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Introduction

Welcome to the proceedings of the System Demonstrations session. This volume contains the papers of
the system demonstrations presented at the annual meeting of the Conference on Empirical Methods in
Natural Language Processing, held in Copenhagen, Denmark from September 7–11, 2017.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. We received 53 submissions, of which 21 (39%) were selected for inclusion
in the program after review by three or four members of the program committee.

We sincerely thank the members of the program committee for their timely help in reviewing the
submissions.
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Abstract

A new Python API, integrated within the
NLTK suite, offers access to the FrameNet
1.7 lexical database. The lexicon (struc-
tured in terms of frames) as well as anno-
tated sentences can be processed progra-
matically, or browsed with human-readable
displays via the interactive Python prompt.

1 Introduction

For over a decade, the Berkeley FrameNet (hence-
forth, simply “FrameNet”) project (Baker et al.,
1998) has been documenting the vocabulary of
contemporary English with respect to the theory
of frame semantics (Fillmore, 1982). A freely
available, linguistically-rich resource, FrameNet
now covers over 1,000 semantic frames, 10,000
lexical senses, and 100,000 lexical annotations in
sentences drawn from corpora. The resource has
formed a basis for much research in natural lan-
guage processing—most notably, a tradition of
semantic role labeling that continues to this day
(Gildea and Jurafsky, 2002; Baker et al., 2007; Das
et al., 2014; FitzGerald et al., 2015; Roth and Lap-
ata, 2015, inter alia).

Despite the importance of FrameNet, computa-
tional users are often frustrated by the complexity
of its custom XML format. Whereas much of the re-
source is browsable on the web (http://framenet.
icsi.berkeley.edu/), certain details of the lin-
guistic descriptions and annotations languish in
obscurity as they are not exposed by the HTML
views of the data.1 The few open source APIs for

1For example, one of the authors was recently asked
by a FrameNet user whether frame-to-frame relations in-
clude mappings between individual frame elements. They
do, but the user’s confusion is understandable because these
mappings are not exposed in the HTML frame definitions
on the website. (They can be explored visually via the
FrameGrapher tool on the website, https://framenet.icsi.

reading FrameNet data are now antiquated, and
none has been widely adopted.2

We describe a new, user-friendly Python API
for accessing FrameNet data. The API is included
within recent releases of the popular NLTK suite
(Bird et al., 2009), and provides access to nearly
all the information in the FrameNet release.

2 Installation

Instructions for installing NLTK are found at
nltk.org. NLTK is cross-platform and supports
Python 2.7 as well as Python 3.x environments. It
is bundled in the Anaconda and Enthought Canopy
Python distributions for data scientists.3

In a working NLTK installation (version 3.2.2
or later), one merely has to invoke a method to
download the FrameNet data:4,5

>>> import nltk
>>> nltk.download('framenet_v17')

berkeley.edu/fndrupal/FrameGrapher, if the user knows
to look there.) In the interest of space, our API does not show
them in the frame display, but they can be accessed via an
individual frame relation object or with the fe_relations()
method, §4.4.

2We are aware of:
• github.com/dasmith/FrameNet-python (Python)
• nlp.stanford.edu/software/framenet.shtml (Java)
• github.com/FabianFriedrich/Text2Process/tree/
master/src/de/saar/coli/salsa/reiter/framenet
(Java)

• github.com/GrammaticalFramework/gf-contrib/tree/
master/framenet (Grammatical Framework)

None of these has been updated in the past few years, so they
are likely not fully compatible with the latest data release.

3https://www.continuum.io/downloads,
https://store.enthought.com/downloads

4>>> is the standard Python interactive prompt, generally
invoked by typing python on the command line. Python code
can then be entered at the prompt, where it is evaluated/exe-
cuted. Henceforth, examples will assume familiarity with the
basics of Python.

5By default, the 855MB data release is installed under
the user’s home directory, but an alternate location can be
specified: see http://www.nltk.org/data.html.

1



Subsequently, the framenet module is loaded as
follows (with alias fn for convenience):
>>> from nltk.corpus import framenet as fn

3 Overview of FrameNet

FrameNet is organized around conceptual struc-
tures known as frames. A semantic frame repre-
sents a scene—a kind of event, state, or other sce-
nario which may be universal or culturally-specific,
and domain-general or domain-specific. The frame
defines participant roles or frame elements (FEs),
whose relationships forms the conceptual back-
ground required to understand (certain senses of)
vocabulary items. Oft-cited examples by Fillmore
include:
• Verbs such as buy, sell, and pay, and nouns such

as buyer, seller, price, and purchase, are all de-
fined with respect to a commercial transaction
scene (frame). FEs that are central to this frame—
they may or may not be mentioned explicitly
in a text with one of the aforementioned lexical
items—are the Buyer, the Seller, the Goods be-
ing sold by the Seller, and the Money given as
payment in exchange by the Buyer.

• The concept of REVENGE—lexicalized in vocab-
ulary items such as revenge, avenge, avenger,
retaliate, payback, and get even—fundamentally
presupposes an Injury that an Offender has in-
flicted upon an Injured_party, for which an
Avenger (who may or may not be the same as
the Injured_party) seeks to exact some Punish-
ment on the Offender.

• A hypotenuse presupposes a geometrical notion
of right triangle, while a pedestrian presupposes
a street with both vehicular and nonvehicular
traffic. (Neither frame is currently present in
FrameNet.)

The FEs in a frame are formally listed alongside
an English description of their function within the
frame. Frames are organized in a network, includ-
ing an inheritance hierarchy (e.g., REVENGE is a
special case of an EVENT) and other kinds of frame-
to-frame relations.

Vocabulary items listed within a frame are called
lexical units (LUs). FrameNet’s inventory of LUs
includes both content and function words. For-
mally, an LU links a lemma with a frame.6

6The lemma name incorporates a part-of-speech tag. The
lemma may consist of a single word, such as surrender.v, or
multiple words, such as give up.v.

In a text, a token of an LU is said to evoke the
frame. Sentences are annotated with respect to
frame-evoking tokens and their FE spans. Thus:

[Snape]Injured_party ’s revenge [on Harry]Offender

labels overt mentions of participants in the RE-
VENGE frame.

The reader is referred to (Fillmore and Baker,
2009) for a contemporary introduction to the re-
source and the theory of frame semantics upon
which it is based. Extensive linguistic details are
provided in (Ruppenhofer et al., 2016).

4 API Overview

4.1 Design Principles
The API is designed with the following goals in
mind:
Simplicity. It should be easy to access important
objects in the database (primarily frames, lexical
units, and annotations), whether by iterating over
all entries or searching for particular ones. To avoid
cluttering the API with too many methods, other
information in the database should be reachable via
object attributes. Calling the API’s help() method
prints a summary of the main methods for access-
ing information in the database.
Discoverability. Many of the details of the
database are complex. The API makes it easy to
browse what is in database objects via the Python
interactive prompt. The main way it achieves this
is with pretty-printed displays of the objects, such
as the frame display in figure 1 (see §4.3). The
display makes it clear how to access attributes of
the object that a novice user of FrameNet might not
have known about.

In our view, this approach sets this API apart
from others. Some of the other NLTK APIs for
complex structured data make it difficult to browse
the structure without consulting documentation.
On-demand loading. The database is stored in
thousands of XML files, including files index-
ing the lists of frames, frame relations, LUs, and
full-text documents, plus individual files for all
frames, LUs, and full-text documents. Unzipped,
the FrameNet 1.7 release is 855 MB. Loading all of
these files—particularly the corpus annotations—is
slow and memory-intensive, costs which are unnec-
essary for many purposes. Therefore, the API is
carefully designed with lazy data structures to load
XML files only as needed. Once loaded, all data is
cached in memory for fast subsequent access.

2



frame (347): Revenge

[URL] https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Revenge.xml

[definition]
This frame concerns the infliction of punishment in return for a
wrong suffered. An Avenger performs a Punishment on a Offender as
a consequence of an earlier action by the Offender, the Injury.
The Avenger inflicting thePunishment need not be the same as the
Injured_Party who suffered the Injury, but the Avenger does have
to share the judgment that the Offender's action was wrong. The
judgment that the Offender had inflicted an Injury is made
without regard to the law. '(1) They took revenge for the deaths
of two loyalist prisoners.' '(2) Lachlan went out to avenge
them.' '(3) The next day, the Roman forces took revenge on their
enemies..'

[semTypes] 0 semantic types

[frameRelations] 1 frame relations
<Parent=Rewards_and_punishments -- Inheritance -> Child=Revenge>

[lexUnit] 18 lexical units
avenge.v (6056), avenger.n (6057), get back (at).v (10003), get
even.v (6075), payback.n (10124), retaliate.v (6065),
retaliation.n (6071), retribution.n (6070), retributive.a (6074),
retributory.a (6076), revenge.n (6067), revenge.v (6066),
revengeful.a (6073), revenger.n (6072), sanction.n (10676),
vengeance.n (6058), vengeful.a (6068), vindictive.a (6069)

[FE] 14 frame elements
Core: Avenger (3009), Injured_party (3022), Injury (3018),

Offender (3012), Punishment (3015)
Peripheral: Degree (3010), Duration (12060), Instrument (3013),

Manner (3014), Place (3016), Purpose (3017), Time (3021)
Extra-Thematic: Depictive (3011), Result (3020)

[FEcoreSets] 2 frame element core sets
Injury, Injured_party
Avenger, Punishment

Figure 1: Textual display of the REVENGE frame. Shown in square brackets are attribute names for accessing the frame’s contents.
In parentheses are IDs for the frame, its LUs, and its FEs.

4.2 Lexicon Access Methods

The main methods for looking up information in
the lexicon are:

frames(name) frame(nameOrId)

lus(name, frame) lu(id)

fes(name, frame)

The methods with plural names (left) are for search-
ing the lexicon by regular expression pattern to be
matched against the entry name. In addition (or
instead), lus() and fes() allow for the results to
be restricted to a particular frame. The result is a
list with 0 or more elements. If no arguments are
provided, all entries in the lexicon are returned.

An example of a search by frame name pattern:7

>>> fn.frames('(?i)creat')

7(?i) makes the pattern case-insensitive.

[<frame ID=268 name=Cooking_creation>,
<frame ID=1658 name=Create_physical_artwork>, ...]

Similarly, a search by LU name pattern—note
that the .v suffix is used for all verbal LUs:

>>> fn.lus(r'.+en\.v')
[<lu ID=5331 name=awaken.v>,
<lu ID=7544 name=betoken.v>, ...]

