
Proceedings of the 2017 EMNLP System Demonstrations, pages 1–6
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

The NLTK FrameNet API:
Designing for Discoverability with a Rich Linguistic Resource

Nathan Schneider
Georgetown University

Washington, DC
nathan.schneider@georgetown.edu

Chuck Wooters
Semantic Machines

Berkeley, CA
wooters@semanticmachines.com

Abstract

A new Python API, integrated within the
NLTK suite, offers access to the FrameNet
1.7 lexical database. The lexicon (struc-
tured in terms of frames) as well as anno-
tated sentences can be processed progra-
matically, or browsed with human-readable
displays via the interactive Python prompt.

1 Introduction

For over a decade, the Berkeley FrameNet (hence-
forth, simply “FrameNet”) project (Baker et al.,
1998) has been documenting the vocabulary of
contemporary English with respect to the theory
of frame semantics (Fillmore, 1982). A freely
available, linguistically-rich resource, FrameNet
now covers over 1,000 semantic frames, 10,000
lexical senses, and 100,000 lexical annotations in
sentences drawn from corpora. The resource has
formed a basis for much research in natural lan-
guage processing—most notably, a tradition of
semantic role labeling that continues to this day
(Gildea and Jurafsky, 2002; Baker et al., 2007; Das
et al., 2014; FitzGerald et al., 2015; Roth and Lap-
ata, 2015, inter alia).

Despite the importance of FrameNet, computa-
tional users are often frustrated by the complexity
of its custom XML format. Whereas much of the re-
source is browsable on the web (http://framenet.
icsi.berkeley.edu/), certain details of the lin-
guistic descriptions and annotations languish in
obscurity as they are not exposed by the HTML
views of the data.1 The few open source APIs for

1For example, one of the authors was recently asked
by a FrameNet user whether frame-to-frame relations in-
clude mappings between individual frame elements. They
do, but the user’s confusion is understandable because these
mappings are not exposed in the HTML frame definitions
on the website. (They can be explored visually via the
FrameGrapher tool on the website, https://framenet.icsi.

reading FrameNet data are now antiquated, and
none has been widely adopted.2

We describe a new, user-friendly Python API
for accessing FrameNet data. The API is included
within recent releases of the popular NLTK suite
(Bird et al., 2009), and provides access to nearly
all the information in the FrameNet release.

2 Installation

Instructions for installing NLTK are found at
nltk.org. NLTK is cross-platform and supports
Python 2.7 as well as Python 3.x environments. It
is bundled in the Anaconda and Enthought Canopy
Python distributions for data scientists.3

In a working NLTK installation (version 3.2.2
or later), one merely has to invoke a method to
download the FrameNet data:4,5

>>> import nltk
>>> nltk.download('framenet_v17')

berkeley.edu/fndrupal/FrameGrapher, if the user knows
to look there.) In the interest of space, our API does not show
them in the frame display, but they can be accessed via an
individual frame relation object or with the fe_relations()
method, §4.4.

2We are aware of:
• github.com/dasmith/FrameNet-python (Python)
• nlp.stanford.edu/software/framenet.shtml (Java)
• github.com/FabianFriedrich/Text2Process/tree/
master/src/de/saar/coli/salsa/reiter/framenet
(Java)

• github.com/GrammaticalFramework/gf-contrib/tree/
master/framenet (Grammatical Framework)

None of these has been updated in the past few years, so they
are likely not fully compatible with the latest data release.

3https://www.continuum.io/downloads,
https://store.enthought.com/downloads

4>>> is the standard Python interactive prompt, generally
invoked by typing python on the command line. Python code
can then be entered at the prompt, where it is evaluated/exe-
cuted. Henceforth, examples will assume familiarity with the
basics of Python.

5By default, the 855MB data release is installed under
the user’s home directory, but an alternate location can be
specified: see http://www.nltk.org/data.html.

