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language group does English belong to?”, ‘En-
glish’ gets mapped to the wrong entity England,
resulting in an unexpected answer. When the
user sees the brief explanation (Fig. 7), she can
immediately observe this incorrect mapping.
Subsequently, she may rephrase it as ‘English
language’ which may produce the desired answer.

Missed answer type constraints. Answer typ-
ing plays an important role in ensuring precise
QA. For example, in “Which college did Michelle
Obama go to?”, the user explicitly specifies that
she is looking for colleges, as opposed to “Where
did Michelle Obama study?”, which, for exam-
ple, could include her high school as well. Here
‘college’ is mapped to the KB type University

and only when this constraint is added to the
SPARQL query do we get the desired answer set
HarvardLawSchool and PrincetonUniversity.

No matching templates. Sometimes an utter-
ance is syntactically out of scope for QUINT: it
has never seen similar instances during training.
For example: “Germany’s capital during the for-
ties?”. In such cases, QUINT raises the message
We could not find any matching templates. Please
reformulate your question.

5 Conclusion

We presented a demonstration of QUINT, a sys-
tem that uses automatically learned templates to
provide interpretable answers to natural language
questions over knowledge bases. When a user gets
an answer to her question, our demonstration al-
lows her to view the details of how the answer was
derived. This improves her confidence in case of
correct answers, while giving her a better under-
standing of the limitations of the QA system in
case of mistakes, and how to work around them.
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