The frame() and lu() methods are for retriev-
ing a single known entry by its name or ID. At-
tempting to retrieve a nonexistent entry triggers an
exception of type FramenetError.

Two additional methods are available for
frame lookup: frame_ids_and_names(name) to
get a mapping from frame IDs to names, and
frames_by_lemma(name) to get all frames with
some LU matching the given name pattern.

3



exemplar sentence (929548):
[sentNo] 0
[aPos] 1113164

[LU] (6067) revenge.n in Revenge

[frame] (347) Revenge

[annotationSet] 2 annotation sets

[POS] 12 tags

[POS_tagset] BNC

[GF] 4 relations

[PT] 4 phrases

[text] + [Target] + [FE] + [Noun]

A short while later Joseph had his revenge on Watney 's .
------------------- ------ ^^^ --- ******* ------------
Time Avenge sup Ave Offender

[Injury:DNI]
(Avenge=Avenger, sup=supp, Ave=Avenger)

Figure 2: A lexicographic sentence display. The visualization of the frame annotation set at the bottom is produced by pretty-
printing the combined information in the text, Target, FE, and Noun layers. Abbreviations in the visualization are expanded at
the bottom in parentheses (“supp” is short for “support”). “DNI” is FrameNet jargon for “definite null instantiation”; GF stands
for “grammatical function”; and PT stands for “phrase type”.

4.3 Database Objects

All structured objects in the database—frames,
LUs, FEs, etc.—are loaded as AttrDict data struc-
tures. Each AttrDict instance is a mapping from
string keys to values, which can be strings, num-
bers, or structured objects. AttrDict is so called
because it allows keys to be accessed as attributes:
>>> f = fn.frame('Revenge')
>>> f.keys()
dict_keys(['cBy', 'cDate', 'name', 'ID', '_type',
'definition', 'definitionMarkup', 'frameRelations',
'FE', 'FEcoreSets', 'lexUnit', 'semTypes', 'URL'])
>>> f.name
'Revenge'
>>> f.ID
347

For the most important kinds of structured ob-
jects, the API specifies textual displays that or-
ganize the object’s contents in a human-readable
fashion. Figure 1 shows the display for the RE-
VENGE frame, which would be printed by entering
fn.frame('Revenge') at the interactive prompt. The
display gives attribute names in square brackets;
e.g., lexUnit, which is a mapping from LU names to
objects. Thus, after the code listing in the previous
paragraph, f.lexUnit['revenge.n'] would access to
one of the LU objects in the frame, which in turn

has its own attributes and textual display.

4.4 Advanced Lexicon Access
Frame relations. The inventory of frames is or-
ganized in a semantic network via several kinds
of frame-to-frame relations. For instance, the
REVENGE frame is involved in one frame-to-
frame relation: it is related to the more gen-
eral REWARDS_AND_PUNISHMENTS frame by Inher-
itance, as shown in the middle of figure 1. RE-
WARDS_AND_PUNISHMENTS, in turn, is involved
in Inheritance relations with other frames. Each
frame-to-frame relation bundles mappings between
corresponding FEs in the two frames.

Apart from the frameRelations attribute
of frame objects, frame-to-frame rela-
tions can be browsed by the main method
frame_relations(frame, frame2, type),
where the optional arguments allow for filtering by
one or both frames and the kind of relation. Within
a frame relation object, pairwise FE relations
are stored in the feRelations attribute. Main
method fe_relations() provides direct access
to links between FEs. The inventory of relation
types, including Inheritance, Causative, Inchoative,
Subframe, Perspective_on, and others, is available
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full-text sentence (4148528) in Tiger_Of_San_Pedro:

[POS] 25 tags

[POS_tagset] PENN

[text] + [annotationSet]

They 've been looking for him all the time for their revenge ,

******* *******
Seeking Revenge
[3] ? [2]

but it is only now that they have begun to find him out . "

***** ****
Proce Beco
[1] [4]

(Proce=Process_start, Beco=Becoming_aware)

Figure 3: A sentence of full-text annotation. If this sentence object is stored under the variable sent, its frame annotation
with respect to the target revenge is accessed as sent.annotationSet[2]. (The ? under looking indicates that there is no
corresponding LU defined in the SEEKING frame; in some cases the full-text annotators marked but did not define out-of-
vocabulary LUs which fit an existing frame. Also, some full-text annotation sets annotate an LU without its FEs—these are
shown with ! to reflect the annotation set’s status code of UNANN.)

via main method frame_relation_types().

Semantic types. These provide additional se-
mantic categorizations of FEs, frames, and LUs.
For FEs, they mark selectional restrictions (e.g.,
f.FE['Avenger'].semType gives the Sentient type).
Main method propagate_semtypes() propogates
the FE semantic type labels marked explicitly to
other FEs according to inference rules that follow
the FE relations. This should be called prior to
inspecting FE semtypes (it is not called by default
because it takes several seconds to run).

The semantic types are database objects in their
own right, and they are organized in their own inher-
itance hierarchy. Main method semtypes() returns
all semantic types as a list; main method semtype()

looks up a particular one by name, ID, or abbre-
viation; and main method semtype_inherits()

checks whether two semantic types have a subtype–
supertype relationship.

4.5 Corpus Access

Frame-semantic annotations of sentences can be ac-
cessed via the exemplars and subCorpus attributes
of an LU object, or via the following main methods:

annotations(luname, exemplars, full_text)

sents() exemplars(luname) ft_sents(docname)

doc(id) docs(name)

annotations() returns a list of frame annota-
tion sets. Each annotation set consists of a frame-
evoking target (token) within a sentence, the LU

in the frame it evokes, its overt FE spans in the
sentence, and the status of null-instatiated FEs.8

Optionally, the user may filter by LU name, or
limit by the type of annotation (see next paragraph):
exemplars and full_text both default to True. In
the XML, the components of an annotation set are
stored in several annotation layers: one (and some-
times more than one) layer of FEs, as well as addi-
tional layers for other syntactic information (includ-
ing grammatical function and phrase type labels
for each FE, and copular or support words relative
to the frame-evoking target).

Annotation sets are organized by sentence. Cor-
pus sentences appear in two kinds of annota-
tion: exemplars() retrieves sentences with lexi-
cographic annotation (where a single target has
been selected for annotation to serve as an example
of an LU); the optional argument allows for filter-
ing the set of LUs. ft_sents() retrieves sentences
from documents selected for full-text annotation
(as many targets in the document as possible have
been annotated); the optional argument allows for
filtering by document name. sents() can be used
to iterate over all sentences. Technically, each sen-
tence object contains multiple annotation sets: the
first is for sentence-level annotations, including the
part-of-speech tagging and in some cases named
entity labels; subsequent annotation sets are for

8In frame semantics, core FEs that are not overt but are
conceptually required by a frame are said to be implicit via
null instantiation (Fillmore and Baker, 2009).
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frame annotations. As lexicographic annotations
have only one frame annotation set, it is visualized
in the sentence display: figure 2 shows the display
for f.lexUnit['revenge.n'].exemplars[20]. Full-text
annotations display target information only, allow-
ing the user to drill down to see each annotation
set, as in figure 3.

Sentences of full-text annotation can also be
browsed by document using the doc() and docs()

methods. The document display lists the sentences
with numeric offsets.

5 Limitations and future work

The main part of the Berkeley FrameNet data that
the API currently does not support are valence
patterns. For a given LU, the valence patterns
summarize the FEs’ syntactic realizations across
annotated tokens. They are displayed in each LU’s
“Lexical Entry” report on the FrameNet website.

We intend to add support for valence patterns
in future releases, along with more sophisticated
querying/browsing capabilities for annotations, and
better displays for syntactic information associated
with FE annotations. Some of this functionality can
be modeled after tools like FrameSQL (Sato, 2003)
and Valencer (Kabbach and Ribeyre, 2016). In ad-
dition, it is worth investigating whether the API
can be adapted for FrameNets in other languages,
and to support cross-lingual mappings being added
to 14 of these other FrameNets in the ongoing Mul-
tilingual FrameNet project.9
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Abstract

An important skill in critical thinking and
argumentation is the ability to spot and
recognize fallacies. Fallacious arguments,
omnipresent in argumentative discourse,
can be deceptive, manipulative, or sim-
ply leading to ‘wrong moves’ in a discus-
sion. Despite their importance, argumen-
tation scholars and NLP researchers with
focus on argumentation quality have not
yet investigated fallacies empirically. The
nonexistence of resources dealing with fal-
lacious argumentation calls for scalable ap-
proaches to data acquisition and annotation,
for which the serious games methodology
offers an appealing, yet unexplored, alter-
native. We present Argotario, a serious
game that deals with fallacies in everyday
argumentation. Argotario is a multilingual,
open-source, platform-independent appli-
cation with strong educational aspects, ac-
cessible at www.argotario.net.

1 Introduction

Argumentation in natural language has been gain-
ing much interest in the NLP community in recent
years. While understanding the structure of an
argument is the predominant task of argument min-
ing/computational argumentation (Mochales and
Moens, 2011; Stab and Gurevych, 2014; Haber-
nal and Gurevych, 2017), a parallel strand of re-
search tries to assess qualitative properties of argu-
ments (Habernal and Gurevych, 2016b; Stab and
Gurevych, 2017). Yet the gap between theories and
everyday argumentation, in understanding what
‘argument quality’ actually is, remains an open re-
search question (Wachsmuth et al., 2017; Habernal
and Gurevych, 2016a).

Argumentation theories and critical thinking text-
books, however, offer an alternative view on quality
of arguments, namely the notion of fallacies: proto-
typical argument schemes or types that pretend to
be correct and valid arguments but suffer logically,
emotionally, or rhetorically (Hamblin, 1970). Al-
though this topic was first brought up by Aristotle
already some 2,300 years ago, contemporary re-
search on fallacies still does not provide a unifying
view and clashes even in the fundamental questions
(Boudry et al., 2015; Paglieri, 2016). Nevertheless,
there seem to be several types of fallacies, such as
argument ad hominem,1 various emotional appeals,
rhetorical moves of the red herring,2 or hasty gen-
eralization that are, unfortunately, widely spread
in our everyday argumentative discourse. Their
powerful and sometimes detrimental impact was
revealed in a few manual analyses (Sahlane, 2012;
Nieminen and Mustonen, 2014). To the best of
our knowledge, there is neither any NLP research
dealing with fallacies, nor any resources that would
allow for empirical investigation of that matter.