1

Subsequently, the framenet module is loaded as
follows (with alias fn for convenience):
>>> from nltk.corpus import framenet as fn

3 Overview of FrameNet

FrameNet is organized around conceptual struc-
tures known as frames. A semantic frame repre-
sents a scene—a kind of event, state, or other sce-
nario which may be universal or culturally-specific,
and domain-general or domain-specific. The frame
defines participant roles or frame elements (FEs),
whose relationships forms the conceptual back-
ground required to understand (certain senses of)
vocabulary items. Oft-cited examples by Fillmore
include:
• Verbs such as buy, sell, and pay, and nouns such

as buyer, seller, price, and purchase, are all de-
fined with respect to a commercial transaction
scene (frame). FEs that are central to this frame—
they may or may not be mentioned explicitly
in a text with one of the aforementioned lexical
items—are the Buyer, the Seller, the Goods be-
ing sold by the Seller, and the Money given as
payment in exchange by the Buyer.

• The concept of REVENGE—lexicalized in vocab-
ulary items such as revenge, avenge, avenger,
retaliate, payback, and get even—fundamentally
presupposes an Injury that an Offender has in-
flicted upon an Injured_party, for which an
Avenger (who may or may not be the same as
the Injured_party) seeks to exact some Punish-
ment on the Offender.

• A hypotenuse presupposes a geometrical notion
of right triangle, while a pedestrian presupposes
a street with both vehicular and nonvehicular
traffic. (Neither frame is currently present in
FrameNet.)

The FEs in a frame are formally listed alongside
an English description of their function within the
frame. Frames are organized in a network, includ-
ing an inheritance hierarchy (e.g., REVENGE is a
special case of an EVENT) and other kinds of frame-
to-frame relations.

Vocabulary items listed within a frame are called
lexical units (LUs). FrameNet’s inventory of LUs
includes both content and function words. For-
mally, an LU links a lemma with a frame.6

6The lemma name incorporates a part-of-speech tag. The
lemma may consist of a single word, such as surrender.v, or
multiple words, such as give up.v.

In a text, a token of an LU is said to evoke the
frame. Sentences are annotated with respect to
frame-evoking tokens and their FE spans. Thus:

[Snape]Injured_party ’s revenge [on Harry]Offender

labels overt mentions of participants in the RE-
VENGE frame.

The reader is referred to (Fillmore and Baker,
2009) for a contemporary introduction to the re-
source and the theory of frame semantics upon
which it is based. Extensive linguistic details are
provided in (Ruppenhofer et al., 2016).

4 API Overview

4.1 Design Principles
The API is designed with the following goals in
mind:
Simplicity. It should be easy to access important
objects in the database (primarily frames, lexical
units, and annotations), whether by iterating over
all entries or searching for particular ones. To avoid
cluttering the API with too many methods, other
information in the database should be reachable via
object attributes. Calling the API’s help() method
prints a summary of the main methods for access-
ing information in the database.
Discoverability. Many of the details of the
database are complex. The API makes it easy to
browse what is in database objects via the Python
interactive prompt. The main way it achieves this
is with pretty-printed displays of the objects, such
as the frame display in figure 1 (see §4.3). The
display makes it clear how to access attributes of
the object that a novice user of FrameNet might not
have known about.

In our view, this approach sets this API apart
from others. Some of the other NLTK APIs for
complex structured data make it difficult to browse
the structure without consulting documentation.
On-demand loading. The database is stored in
thousands of XML files, including files index-
ing the lists of frames, frame relations, LUs, and
full-text documents, plus individual files for all
frames, LUs, and full-text documents. Unzipped,
the FrameNet 1.7 release is 855 MB. Loading all of
these files—particularly the corpus annotations—is
slow and memory-intensive, costs which are unnec-
essary for many purposes. Therefore, the API is
carefully designed with lazy data structures to load
XML files only as needed. Once loaded, all data is
cached in memory for fast subsequent access.

2

frame (347): Revenge

[URL] https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Revenge.xml

[definition]
This frame concerns the infliction of punishment in return for a
wrong suffered. An Avenger performs a Punishment on a Offender as
a consequence of an earlier action by the Offender, the Injury.
The Avenger inflicting thePunishment need not be the same as the
Injured_Party who suffered the Injury, but the Avenger does have
to share the judgment that the Offender's action was wrong. The
judgment that the Offender had inflicted an Injury is made
without regard to the law. '(1) They took revenge for the deaths
of two loyalist prisoners.' '(2) Lachlan went out to avenge
them.' '(3) The next day, the Roman forces took revenge on their
enemies..'

[semTypes] 0 semantic types

[frameRelations] 1 frame relations
<Parent=Rewards_and_punishments -- Inheritance -> Child=Revenge>

[lexUnit] 18 lexical units
avenge.v (6056), avenger.n (6057), get back (at).v (10003), get
even.v (6075), payback.n (10124), retaliate.v (6065),
retaliation.n (6071), retribution.n (6070), retributive.a (6074),
retributory.a (6076), revenge.n (6067), revenge.v (6066),
revengeful.a (6073), revenger.n (6072), sanction.n (10676),
vengeance.n (6058), vengeful.a (6068), vindictive.a (6069)

[FE] 14 frame elements
Core: Avenger (3009), Injured_party (3022), Injury (3018),

Offender (3012), Punishment (3015)
Peripheral: Degree (3010), Duration (12060), Instrument (3013),

Manner (3014), Place (3016), Purpose (3017), Time (3021)
Extra-Thematic: Depictive (3011), Result (3020)

[FEcoreSets] 2 frame element core sets
Injury, Injured_party
Avenger, Punishment

Figure 1: Textual display of the REVENGE frame. Shown in square brackets are attribute names for accessing the frame’s contents.
In parentheses are IDs for the frame, its LUs, and its FEs.

4.2 Lexicon Access Methods

The main methods for looking up information in
the lexicon are:

frames(name) frame(nameOrId)

lus(name, frame) lu(id)

fes(name, frame)

The methods with plural names (left) are for search-
ing the lexicon by regular expression pattern to be
matched against the entry name. In addition (or
instead), lus() and fes() allow for the results to
be restricted to a particular frame. The result is a
list with 0 or more elements. If no arguments are
provided, all entries in the lexicon are returned.

An example of a search by frame name pattern:7

>>> fn.frames('(?i)creat')

7(?i) makes the pattern case-insensitive.

[<frame ID=268 name=Cooking_creation>,
<frame ID=1658 name=Create_physical_artwork>, ...]

Similarly, a search by LU name pattern—note
that the .v suffix is used for all verbal LUs:

>>> fn.lus(r'.+en\.v')
[<lu ID=5331 name=awaken.v>,
<lu ID=7544 name=betoken.v>, ...]

The frame() and lu() methods are for retriev-
ing a single known entry by its name or ID. At-
tempting to retrieve a nonexistent entry triggers an
exception of type FramenetError.

Two additional methods are available for
frame lookup: frame_ids_and_names(name) to
get a mapping from frame IDs to names, and
frames_by_lemma(name) to get all frames with
some LU matching the given name pattern.

3

exemplar sentence (929548):
[sentNo] 0
[aPos] 1113164

[LU] (6067) revenge.n in Revenge

[frame] (347) Revenge

[annotationSet] 2 annotation sets

[POS] 12 tags

[POS_tagset] BNC

[GF] 4 relations

[PT] 4 phrases

[text] + [Target] + [FE] + [Noun]

A short while later Joseph had his revenge on Watney 's .
------------------- ------ ^^^ --- ******* ------------
Time Avenge sup Ave Offender

[Injury:DNI]
(Avenge=Avenger, sup=supp, Ave=Avenger)

Figure 2: A lexicographic sentence display. The visualization of the frame annotation set at the bottom is produced by pretty-
printing the combined information in the text, Target, FE, and Noun layers. Abbreviations in the visualization are expanded at
the bottom in parentheses (“supp” is short for “support”). “DNI” is FrameNet jargon for “definite null instantiation”; GF stands
for “grammatical function”; and PT stands for “phrase type”.

4.3 Database Objects

All structured objects in the database—frames,
LUs, FEs, etc.—are loaded as AttrDict data struc-
tures. Each AttrDict instance is a mapping from
string keys to values, which can be strings, num-
bers, or structured objects. AttrDict is so called
because it allows keys to be accessed as attributes:
>>> f = fn.frame('Revenge')
>>> f.keys()
dict_keys(['cBy', 'cDate', 'name', 'ID', '_type',
'definition', 'definitionMarkup', 'frameRelations',
'FE', 'FEcoreSets', 'lexUnit', 'semTypes', 'URL'])
>>> f.name
'Revenge'
>>> f.ID
347

For the most important kinds of structured ob-
jects, the API specifies textual displays that or-
ganize the object’s contents in a human-readable
fashion. Figure 1 shows the display for the RE-
VENGE frame, which would be printed by entering
fn.frame('Revenge') at the interactive prompt. The
display gives attribute names in square brackets;
e.g., lexUnit, which is a mapping from LU names to
objects. Thus, after the code listing in the previous
paragraph, f.lexUnit['revenge.n'] would access to
one of the LU objects in the frame, which in turn

has its own attributes and textual display.