The lack of fallacy-annotated linguistic re-
sources and thus the need for creating and label-
ing a new dataset from scratch motivated us to
investigate serious games (also games with a pur-
pose)—a scenario in which a task is gamified and
users (players) enjoy playing a game without think-
ing much of the burden of annotations (von Ahn
and Dabbish, 2008; Mayer et al., 2014). Serious
games have been successful in NLP tasks that can
be easily represented by images (Jurgens and Nav-
igli, 2014; Kazemzadeh et al., 2014) or that can
be simplified to assessing a single word or a pair
of propositions (Nevěřilová, 2014; Poesio et al.,
2013). More complex tasks such as argument un-
derstanding, reasoning, or composing pose several

1Attacking the opponent instead of her argument
2Distracting to irrelevant issues
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design challenges centered around the key question:
how to make data creation and annotation efforts
fun and entertaining in the first place.

To tackle this open research challenge, we cre-
ated Argotario—an online serious game for acquir-
ing a dataset with fallacious argumentation. The
main research contributions and features of Argo-
tario include:
• Gamification of the fallacy recognition task

including player vs. player interaction
• Learning by playing and educational aspects
• Full in-game data creation and annotation, all

data are under open license
• Automatic gold label and quality estimation

based solely on the crowd
• Multilingual, platform independent, open-

source, modular, with native look-and-feel on
smartphones

2 Background and Related Work

Fallacies have been an active topic in argumenta-
tion theory research in the past several decades.
While Aristotle’s legacy was still noticeable in the
twentieth century, a ‘fresh’ look by Hamblin (1970)
showed that the concept of fallacies as arguments
‘that seem to be valid but are not so’ deserves to
be put under scrutiny.3 Theories about fallacies
evolved into various categorizations and treatments,
ranging from rather practical education-oriented
approaches (Tindale, 2007; Schiappa and Nordin,
2013) to rhetorical ones in informal logic (Wal-
ton, 1995) or pragma-dialectic (Van Eemeren and
Grootendorst, 1987). For a historical overview of
fallacies see, e.g., (Hansen, 2015).

Surprisingly, the vast majority of current works
on fallacies, and especially textbooks, present only
toy examples that one is unlikely to encounter in
real life (Boudry et al., 2015, p. 432). The distinc-
tion between fallacies and acceptable inference is
fuzzy and theories do not offer any practical guid-
ance: fully-fledged fallacies are harder to find in
real life than is commonly assumed (Boudry et al.,
2015). To this account, analysis of fallacies in
actual argumentative discourse has been rather lim-
ited in scope and size. Nieminen and Mustonen
(2014) examined fallacies found in articles support-
ing creationism. Sahlane (2012) manualy analysed

3Hamblin (1970) criticized the ‘standard treatment’ of
fallacies widely present in contemporary textbooks as being
‘debased,’ ‘worn-out’, ‘dogmatic’ and ‘without a connection
to modern logic’.

fallacies in newswire editorials in major U.S. news-
papers before invading Iraq in 2003. These two
works rely on a list of several fallacy types, such as
ad hominem, ad populum, appeal to guilt, slippery
slope, hasty generalization, and few others.

When scaling up annotations and resource acqui-
sitions, serious games provide an alternative to paid
crowdsourcing. Recent successful applications in-
clude knowledge base extension (Vannella et al.,
2014), answering quizes related to medical topics
(Ipeirotis and Gabrilovich, 2014), word definition
acquisition (Parasca et al., 2016), or word sense la-
beling (Venhuizen et al., 2013); where the latter one
resembles a standard annotation task with bonus
rewards rather than a traditional entertaining game.
Niculae and Danescu-Niculescu-Mizil (2016) built
a game for guessing places given Google Street
View images in order to collect data for investi-
gating constructive discussions. An important as-
pect of serious games for NLP is their benefit to
the users other than getting the annotations done
quickly: learning a language in Duolingo4 has
more added value than killing zombies (despite
its obvious fun factor) in Infection (Vannella et al.,
2014).

3 Argotario: Overview

Architecture and Implementation Argotario is
a client-server Web-based application that runs
in all modern browsers and seamlessly works on
smartphones, providing an authentic look-and-feel.
Its three-tier architecture consists of a backend
MongoDB database, a Python server behind an
Apache2 SSL proxy, and a Javascript client built
on top of Ionic framework. Argotario is mod-
ular as it allows developers to add new content
(worlds, levels, rounds) as independent modules.
The game workflow is configurable using JSON
files, so it can be customized for evaluating new
game scenarios. Security is ensured by a SSL cer-
tificate and securely hashing all passwords with
salt. Localization utilizes the built-in capabilities
of ng-translate so that all texts are stored exter-
nally in a JSON file and adding another language
to the UI requires only manual translation of these
texts.5 Currently, Argotario is available in English

4Although Duolingo presents itself as a learning tool, its
incentives and competition features make it feel like accom-
plishing quests in a game.

5Needless to say that providing an initial content for a
new language, such as a list of language-dependent topics,
arguments, and fallacies, requires substantial manual work.

8



(a) A single world with the two
first levels finished, the third
one about to be played, and
other to be ‘explored’.

(b) The recognize fallacy type
round.

(c) The player vs. player level,
now waiting for the oppo-
nent’s turn.

(d) An example of hard feed-
back in a fallacy recognition
round.

Figure 1: Screenshots of Argotario taken in a smartphone emulator.

and German.

Game Design We first present the abstract archi-
tecture; concrete examples follow in §4. According
to Salen and Zimmerman (2004, p. 50), a game is a
system consisting of different types of interacting
entities that have certain attributes. Argotario fol-
lows this structure by a hierarchy of worlds, levels,
and game rounds (Hannemann, 2015).

A game round represents an atomic mini-game
in which users take an action and are rewarded
with points. Conceptually, each game round fol-
lows the same procedure: the users are first faced
with game data, which they need to interact with.
Their response (a choice or free-text input) is then
validated with respect to the current game round
configuration, similar to form validation on web
pages. If the game determines correctness of the
response data, it rewards the user with a certain
number of points.

A sequence of game rounds form a level. To
complete a level, all game rounds must be finished,
independently of whether the user successfully ful-
filled the respective task or not. Whereas game
rounds can be re-used in different levels, each level
is unique and can be individually designed to fit a
certain purpose (i.e., only some types of fallacies
are dealt with).

Finally, all levels reside in a world which is a
wrapper for all included levels, visually resembling

a treasure map (see Figure 1a). Their look can
be freely customized to be visually appealing and
capture a certain atmosphere or theme. There are
multiple worlds within the game next to each other.

Users are represented as small circular comic
faces (avatars). The first user’s goal is to finish all
levels in all worlds. Initially, the game worlds are
covered by a fog, which can be cleared by the user
by completing levels. Ranking (score) is the sec-
ond important game goal. Repeating levels allows
users to collect more points and hence improve
their global rank.

4 Gamifying Fallacy Recognition

The backbone principle of Argotario can be summa-
rized as follows. First, since a fallacious argument
is one ‘that seems to be valid but is not so’ (Ham-
blin, 1970), users must try to ‘fool’ other users by
writing a fallacious argument of a given type with-
out being revealed that this is in fact a fallacy. By
writing a fallacious argument on purpose with the
aim to ‘disguise’ it as a valid argument, users get
sensitive to the very gist of fallacious argumenta-
tion (such as rhetorical strategies, linguistic devices,
logic, etc.). Second, users learn to recognize fal-
lacies in existing arguments—either by revealing
the correct fallacy type or stating that the given ar-
gument is not fallacious—and get feedback about
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their ‘debunking’ skills (see Figure 1b).6

In the serious-game terminology of von Ahn and
Dabbish (2008, p. 61), recognizing the correct fal-
lacy type combines the inversion-problem game
(the guesser produces the input that was originally
given to the describer‘) and a modification of the
output-agreement game (the guesser has to pro-
duce the same output as the crowd; details will be
discussed later in §4).

Fallacy Types We gathered an inventory of fal-
lacy types suitable for our game scenarios. Given
the breadth and variety of fallacy types (Tindale,
2007; Govier, 2010), we conducted several pilot
studies to identify types that are (1) common in
everyday argumentative discourse, (2) are distin-
guishable from each other, and (3) have increasing
difficulty. The fallacy type inventory in Argotario
currently contains ad hominem, appeal to emotion,
red herring, hasty generalization, irrelevant author-
ity, and a non-fallacious argument (Pollak, 2016).

Players learn to recognize different fallacy types
gradually, as they accomplish each level. After
finishing the first world in which all fallacy types
are mastered, users can engage in the player versus
player world. Here, a dialogue exchange about a
given controversy requires users to write fallacious
arguments (as in the previous world) and guess
which fallacy was used by its opponent (thus get-
ting points for correct answers; details about gold
data estimation are explained in the next section).
This level is asynchronous; when a user writes
a new argument, his opponents gets notification
about the turn change, so they do not have to play
at the same time (see Figure 1c).

Gold Label Estimation Because all content is
created within the game by players with different
abilities to write or comprehend argumentation,
we treat the data as noisy in the first place. First,
spam can be reported in all rounds and is submitted
to the admins to take action. Second, we rely on
MACE (Hovy et al., 2013) for gold label estimation
which we seamlessly integrated to the backend. For
example, if the user has to write an argument of a
given fallacy type, we treat the type only as a single
‘vote’ and require another four players to guess the
correct type of this fallacy in other levels. Only
arguments that receive at least five ‘votes’ are fed
into MACE to establish their gold label.

By utilizing crowd voting and spam reporting,

6All written texts and user input are licensed under CC-BY.

we indirectly aim for high-quality labels. Predict-
ing gold labels can be further parametrized by a
threshold in MACE, which then provides only gold
label estimates for instances whose entropy is be-
low the threshold (Hovy et al., 2013, p. 1125).
However, a deep analysis of the data quality is
on our current research agenda.

Feedback and Incentives Argotario provides
two types of feedback: soft and hard one. For label-
ing arguments with yet unknown gold label, users
get only one point without knowing whether their
answer was right (soft feedback). For arguments
with already estimated gold labels, hard feedback
(see Figure 1d) is given: if the user makes an error,
she receives no reward. Apparently, hard feedback
is better from the educational point of view as one
knows immediately whether her answer was right
or wrong; however, users do not know in advance
whether a current assessment gives them a soft or
hard feedback, so they are inherently encouraged
to try their best.

We also built in several sorts of incentives to
keep the player engaged. First, Argotario shows
the overall leaderboard as well as weekly ranks to
ensure newcomers have chances to succeed, see
(Ipeirotis and Gabrilovich, 2014) for details. Play-
ers of the week are publicly shown and receive
a small monetary prize. Second, debunking fal-
lacious arguments to familiar topics is reportedly
entertaining for players interested in rhetoric, argu-
mentation, or public deliberation, according to user
feedback obtained after few classroom runs.

5 Benchmarking

So far we tested Argotario in serveral user stud-
ies and beta-testing sessions. The first study on
early versions of Argotario examined the effect of
hard feedback and the lack thereof on overall users’
engagement in the game. We found that the soft
feedback has no significant negative impact on the
users’ experience7 (Hannemann, 2015).

In a subsequent study, we benchmarked the
player vs. player level using Amazon Mechanical
Turk (AMT). We asked workers to play a specially
configured version of Argotario in order to ‘win’
20 points required for submitting the HIT. As the
player vs. player round needs two dialogue turns of

7Two user groups (20 and 17 participants, respectively)
with the same game configuration but with either only soft or
hard feedback; final questionnaire with Likert-scale questions;
Mann-Whitney-U non-parametric test.
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two users and thus two or more people actively par-
ticipating over a longer period of time, we also im-
plemented a naive bot for this study.8 At the same
time, we promoted the game on social media and
attracted some non-paid users. Using this process,
we could quickly test the entire game mechanism
with a larger crowd, identify potential drawbacks,
and gather about 1,160 hand-written fallacious ar-
guments. We also experimented with various price
per HIT ($1–$2) with respect to average playing
time. While the number of rejected low-quality
HITs remained negligible for all configurations,
we did not observe any correlation between HIT
prices and playing times (≈ 18–26 min). Our in-
terpretation is that the HIT price for benchmarking
studies should be fair and reflect the study time but
does not influence the quality (Pollak, 2016).

6 Conclusions and Outlook

Argotario is a serious game that serves several
purposes. First, it is a software tool for compu-
tational linguistics research, as it focuses on falla-
cies in argumentative discourse, an important part
of qualitative criteria in computational argumen-
tation. Second, it is software supporting learning
and education. Its main educational purpose is to
raise awareness—not only that fallacies do exist
but they might be easily overlooked and misused
in everyday argumentation. Finally, Argotario is
also a data-acquisition and annotation tool that ap-
plies successful techniques for quality estimation
from crowd-sourcing approaches. All content is
created by users within the game, as opposed to
usual annotation tools.

In the long run, we expect that Argotario pro-
vides a feasible method for data acquisition as com-
pared to standard crowdsourcing. First, a purely
monetary-driven perspective is not always the de-
ciding factor of playing additional levels, as shown
by Eickhoff et al. (2012). Second, ‘experts’ from
the crowd motivated by the potential for achieve-
ment can help engage in participation (Ipeirotis and
Gabrilovich, 2014).

8We trained a fallacy classifier system on existing argu-
ments in the database using a Convolutional Neural Network
based on GloVe embeddings (Pennington et al., 2014) and
Keras framework, so the bot tried to recognize a fallacy in its
opponent arguments during the player vs. player discussion.
For generating an answer, it simply looked up an existing
fallacy to the given topic. On the one hand, it disobeyed the
discourse flow, as it obviously did not coherently respond to
its opponent. On the other hand, it allowed us to deploy the
game as a HIT on AMT and get a sufficient number of player
vs. bot games in a short time.

In the current version, Argotario is still a proof
of concept. Its capabilities need to be verified at a
large scale in order to reveal patterns in the game
dynamics with impact on the overall user experi-
ence and quality; these cannot be easily anticipated
on small-scale benchmarks (§5). In this regard, any
manual intervention (such as spam removal) needs
to be automated.

Argotario is accessible at www.argotario.net
along with tutorial videos and runs in any modern
web-browser, preferably on smartphones. It is also
open-source, source codes under ASL license are
available at GitHub.9
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Abstract

We present an educational tool that inte-
grates computational linguistics resources
for use in non-technical undergraduate
language science courses. By using the
tool in conjunction with evidence-driven
pedagogical case studies, we strive to pro-
vide opportunities for students to gain an
understanding of linguistic concepts and
analysis through the lens of realistic prob-
lems in feasible ways. Case studies tend to
be used in legal, business, and health ed-
ucation contexts, but less in the teaching
and learning of linguistics. The approach
introduced also has potential to encour-
age students across training backgrounds
to continue on to computational language
analysis coursework.

1 Introduction

The computational linguistics community makes
available software resources for performing struc-
tural and meaning-related linguistic analysis on
language input. While these tools and models are
commonly used in research contexts and have long
been used in computational linguistics instruction
(Meurers et al., 2002; Baldridge and Erk, 2008),
they also have a role to play for enhancing non-
computational pedagogy in linguistics.

We present an educational innovation that aims
to provide students in undergraduate language sci-
ence classes with case-based active learning op-
portunities by enabling them to actively confront
linguistic concepts and methods encountered in
textbooks and class discussions (or as supplemen-
tary materials to stimulate learning) in hands-on
tasks that emphasize the applied nature of the
study and practice of language science. Compu-
tational linguistics software resources tend to be

Figure 1: Linguine’s tab-based interface showing
the Analyses tab with three completed analyses.

designed for tech-savvy users and expect knowl-
edge acquired in computational, or computational
linguistics, curriculum or similar contexts. They
often require some understanding of technical de-
tails about computer programming and computa-
tional linguistics principles and methods. While
there are web-based linguistic corpus resources,
the interaction potential for users tends to be
limited to functionalities such as key-words-in-
context searches or look-up of relatively simple
structural patterns, as opposed to providing stu-
dents across majors with the ability to conduct, as-
sess, and critique analyses built on models devel-
oped in the computational linguistics community.

Linguine 1 is a web-based tool with a user-
friendly interface (Figure 1) tailored to educa-
tional use in language science coursework. 2 It
draws on natural language processing resources in
the open domain in order to provide users with the
capabilities to study a range of linguistic structural
and semantic patterns in written language input.
1 Demo: tinyurl.com/ritlinguine 2 github.com/ritlinguine
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Figure 2: Linguine framework overview. Dotted lines represent text upload. Solid lines represent anal-
ysis generation. NodeJS forwards the users’s analysis request to Python, which locates the text in the
database, performs preprocessing by analysis, and sends the processed text to the appropriate framework
for analysis. Generated analyses are stored for later use. NodeJS generates the appropriate visualization.

The motivation for Linguine includes (1) making
computationally driven language analysis accessi-
ble to non-computing majors in undergraduate lin-
guistics courses; (2) enabling practical, formative
opportunities for linguistically informed analysis;
and (3) guiding students to perform user-friendly
analyses and presenting intuitive visualizations
of automatically processed results to make them
more readily interpretable. Thus, Linguine con-
trasts with resources such as the CLARINO Lan-
guage Analysis Portal (Lapponi et al., 2013) in
its pedagogical purpose and its pairing of analy-
ses with visualizations. Linguine also enables a
broader set of language analysis functionalities.

This work’s main innovation is the applied pair-
ing of this tool with case studies as active learning
vehicles in language science. The case studies task
students with seeking evidence-based solutions to
and recommendations for linguistically grounded
real-world problems. They also aim to train stu-
dents in oral and written communication about
their analysis, recommendations, and critical ob-
servations. While the case study method is a rec-
ognized learning tool in domains such as business
and law, it is rather unusual to see it used exten-
sively in the linguistics curriculum. This approach
thus differentiates itself from standard ways of
teaching linguistics concepts and analysis. Lin-
guine’s functionalities and visualizations support
and facilitate the situational problem solving and

hands-on critical thinking that case studies enable.
Adopting the case study method further seeks to
nurture student experiences in utilizing linguistics
to address and reason over relatable problems in
society. Students can also increase their under-
standing of the limitations and potential utility of
language technologies.

In this paper, we describe Linguine and how it
contributes to using case study pedagogy in lan-
guage science. We also report on instructor ob-
servations in conjunction with student surveys to
provide insights into the utility of the case study
model with the Linguine system.

2 Learning Linguistics with Linguine

Linguine is a web application designed for an ed-
ucational purpose. It provides an easy-to-use in-
terface, allowing interaction with preloaded de-
fault or custom-uploaded plain texts for perform-
ing language-based analysis. Figure 1 shows
the interface for selecting the resulting analysis.
For analysis functionalities, Linguine leverages
widely available resources for performing natural
language processing, including NLTK (Bird et al.,
2009), Stanford CoreNLP (Manning et al., 2014),
and SPLAT 3, along with the web technologies,
NodeJS 4 and d3 5. Aspects that set Linguine apart
are its focus on enabling class activities and ac-
3 http://splat-library.org 4 https://nodejs.org/en/about/
5 https://d3js.org/
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tive learning and its ability to transform machine-
processed results into intuitive visualizations. Vi-
sualizations depend on the analysis performed and
include sentence-by-sentence display of syntactic
trees, data summary tables, tool-tips displaying se-
quential annotations, and colorful markup in text.
Users can inspect results in a structured represen-
tation within the tool. Results can also be down-
loaded in JSON format for off-line analysis by
users with the necessary background.

Figure 2 shows the data flow between Lin-
guine’s components. The architecture is com-
posed of a Python server that interacts with a
NodeJS server and a MongoDB 6 database. These
components run as system services on a RHEL7
virtual machine. The Python server receives anal-
ysis requests from the NodeJS server. It obtains
the relevant text from the database and performs
preprocessing operations. Preprocessed text is
passed to a queue for analysis. Analyses are car-
ried out in parallel using the expected resources.
Analysis time depends on the size of the text and
the type of analysis. At present, Linguine is an
English-focused environment, aimed at language
science coursework offered by computational lin-
guists faculty in an English department. How-
ever, its framework enables incorporating addi-
tional resources for text-based analyses. For ex-
ample, models trained on other languages, or po-
tentially other forms of unstructured data, could be
integrated with adapted visualizations.