4.4 Advanced Lexicon Access
Frame relations. The inventory of frames is or-
ganized in a semantic network via several kinds
of frame-to-frame relations. For instance, the
REVENGE frame is involved in one frame-to-
frame relation: it is related to the more gen-
eral REWARDS_AND_PUNISHMENTS frame by Inher-
itance, as shown in the middle of figure 1. RE-
WARDS_AND_PUNISHMENTS, in turn, is involved
in Inheritance relations with other frames. Each
frame-to-frame relation bundles mappings between
corresponding FEs in the two frames.

Apart from the frameRelations attribute
of frame objects, frame-to-frame rela-
tions can be browsed by the main method
frame_relations(frame, frame2, type),
where the optional arguments allow for filtering by
one or both frames and the kind of relation. Within
a frame relation object, pairwise FE relations
are stored in the feRelations attribute. Main
method fe_relations() provides direct access
to links between FEs. The inventory of relation
types, including Inheritance, Causative, Inchoative,
Subframe, Perspective_on, and others, is available

4

full-text sentence (4148528) in Tiger_Of_San_Pedro:

[POS] 25 tags

[POS_tagset] PENN

[text] + [annotationSet]

They 've been looking for him all the time for their revenge ,

******* *******
Seeking Revenge
[3] ? [2]

but it is only now that they have begun to find him out . "

***** ****
Proce Beco
[1] [4]

(Proce=Process_start, Beco=Becoming_aware)

Figure 3: A sentence of full-text annotation. If this sentence object is stored under the variable sent, its frame annotation
with respect to the target revenge is accessed as sent.annotationSet[2]. (The ? under looking indicates that there is no
corresponding LU defined in the SEEKING frame; in some cases the full-text annotators marked but did not define out-of-
vocabulary LUs which fit an existing frame. Also, some full-text annotation sets annotate an LU without its FEs—these are
shown with ! to reflect the annotation set’s status code of UNANN.)

via main method frame_relation_types().

Semantic types. These provide additional se-
mantic categorizations of FEs, frames, and LUs.
For FEs, they mark selectional restrictions (e.g.,
f.FE['Avenger'].semType gives the Sentient type).
Main method propagate_semtypes() propogates
the FE semantic type labels marked explicitly to
other FEs according to inference rules that follow
the FE relations. This should be called prior to
inspecting FE semtypes (it is not called by default
because it takes several seconds to run).

The semantic types are database objects in their
own right, and they are organized in their own inher-
itance hierarchy. Main method semtypes() returns
all semantic types as a list; main method semtype()

looks up a particular one by name, ID, or abbre-
viation; and main method semtype_inherits()

checks whether two semantic types have a subtype–
supertype relationship.

4.5 Corpus Access

Frame-semantic annotations of sentences can be ac-
cessed via the exemplars and subCorpus attributes
of an LU object, or via the following main methods:

annotations(luname, exemplars, full_text)

sents() exemplars(luname) ft_sents(docname)

doc(id) docs(name)

annotations() returns a list of frame annota-
tion sets. Each annotation set consists of a frame-
evoking target (token) within a sentence, the LU

in the frame it evokes, its overt FE spans in the
sentence, and the status of null-instatiated FEs.8

Optionally, the user may filter by LU name, or
limit by the type of annotation (see next paragraph):
exemplars and full_text both default to True. In
the XML, the components of an annotation set are
stored in several annotation layers: one (and some-
times more than one) layer of FEs, as well as addi-
tional layers for other syntactic information (includ-
ing grammatical function and phrase type labels
for each FE, and copular or support words relative
to the frame-evoking target).