The SPLAT library computes statistics on n-
grams, part-of-speech tags, syllables, and disflu-
encies. SPLAT also calculates linguistic complex-
ity measures, including content and idea densities,
Flesch readability, Flesch-Kincaid grade level, and
type-token ratio. Examples of visualizations pro-
duced by Linguine using SPLAT functionality are
shown in Figures 3, 4 (left), and 6 (right). Using
output from Stanford CoreNLP, Linguine incorpo-
rates analysis options requiring sophisticated mod-
eling, including syntactic trees with sentiment la-
bels (Figure 5) and named entity recognition (Fig-
ure 6, left). Analyses are saved to the database,
allowing users to return to visualizations without
having to reprocess their analysis.

The integration of technologies required man-
aging asynchronous communications between
Python and Linguine’s other subsystems. Data
transfer within Linguine is handled by Tornado 7,
6 https://www.mongodb.com/
7 http://www.tornadoweb.org/en/stable/

Q This case study activity...
1 was engaging.
2 had clear instructions.
3 was related to the course material.
4 involved a reasonable time commitment.
5 was a valuable learning experience.
6 enhanced my understanding of

linguistic concepts.
7 reinforced theoretical concepts from

class with an application.
8 let me use linguistic approaches

to problem solving.
9 had me engaged in critical thinking.

10 involved a useful reporting experience.
Q Using the provided web tools and input...
11 was straightforward.
12 went hand-in-hand with the case

instructions.
13 enhanced my thinking about the case

resolution plan.
14 was interesting.
15 was a good learning experience.

Table 1: Satisfaction agreement statements.

a Python framework that transfers information as
HTTP requests. At present, the tool is envisioned
for use by a 25-person class. Detailed analysis of
resource utilization for different user group sizes
is left for future work.

3 Case Studies

We have so far developed three case studies for
two course contexts: an overview course of lan-
guage science fundamentals and an English lan-
guage history course. Combining case studies
with the functionality of Linguine provides stu-
dents with fictional yet realistic scenarios to solve
using active inquiry with linguistic data. Each case
study comprises a set of design elements, follow-
ing a template that enables task clarity and effec-
tive design and prototyping:

• The case description includes a narrative that
sets up a problem and provides background
about the data needed to perform language-
based analysis in Linguine for gathering ev-
idence. This includes step-by-step analysis
instructions with questions to answer, as well
as guidelines for presenting work, preparing
written reporting, and completing a quiz, in
addition to an evaluation rubric.
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Figure 3: Visualizations: I saw her walking her dog on Monday. POS (left); pronoun frequencies (right).

Figure 4: Complexity metrics (left) and term frequencies (right) for a Sir Arthur Conan Doyle excerpt.

Figure 5: Syntactic tree with sentiment labels for
This is the best news I’ve heard all year!

• Data that has been selected and prepared for
out-of-class and in-class analysis.

• Two readings that students can consult for
reasoning about a case: an applied, broad-
audience reading vs. an academic reading.

The case studies are expanded with a develop-

ment and teaching guide that outlines the motiva-
tion for text selection, details preprocessing on the
texts, and includes expected answers to their ques-
tions. The initially developed case studies are:

• The Language of Dementia: Students ana-
lyze a selection of picture descriptions from
the DementiaBank corpus (Becker et al.,
1994) with the goal of assisting a medical re-
searcher in identifying linguistic markers of
Alzheimer’s disease. Readings include Szat-
loczki et al. (2015); Goldstein et al. (2010).

• Historical Varieties of English: Students ex-
amine excerpts of literature across time pe-
riods to assist school teachers in choosing
grade-appropriate readings for their classes.
Readings include, e.g., Perera (1980).

• Formality in Business Communications: In
roles as analysts for a training agency, stu-
dents use email data (Klimt and Yang, 2004;
Pavlick and Tetreault, 2016, added later) to
critically envision guidelines for workplace
communications. Readings include Pavlick
and Tetreault (2016); Lebowitz (2015).

4 Results of Case Study Exploration

Students in an introductory linguistics course
worked with Linguine in assigned teams first on
The Language of Dementia and a few weeks later
on Formality in Business Communications. For
both cases, students used Linguine and engaged
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Figure 6: Visualizing named entity recognition (left) and disfluencies in speech transcription (right).

with provided data in and out of the classroom.
Student teams reported results orally to classmates
in short presentations and in write-ups. The third
case study in the English language history class
was completed individually by fewer students.8

Students were instructed to complete the case
components and then answer an anonymous case
satisfaction survey (Tables 1- 2). This provided a
chance to self-report on the learning experience.

Instructor observations of class interactions
suggest that several pedagogical benefits emerged.
First, students engaged in increased critical
thinking about analysis, data, and methods in
class. Second, the reporting exercise nurtured co-
learning, as students could observe how others ap-
proach a problem and choose to visualize, summa-
rize, and present results. Third, the case approach
offered a structured framework for teamwork.

Figure 7 (p. 6) shows that a majority of students
evaluated the activity positively on all measures,
agreeing that the experience was engaging, edu-
cational, interesting, and that it stimulated critical
thinking and learning (Q1, Q5, Q9, Q14, Q15).
Students reported that the activity and tool were
clear and straightforward (Q2, Q11, Q12). Cru-
cially, most students felt the experience was rele-
vant to and practiced class material, enhanced their
understanding of linguistics, and engaged them in
such problem solving (Q3, Q6, Q7, Q8).

Students were also given the opportunity to pro-
vide qualitative feedback about their experience;
examples are in Table 2 (p. 6). Nearly half the stu-
dents reported that they particularly enjoyed learn-
ing about practical, real-world applications of lin-
guistics. They recognized the links between the
concepts seen in class and the case studies. Stu-
dents found the texts in the second case study
(from email data) to be particularly entertaining,
and they appreciated the open-ended nature of that
case study compared with the first case study.

8 A co-author served as course instructor.

The negative comments centered on three is-
sues: (1) the modest amount of data provided for
analysis; (2) the constraints of Linguine (e.g., al-
lows downloading results as JSON, not csv); and
(3) the reporting experience, which a few students
found repetitive in the first case study. This feed-
back has been valuable for continuing to enhance
Linguine and case-based instructional materials.

5 Conclusion

We presented the integration of the pedagogical
web application Linguine and case studies using
this tool in courses. We will continue to explore
the system and its educational use and effective-
ness in parallel. Developing a systematic pro-
cess for preparing new case studies is left for fu-
ture work. Planned expansions of the system and
materials include increased focus on processing
meaning, and expanding the analysis potential for
transcribed speech to enable further pedagogical
bridging of analyzing spoken and written language
data in language science case studies.
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Abstract

Graphs have long been proposed as a tool
to browse and navigate in a collection of
documents in order to support exploratory
search. Many techniques to automatically
extract different types of graphs, showing
for example entities or concepts and differ-
ent relationships between them, have been
suggested. While experimental evidence
that they are indeed helpful exists for some
of them, it is largely unknown which type
of graph is most helpful for a specific ex-
ploratory task. However, carrying out ex-
perimental comparisons with human sub-
jects is challenging and time-consuming.
Towards this end, we present the Graph-
DocExplore framework. It provides an in-
tuitive web interface for graph-based doc-
ument exploration that is optimized for ex-
perimental user studies. Through a generic
graph interface, different methods to ex-
tract graphs from text can be plugged into
the system. Hence, they can be compared
at minimal implementation effort in an en-
vironment that ensures controlled compar-
isons. The system is publicly available un-
der an open-source license.1

1 Introduction

Structures that reveal relationships between dif-
ferent information units in a document collection,
e.g. relations between mentioned organizations,
have been proposed to support humans analyzing
document collections. Especially in exploratory
search scenarios, where the information need is
complex and cannot be served by a simple key-
word search (Marchionini, 2006), these structures

1https://github.com/UKPLab/
emnlp2017-graphdocexplore

are deemed beneficial. Even without supporting
software, humans were found to naturally create
such structures for themselves (Chin et al., 2009).

Consequently, many types of structures and ap-
proaches to extract them from text have been pro-
posed. These include concept hierarchies (Sander-
son and Croft, 1999; Yang, 2012), concept maps
(Briggs et al., 2004), predicate-argument networks
(van Ham et al., 2009), entailment between propo-
sitions (Adler et al., 2012) or co-occurrences of
named entities (Benikova et al., 2014). All of
them can be seen as labeled graphs in which nodes
and edges represent different information units ex-
tracted from a document collection.

However, what remains unclear is which of
these graphs are most helpful for a specific doc-
ument exploration task. Only few papers evalu-
ate their proposed graphs in a user study and usu-
ally just compare it to baselines such as keyword-
based search. Direct comparisons between differ-
ent types of graphs are missing.

Carrying out such a comparative user study is
a difficult endeavor. Typically, one would have
different groups of subjects that work on a given
task under different conditions, e.g. with graph
A or B. The subjects’ performance on the task,
measured for example in completion time or re-
sult quality, would then be compared between the
groups to draw conclusions on whether graph A
or B is more helpful. The first challenge is that a
full end-user application has to be built around a
graph-extraction method for such an experiment,
which usually involves a non-trivial amount of im-
plementation work. Second, even if full systems
are already available for comparison, they might
not be usable: Every difference between two sys-
tems, as small as different font sizes or colors, can
influence a subject’s performance. As a result, ob-
served performance differences cannot be directly
attributed to the different graphs.
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Figure 1: User interface: After entering a search term (1), the system displays retrieved documents
(right) and a graph built from them (left). When clicking on a node or edge (2), documents are filtered
and highlighted (3) according to the spans associated with the selected graph element. Active filters are
shown at the top (4). Opening a document (5) shows its full text with all highlighted spans.

In this work, we present GraphDocExplore, a
framework for graph-based document exploration.
Due to the following properties, it is particularly
useful to carry out user studies as described above:

User Interface The framework already contains
a fully implemented, modern and intuitive web ap-
plication for explorative search in documents that
can be used for experimental studies.

Graph-Text-Integration Rather than showing
the constructed graph independently, it is tightly
integrated with the documents via navigation, fil-
tering and highlighting features to ensure that a
user can effectively make use of it (see Figure 1).

Logging All actions a user performs in the web
application are captured in a detailed log for fur-
ther analysis and reconstruction of user behavior.

Graph-Independence Different methods to ex-
tract graphs can be plugged into a generic inter-
face, such that fair experimental comparisons that
effectively control for all other confounding fac-
tors can be set up easily and quickly.

Dynamic Graphs Integrated methods for graph
extraction are notified about all user actions and
can dynamically modify their graph during a ses-
sion, allowing to study the personalization of a
graph based on the user actions.

The remainder of this paper is organized as fol-
lows: First, we review different types of graphs
and corresponding systems proposed in the past

(§2). Then, we present our framework from a
functional (§3) and technical perspective (§4). Fi-
nally, we report results of a first user study (§5).

2 Related Work

Many methods to structure document collections
can be seen as different kinds of labeled graphs
generated from the documents. Early work stud-
ied concept hierarchies which are graphs with
concepts as nodes and edges representing hy-
ponomy relations (Sanderson and Croft, 1999;
Lawrie et al., 2001; Kummamuru et al., 2004).
More recently, personalized versions were pro-
posed (Yang, 2012, 2015). Concept maps are
a more expressive variant of these graphs in
which the edges have different labels defining their
meaning rather than all being taxonomic (Novak
and Gowin, 1984) and can be used for the same
purpose (Briggs et al., 2004). Another popu-
lar type of graph shows keywords (Tixier et al.,
2016) or entities (Benikova et al., 2014) as nodes
with unlabeled edges between them depicting co-
occurrences. Other graphs were suggested to de-
pict entailment (Adler et al., 2012) or relations ex-
pressed by a specific predicate (van Ham et al.,
2009). All of these structures can be captured with
the abstract graph model in our framework.

In addition to specific graphs, more complex
applications, such as new/s/leak (Yimam et al.,
2016), Jigsaw (Görg et al., 2013) or Overview2,

2https://www.overviewdocs.com
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Figure 2: Layouts: Full (left): The graph is displayed completely and can be zoomed, panned and moved.
Focused (right): A single focus node and its neighbors are visible. Selecting a neighbor moves the focus.

have been developed to support document explo-
ration by integrating many different techniques,
including graphs, in a single application. In con-
trast to our work, their focus is on productive use,
while we are mainly interested in the experimental
evaluation, requiring us to study the use of specific
graphs in isolation. Moreover, note that graphs
in which nodes represent full documents, as ob-
tained by traditional document clustering or docu-
ment chains (Shahaf and Guestrin, 2010), are less
useful for our application because no fine-grained
highlights can be provided for nodes and edges.

With regard to experimental evaluations, only
few of the suggested graphs were extrinsically
evaluated and proven to be helpful in an ex-
ploratory search scenario. Both Kummamuru et al.
(2004) and Yang (2012) compare their approaches
with previous work in user studies, but restrict the
comparison to other methods producing concept
hierarchies. Kang et al. (2011) compare the pow-
erful Jigsaw system against simpler alternatives,
including keyword-based search and pen and pa-
per. To the best of our knowledge, no studies have
been carried out for other types of graphs, e.g. for
concept maps, and there are no studies comparing
different types of graphs against each other. Thus,
the framework presented in this work is highly
needed to make such comparisons.

3 Functionality

The system for graph-based document exploration
was designed in the style of well-known search
engine interfaces. As shown in Figure 1, the list

of search results is complemented by a visual-
ization of the graph that has been extracted from
the retrieved documents. This type of integration
follows the popular paradigm of faceted search,
in which different taxonomies, either predefined
or extracted from the results (Hearst and Stoica,
2009), are offered along with the results to filter
them. Instead of the typically small, single-level
taxonomies, our application takes this idea further
by offering a comprehensive graph.

User Interaction After executing a query, a user
can both scroll through the list of retrieved doc-
uments or navigate through the generated graph.
Every node and (optionally) edge in the graph is
associated with at least one span in one of the re-
trieved documents (see Figure 5). Note that these
spans must not match the label of the graph ele-
ment, but can be other phrases referring to it. If
a user selects an element in the graph, the corre-
sponding spans are highlighted in the document
snippets and the results are filtered to the subset
of documents that contain at least one associated
span. Filters can be combined, which reduces the
documents to those containing spans for all, can
be temporally deactivated and can also be removed
completely. In the result list, the number of corre-
sponding spans for each filter is displayed. Colors
of nodes in the graph, filter tags and highlighted
spans match. In the result list, a user can switch to
the full text view of a document, which also con-
tains highlights according to the current filters.

Graph Layouts The application currently pro-
vides two different graph visualizations that we
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found to yield useful renderings for graphs of dif-
ferent sizes. At any point, a user can switch be-
tween them using the buttons in the top left cor-
ner. The left part of Figure 2 gives an example
of the full layout, which is a force-directed layout
showing the complete graph. It allows the user to
zoom in and out and pan to fully inspect the graph.
While it has the advantage that it can provide an
overview of the complete graph, the visualization
can become complex for large graphs.

As an alternative, the application offers a fo-
cused layout, which is shown on the right side
of Figure 2. It shows only one focus node and
its direct neighbors at a time, while every neigh-
bor node has a number indicating how many more
edges are connected to it. Selecting one of the
neighbors moves that node to the center and dis-
plays its neighbors. This allows to go through
the graph step by step and it usually yields much
cleaner visualizations, as the number of visible
nodes is limited. Both visualizations support di-
rected and undirected graphs. The modular design
of the application allows to add alternative visual-
izations in the future.

Logging In order to be able to thoroughly study
the behavior of users that are working with the ap-
plication, it creates a comprehensive log of all ac-
tions that a user performed. Figure 3 illustrates
how such a log looks like for a user session. The
user, working on documents about student loans,
starts by issuing the query credit check. The cor-
responding log entry lists the keyword and a list
of the retrieved documents (1). Next, she scrolled
through the result list and stopped with documents
3, 26 and 17 in the visible section of the list (2).
Zooming the graph made a certain set of nodes vis-
ible (3). She then selected one of the nodes (4),
which automatically created a filter (5) and re-
duced the result list correspondingly. From the
filtered result list, she opened document 17 (6),
scrolled to a certain position (7) and closed it af-
terwards (8). She then switches to the alternative
graph layout (9) and continues her search. Note
that the actual log also contains timestamps.

4 Architecture and Implementation

The framework has been implemented following a
server-client-architecture and designed to be eas-
ily extensible in different regards. In the follow-
ing, we provide an overview of the architecture
and describe two aspects, the integration of graph

1 SEARCH “credit check” doc-0,doc-8,doc-3,...
2 RES SCROLLED doc-3,doc-26,doc-17
3 ZOOMED 42,65,89,57,35,24
4 NODE CLICKED 24
5 FILTER ADDED 24
6 DOC OPENED doc-17
7 DOC SCROLLED [516-1468]
8 BACK TO RES
9 GRAPH SWITCHED focused
...

Figure 3: Example for a user interaction log.

generators and dynamic graphs, in more detail.

Overview Figure 4 depicts the architecture of
the framework. The server-side portion is realized
in Java. To enable the keyword search, we inte-
grated Apache Solr3 to index the documents. Dif-
ferent graph generation modules can be plugged
into the system and have access to the documents.
Several document collections can be loaded into
the framework and used with different graphs.
User actions are logged in a text-based format. In
addition to the graphs, the modular design also
allows to easily change the search engine, e.g.
to Lucene, or the logging mechanism, e.g. to a
database. On the client-side, the user interface de-
scribed in the previous section is realized with An-
gular JS.4 The server exposes a REST API to han-
dle all communication with the frontend.

Graph Interface As mentioned above, different
graph generation modules can be used with the
framework. A configuration file defines the ac-
tive type of graph per document collection. When
starting a new search, the framework instantiates
the corresponding graph generator and provides
the retrieved documents. The generator can then
apply its custom processing logic to the documents
and return the resulting graph. To offload expen-
sive preprocessing work, a generator can also ac-
cess precomputed data for each document. Fig-
ure 5 shows the data structure in which a graph is
represented in the framework. Both a node and an
edge have a label, containing a description string
used in the visualization and a list of spans in
the documents. Note that the latter is crucial for
the interaction between the graph and the docu-
ments through filtering and highlighting. The sys-

3http://lucene.apache.org/solr/
4https://angularjs.org/
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Figure 4: System architecture, enabling the inte-
gration of different graph generation models.
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Figure 5: Data structure to capture different types
of text graphs in UML-style class notation.

tem supports both labeled and unlabeled as well as
directed and undirected graphs.

As examples, we created two graph generation
modules for our framework. The first is a file-
based generator that simply reads a static graph
for a document collection from a file. The second
integrates DKPro Core (Eckart de Castilho and
Gurevych, 2014) to create co-occurrence graphs
of automatically recognized entities. It demon-
strates how a broad range of linguistic preprocess-
ing tools can be easily made available and utilized
in our framework. Similarly, many other graph
generation methods can be used with the frame-
work. When comparing them against each other
in a user study, the common web application en-
sures a controlled experimental setting.

Dynamic Graphs As part of the graph gener-
ation interface, implementations are also notified
about the actions that a user performs in the appli-
cation. All events that are documented in the in-
teraction log (see Figure 3) are provided through
the interface. Further, a graph generator can mod-
ify its generated graph after the initial creation. In
case of a change to the graph, the user is notified
and can trigger an update of the visualization in
the frontend. This setup makes it possible to cre-
ate dynamic instead of static graphs and to use the
framework to study their usefulness. While some
work has been done in this direction (Yang, 2012;
Shahaf and Guestrin, 2010), the development of
methods that interactively adapt and personalize a
graph for document exploration to a specific user
has received only little attention. With our appli-
cation, we provide an important evaluation frame-
work that is needed to move further into this inter-
esting direction of research.

5 User Study

To verify whether the user interface and interac-
tion of the presented application is in line with user

expectations, we conducted a first preliminary user
study. Since the focus was on usability, all subjects
worked with the same graph rather than compar-
ing different graph types. 20 researchers from our
lab and students from the university participated.
They used the application to explore a collection
of web pages on student loans (as in Figure 2) and
answered a questionnaire asking for feedback on
different parts of the application.

The results showed that the application was per-
ceived as being very intuitive. Subjects could eas-
ily interpret the meaning of the graph and how it
can be used to filter and highlight the documents.
With regard to the different layouts, 60% preferred
the focused layout because it was “clearer” and
“less cluttered”, while only 15% preferred the full
layout, the rest being undecided. However, sev-
eral subjects noted that the full layout is still use-
ful to get the big picture, advocating to offer both
options in the tool. In addition, the participants
provided many useful suggestions to improve the
application, e.g. adding tooltips, which have been
incorporated into the current version.