Annotation sets are organized by sentence. Cor-
pus sentences appear in two kinds of annota-
tion: exemplars() retrieves sentences with lexi-
cographic annotation (where a single target has
been selected for annotation to serve as an example
of an LU); the optional argument allows for filter-
ing the set of LUs. ft_sents() retrieves sentences
from documents selected for full-text annotation
(as many targets in the document as possible have
been annotated); the optional argument allows for
filtering by document name. sents() can be used
to iterate over all sentences. Technically, each sen-
tence object contains multiple annotation sets: the
first is for sentence-level annotations, including the
part-of-speech tagging and in some cases named
entity labels; subsequent annotation sets are for

8In frame semantics, core FEs that are not overt but are
conceptually required by a frame are said to be implicit via
null instantiation (Fillmore and Baker, 2009).

5

frame annotations. As lexicographic annotations
have only one frame annotation set, it is visualized
in the sentence display: figure 2 shows the display
for f.lexUnit['revenge.n'].exemplars[20]. Full-text
annotations display target information only, allow-
ing the user to drill down to see each annotation
set, as in figure 3.

Sentences of full-text annotation can also be
browsed by document using the doc() and docs()

methods. The document display lists the sentences
with numeric offsets.

5 Limitations and future work

The main part of the Berkeley FrameNet data that
the API currently does not support are valence
patterns. For a given LU, the valence patterns
summarize the FEs’ syntactic realizations across
annotated tokens. They are displayed in each LU’s
“Lexical Entry” report on the FrameNet website.

We intend to add support for valence patterns
in future releases, along with more sophisticated
querying/browsing capabilities for annotations, and
better displays for syntactic information associated
with FE annotations. Some of this functionality can
be modeled after tools like FrameSQL (Sato, 2003)
and Valencer (Kabbach and Ribeyre, 2016). In ad-
dition, it is worth investigating whether the API
can be adapted for FrameNets in other languages,
and to support cross-lingual mappings being added
to 14 of these other FrameNets in the ongoing Mul-
tilingual FrameNet project.9

Acknowledgments

We thank Collin Baker, Michael Ellsworth, and
Miriam R. L. Petruck for helping us to understand
the FrameNet annotation process and the techni-
cal aspects of the data, and for co-organizing the
FrameNet tutorial in which an early version of the
API was introduced (Baker et al., 2015). We also
thank NLTK project leader Steven Bird, Mikhail
Korborov, Pierpaolo Pantone, Rob Malouf, and any-
one else who may have contributed to the release of
the API by reviewing the code and reporting bugs;
and anonymous reviewers for their suggestions.

References

Collin Baker, Michael Ellsworth, and Katrin Erk. 2007.
SemEval-2007 Task 19: frame semantic structure

9github.com/icsi-berkeley/multilingual_FN

extraction. In Proc. of SemEval, pages 99–104,
Prague, Czech Republic.

Collin Baker, Nathan Schneider, Miriam R. L. Petruck,
and Michael Ellsworth. 2015. Getting the roles right:
using FrameNet in NLP. In Proc. of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Tutorial Ab-
stracts, pages 10–12, Denver, Colorado, USA.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In Proc.
of COLING-ACL, pages 86–90, Montreal, Quebec,
Canada.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
O’Reilly Media, Inc., Sebastopol, CA.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguis-
tics, 40(1):9–56.

Charles J. Fillmore. 1982. Frame Semantics. In Lin-
guistics in the Morning Calm, pages 111–137. Han-
shin Publishing Co., Seoul, South Korea.

Charles J. Fillmore and Collin Baker. 2009. A frames
approach to semantic analysis. In Bernd Heine and
Heiko Narrog, editors, The Oxford Handbook of Lin-
guistic Analysis, pages 791–816. Oxford University
Press, Oxford, UK.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proc. of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 960–970, Lisbon, Por-
tugal.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245–288.

Alexandre Kabbach and Corentin Ribeyre. 2016. Va-
lencer: an API to query valence patterns in
FrameNet. In Proc. of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations, pages 156–160, Os-
aka, Japan.

Michael Roth and Mirella Lapata. 2015. Context-
aware frame-semantic role labeling. Transactions
of the Association for Computational Linguistics,
3:449–460.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L.
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: extended
theory and practice.

Hiroaki Sato. 2003. FrameSQL: A software tool for
FrameNet. In Proc. of ASIALEX 2003, pages 251–
258, Tokyo, Japan.

6