6 Conclusion

In this paper, we presented GraphDocExplore,
a framework for graph-based document explo-
ration. Its web application augments a traditional
keyword-search interface with a graph extracted
from the search results. The graph can be used
to navigate, filter and explore a collection of doc-
uments in an intuitive way. With its generic graph
generator interface, different approaches to extract
graphs from text can be plugged into the frame-
work, providing an ideal environment to compare
these approaches in controlled experimental eval-
uations with users. Further, the framework sup-
ports graphs that are dynamically altered based
on user interactions, allowing to study methods
for the interactive personalization of navigation
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graphs. The framework and its source code are
publicly available at https://github.com/
UKPLab/emnlp2017-graphdocexplore.
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Abstract

This paper introduces SGNMT, our ex-
perimental platform for machine transla-
tion research. SGNMT provides a generic
interface to neural and symbolic scoring
modules (predictors) with left-to-right se-
mantic such as translation models like
NMT, language models, translation lat-
tices, n-best lists or other kinds of scores
and constraints. Predictors can be com-
bined with other predictors to form com-
plex decoding tasks. SGNMT implements
a number of search strategies for travers-
ing the space spanned by the predictors
which are appropriate for different predic-
tor constellations. Adding new predictors
or decoding strategies is particularly easy,
making it a very efficient tool for proto-
typing new research ideas. SGNMT is ac-
tively being used by students in the MPhil
program in Machine Learning, Speech and
Language Technology at the University of
Cambridge for course work and theses, as
well as for most of the research work in
our group.

1 Introduction

We are developing an open source decoding
framework called SGNMT, short for Syntactically
Guided Neural Machine Translation.1 The soft-
ware package supports a number of well-known
frameworks, including TensorFlow2 (Abadi
et al., 2016), OpenFST (Allauzen et al., 2007),
Blocks/Theano (Bastien et al., 2012; van
Merriënboer et al., 2015), and NPLM (Vaswani
et al., 2013). The two central concepts in the

1http://ucam-smt.github.io/sgnmt/html/
2SGNMT relies on the TensorFlow fork available at

https://github.com/ehasler/tensorflow

SGNMT tool are predictors and decoders. Predic-
tors are scoring modules which define scores over
the target language vocabulary given the current
internal predictor state, the history, the source
sentence, and external side information. Scores
from multiple, diverse predictors can be combined
for use in decoding.

Decoders are search strategies which traverse
the space spanned by the predictors. SGNMT
provides implementations of common search tree
traversal algorithms like beam search. Since de-
coders differ in runtime complexity and the kind
of search errors they make, different decoders are
appropriate for different predictor constellations.

The strict separation of scoring module and
search strategy and the decoupling of scoring
modules from each other makes SGNMT a very
flexible decoding tool for neural and symbolic
models which is applicable not only to machine
translation. SGNMT is based on the OpenFST-
based Cambridge SMT system (Allauzen et al.,
2014). Although the system is less than a year old,
we have found it to be very flexible and easy for
new researchers to adopt. Our group has already
integrated SGNMT into most of its research work.

We also find that SGNMT is very well-suited
for teaching and student research projects. In
the 2015-16 academic year, two students on the
Cambridge MPhil in Machine Learning, Speech
and Language Technology used SGNMT for their
dissertation projects.3 The first project involved
using SGNMT with OpenFST for applying sub-
word models in SMT (Gao, 2016). The second
project developed automatic music composition
by LSTMs where WFSAs were used to define the
space of allowable chord progressions in ‘Bach’
chorales (Tomczak, 2016). The LSTM provides
the ‘creativity’ and the WFSA enforces constraints

3http://www.mlsalt.eng.cam.ac.uk/Main/
CurrentMPhils
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Predictor Predictor state initialize(·) predict next() consume(token)
NMT State vector in the GRU

or LSTM layer of the
decoder network and
current context vector.

Run encoder network to
compute annotations.

Forward pass through
the decoder to compute
the posterior given the
current decoder GRU
or LSTM state and the
context vector.

Feed back token to
the NMT network and
update the decoder state
and the context vector.

FST ID of the current node
in the FST.

Load FST from the file
system, set the predic-
tor state to the FST start
node.

Explore all outgoing
edges of the current
node and use arc
weights as scores.

Traverse the outgoing
edge from the current
node labelled with
token and update the
predictor state to the
target node.

n-gram Current n-gram history Set the current n-gram
history to the begin-of-
sentence symbol.

Return the LM scores
for the current n-gram
history.

Add token to the cur-
rent n-gram history.

Word count None Empty Return a cost of 1 for all
tokens except </s>.

Empty

UNK count Number of consumed
UNK tokens.

Set UNK counter to 0,
estimate the λ parame-
ter of the Poisson distri-
bution based on source
sentence features.

For </s> use the log-
probability of the cur-
rent number of UNKs
given λ. Use zero for
all other tokens.

Increase internal
counter by 1 if token
is UNK.

Table 1: Predictor operations for the NMT, FST, n-gram LM, and counting modules.

that the chorales must obey. This second project
in particular demonstrates the versatility of the ap-
proach. For the current, 2016-17 academic year,
SGNMT is being used heavily in two courses.

2 Predictors

SGNMT consequently emphasizes flexibility and
extensibility by providing a common interface to
a wide range of constraints or models used in MT
research. The concept facilitates quick prototyp-
ing of new research ideas. Our platform aims to
minimize the effort required for implementation;
decoding speed is secondary as optimized code for
production systems can be produced once an idea
has been proven successful in the SGNMT frame-
work. In SGNMT, scores are assigned to partial
hypotheses via one or many predictors. One pre-
dictor usually has a single responsibility as it rep-
resents a single model or type of constraint. Pre-
dictors need to implement the following methods:

• initialize(src sentence) Initialize
the predictor state using the source sentence.

• get state() Get the internal predictor
state.

• set state(state) Set the internal pre-
dictor state.

• predict next() Given the internal pre-
dictor state, produce the posterior over target
tokens for the next position.

Predictor Description
nmt Attention-based neural machine trans-

lation following Bahdanau et al. (2015).
Supports Blocks/Theano (Bastien et al.,
2012; van Merriënboer et al., 2015) and
TensorFlow (Abadi et al., 2016).

fst Predictor for rescoring deterministic
lattices (Stahlberg et al., 2016).

nfst Predictor for rescoring non-
deterministic lattices.

rtn Rescoring recurrent transition networks
(RTNs) as created by HiFST (Allauzen
et al., 2014) with late expansion.

srilm n-gram Kneser-Ney language model
using the SRILM (Heafield et al., 2013;
Stolcke et al., 2002) toolkit.

nplm Neural n-gram language models based
on NPLM (Vaswani et al., 2013).

rnnlm Integrates RNN language models with
TensorFlow as described by Zaremba et
al. (2014).

forced Forced decoding with a single refer-
ence.

forcedlst n-best list rescoring.
bow Restricts the search space to a bag

of words with or without repeti-
tion (Hasler et al., 2017).

lrhiero Experimental implementation of left-
to-right Hiero (Siahbani et al., 2013) for
small grammars.

wc Number of words feature.
unkc Applies a Poisson model for the number

of UNKs in the output.
ngramc Integrates external n-gram posteriors,

e.g. for MBR-based NMT according
Stahlberg et al. (2017).

length Target sentence length model using
simple source sentence features.

Table 2: Currently implemented predictors.
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• consume(token)Update the internal pre-
dictor state by adding token to the current
history.

The structure of the predictor state and the im-
plementations of these methods differ substan-
tially between predictors. Tab. 2 lists all predictors
which are currently implemented. Tab. 1 summa-
rizes the semantics of this interface for three very
common predictors: the neural machine transla-
tion (NMT) predictor, the (deterministic) finite
state transducer (FST) predictor for lattice rescor-
ing, and the n-gram predictor for applying n-gram
language models. We also included two examples
(word count and UNK count) which do not have a
natural left-to-right semantic but can still be repre-
sented as predictors.

2.1 Example Predictor Constellations

SGNMT allows combining any number of pre-
dictors and even multiple instances of the same
predictor type. In case of multiple predictors we
combine the predictor scores in a linear model.
The following list illustrates that various interest-
ing decoding tasks can be formulated as predictor
combinations.

• nmt: A single NMT predictor represents
pure NMT decoding.

• nmt,nmt,nmt: Using multiple NMT pre-
dictors is a natural way to represent ensem-
ble decoding (Hansen and Salamon, 1990;
Sutskever et al., 2014) in our framework.

• fst,nmt: NMT decoding constrained to
an FST. This can be used for neural lat-
tice rescoring (Stahlberg et al., 2016) or
other kinds of constraints, for example in
the context of source side simplification in
MT (Hasler et al., 2016) or chord progres-
sions in ‘Bach’ (Tomczak, 2016). The fst pre-
dictor can also be used to restrict the output of
character-based or subword-unit-based NMT
to a large word-level vocabulary encoded as
FSA.

• nmt,rnnlm,srilm,nplm: Combining
NMT with three kinds of language mod-
els: An RNNLM (Zaremba et al., 2014),
a Kneser-Ney n-gram LM (Heafield et al.,
2013; Stolcke et al., 2002), and a feedforward
neural network LM (Vaswani et al., 2013).

Decoder Description
greedy Greedy decoding.
beam Beam search as described in Bahdanau

et al. (Bahdanau et al., 2015).
dfs Depth-first search. Efficiently enumer-

ates the complete search space, e.g. for
exhaustive FST-based rescoring.

restarting Similar to DFS but with better admissi-
ble pruning behaviour.

astar A* search (Russell and Norvig, 2003).
The heuristic function can be defined
via predictors.

sepbeam Associates hypotheses in the beam with
only one predictor. Efficiently approxi-
mates system-level combination.

syncbeam Beam search which compares hypothe-
ses after consuming a special synchro-
nization symbol rather than after each
iteration.

bucket Multiple beam search passes with small
beam size. Can have better pruning be-
haviour than standard beam search.

vanilla Fast beam search decoder for (ensem-
bled) NMT. This implementation is
similar to the decoder in Blocks (van
Merriënboer et al., 2015) but can only
be used for NMT as it bypasses the pre-
dictor framework.

Table 3: Currently implemented decoders.

• nmt,ngramc,wc: MBR-based NMT fol-
lowing Stahlberg et al. (2017) with n-gram
posteriors extracted from an SMT lattice
(ngramc) and a simple word penalty (wc).

3 Decoders

Decoders are algorithms to search for the
highest scoring hypothesis. The list of pre-
dictors determines how (partial) hypothe-
ses are scored by implementing the meth-
ods initialize(·), get state(),
set state(·), predict next(), and
consume(·). The Decoder class implements
versions of these methods which apply to all
predictors in the list. initialize(·) is
always called prior to decoding a new sentence.
Many popular search strategies can be described
via the remaining methods get state(),
set state(·), predict next(), and
consume(·). Algs. 1 and 2 show how to define
greedy and beam decoding in this way.45

Tab. 3 contains a list of currently implemented
decoders. The UML diagram in Fig. 1 illustrates
the relation between decoders and predictors.

4Formally, predict next() in Algs. 1 and 2 returns
pairs of tokens and their costs.

5String concatenation is denoted with ·.
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Figure 1: Reduced UML class diagram.

Algorithm 1 Greedy(src sen)
1: initialize(src sen)
2: h← 〈<s>〉
3: repeat
4: P ←predict next()
5: (t, c)← arg max(t′,c′)∈P c′

6: h← h · t
7: consume(t)
8: until t = </s>
9: return h

NMT batch decoding The flexibility of the pre-
dictor framework comes with degradation in de-
coding time. SGNMT provides two ways of
speeding up pure NMT decoding, especially on
the GPU. The vanilla decoding strategy exposes
the beam search implementation in Blocks (van
Merriënboer et al., 2015) which processes all ac-
tive hypotheses in the beam in parallel. We also
implemented a beam decoder version which de-
codes multiple sentences at once (batch decoding)
rather than in a sequential order. Batch decoding is
potentially more efficient since larger batches can
make better use of GPU parallelism. The key con-
cepts of our batch decoder implementation are:

• We use a scheduler running on a separate
CPU thread to construct large batches of
computation (GPU jobs) from multiple sen-
tences and feeding them to the jobs queue.

• The GPU is operated by a single thread which
communicates with the CPU scheduler thread
via queues containing jobs. This thread is
only responsible for retrieving jobs in the
jobs queue, computing them, and putting
them in the jobs results queue, minimizing
the down-time of GPU computation.

• Yet another CPU thread is responsible for
processing the results computed on the GPU

Algorithm 2 Beam(n, src sen)
1: initialize(src sen)
2: H ← {(〈<s>〉, 0.0,get state())}
3: repeat
4: Hnext ← ∅
5: for all (h, c, s) ∈ H do
6: set state(s)
7: P ←predict next()
8: Hnext ← Hnext∪⋃

(t′,c′)∈P (h · t′, c + c′, s)
9: end for

10: H ← ∅
11: for all (h, c, s) ∈ n-best(Hnext) do
12: set state(s)
13: consume(h|h|)
14: H ← H ∪ {(h, c,get state())}
15: end for
16: until Best hypothesis in H ends with </s>
17: return Best hypothesis in H

in the job results queue, e.g. by getting the
n-best words from the posteriors. Processed
jobs are sent back to the CPU scheduler
where they are reassembled into new jobs.

This decoder is able to translate the WMT
English-French test sets news-test2012 to news-
test2014 on a Titan X GPU with 911.6 words
per second with the word-based NMT model de-
scribed in Stahlberg et al. (2016).6 This decoding
speed seems to be slightly faster than sequential
decoding with high-performance NMT decoders
like Marian-NMT (Junczys-Dowmunt et al., 2016)
with reported decoding speeds of 865 words per
second.7 However, batch decoding with Marian-
NMT is much faster reaching over 4,500 words

6Theano 0.9.0, cuDNN 5.1, Cuda 8 with CNMeM, Intel R©

Core i7-6700 CPU
7Note that the comparability is rather limited since even

though we use the same beam size (5) and vocabulary sizes
(30k), we use (a) a slightly slower GPU (Titan X vs. GTX
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per second.8 We think that these differences are
mainly due to the limited multithreading support
and performance in Python especially when using
external libraries as opposed to the highly opti-
mized C++ code in Marian-NMT. We did not push
for even faster decoding as speed is not a major
design goal of SGNMT. Note that batch decoding
bypasses the predictor framework and can only be
used for pure NMT decoding.

Ensembling with models at multiple tokeniza-
tion levels SGNMT allows masking predictors
with alternative sets of modelling units. The con-
version between the tokenization schemes of dif-
ferent predictors is defined with FSTs. This makes
it possible to decode by combining scores from
both a subword-unit (BPE) based NMT (Sennrich
et al., 2016) and a word-based NMT model with
character-based NMT, masking the BPE-based
and word-based NMT predictors with FSTs which
transduce character sequences to BPE or word se-
quences. Masking is transparent to the decod-
ing strategy as predictors are replaced by a spe-
cial wrapper (fsttok) that uses the masking FST
to translate predict next() and consume()
calls to (a series of) predictor calls with alter-
native tokens. The syncbeam variation of beam
search compares competing hypotheses only af-
ter consuming a special word boundary symbol
rather than after each token. This allows com-
bining scores at the word level even when using
models with multiple levels of tokenization. Joint
decoding with different tokenization schemes has
the potential of combining the benefits of the dif-
ferent schemes: character- and BPE-based mod-
els are able to address rare words, but word-based
NMT can model long-range dependencies more
efficiently.

System-level combination We showed in
Sec. 2.1 how to formulate NMT ensembling as
a set of NMT predictors. Ensembling averages
the individual model scores in each decoding
step. Alternatively, system-level combination
decodes the entire sentence with each model
separately, and selects the best scoring complete
hypothesis over all models. In our experiments,
system-level combination is not as effective as en-

1080), (b) a different training and test set, (c) a slightly differ-
ent network architecture, and (d) words rather than subword
units.

8https://marian-nmt.github.io/
features/

sembling but still leads to moderate gains for pure
NMT. However, a trivial implementation which
selects the best translation in a postprocessing
step after separate decoding runs is slow. The
sepbeam decoding strategy reduces the runtime
of system-level combination to the single system
level. The strategy applies only one predictor
rather than a linear combination of all predictors
to expand a hypothesis. The single predictor
is linked by the parent hypothesis. The initial
stack in sepbeam contains hypotheses for each
predictor (i.e. system) rather than only one as
in normal beam search. We report a moderate
gain of 0.5 BLEU over a single system on the
Japanese-English ASPEC test set (Nakazawa
et al., 2016) by combining three BPE-based NMT
models from Stahlberg et al. (2017) using the
sepbeam decoder.

Iterative beam search Normal beam search is
difficult to use in a time-constrained setting since
the runtime depends on the target sentence length
which is a priori not known, and it is therefore
hard to choose the right beam size beforehand.
The bucket search algorithm sidesteps the problem
of setting the beam size by repeatedly perform-
ing small beam search passes until a fixed com-
putational budget is exhausted. Bucket search pro-
duces an initial hypothesis very quickly, and keeps
the partial hypotheses for each length in buckets.
Subsequent beam search passes refine the initial
hypothesis by iteratively updating these buckets.
Our initial experiments suggest that bucket search
often performs on a similar level as standard beam
search with the benefit of being able to support
hard time constraints. Unlike beam search, bucket
search lends itself to risk-free (i.e. admissible)
pruning since all partial hypotheses worse than the
current best complete hypothesis can be discarded.

4 Conclusion

This paper presented our SGNMT platform for
prototyping new approaches to MT which involve
both neural and symbolic models. SGNMT sup-
ports a number of different models and constraints
via a common interface (predictors), and vari-
ous search strategies (decoders). Furthermore,
SGNMT focuses on minimizing the implementa-
tion effort for adding new predictors and decoders
by decoupling scoring modules from each other
and from the search algorithm. SGNMT is ac-
tively being used for teaching and research and we
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welcome contributions to its development, for ex-
ample by implementing new predictors for using
models trained with other frameworks and tools.
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Abstract

We present a tool for developing tree struc-
ture patterns that makes it easy to define
the relations among textual phrases and
create a search index for these newly de-
fined relations. By using the proposed
tool, users develop tree structure patterns
through abstracting syntax trees. The tool
features (1) intuitive pattern syntax, (2)
unique functions such as recursive call of
patterns and lexicon reference, and (3)
whole workflow support for relation de-
velopment and validation. We report the
current implementation of the tool and its
effectiveness.

1 Introduction

This paper describes a tool that helps users se-
mantically bundle linguistic trees such as a con-
stituency tree and a dependency tree. We refer
to the tool as StruAP (Structure-based Absract
Pattern). By using the proposed tool, the user can
easily define relations that are specific to a given
business use case and create a search index for
the newly defined relations. The search index al-
lows the user to retrieve sentences that include the
defined relations. For instance, we can interpret
the following sentence as including a spin-off rela-
tion between Japanese electronics maker Hitachi
and home appliance and industrial equipment di-
visions.

Japanese electronics maker Hitachi will
spin off its home appliance and indus-
trial equipment divisions by April to be-
come quicker in decision-making to re-
spond to market changes. 1

1 c⃝ 1994–2010 The Associated Press, 2001/9

If we define a spin-off relation and extract tex-
tual phrases consisting of the relation from large
amounts of documents, we can investigate which
companies spin off a given business segment, such
as home appliance, by using standard information
retrieval techniques.

By using the proposed tool StruAP, users
develop tree structure patterns of the relations
through abstracting syntax trees. We assume that
in most practical use cases, newly defining rela-
tions specific to the use case and developing the
corresponding relation extraction modules, instead
of use of a universal relation taxonomy and a gen-
eral extraction algorithm, are required. For exam-
ple, in a use case of investment decisions, more
than ten relations, such as “acquire”, “sue”, and
“penalize”, are important to investigate compa-
nies. However, it is difficult to develop and main-
tain a relation extraction module based on linguis-
tic trees because implementation of the logics for
traversing trees tends to be complicated. Thus, a
tool to help develop and maintain structural pat-
terns of relations would be useful.

The proposed tool is related to semantic role
labelling. There are several tools available
(Punyakanok et al., 2008; Collobert et al., 2011;
Kshirsagar et al., 2015) . However, these tools im-
plicitly assume a kind of general relation taxon-
omy. When adding new relations in these tools,
users need to prepare a certain amount of training
data for each relation. The proposed tool aims to
help the user to newly define relations for each use
case and develop extraction modules within sev-
eral hours.

The features of the proposed tool are as follows:

1. Intuitive pattern syntax, which is an ab-
stracted representation of outputs of syntax
parsers,

2. Unique functions such as recursive call of
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patterns and lexicon reference for word level
pattern matching,

3. Whole workflow support for relation devel-
opment and validation.

This paper is structured as follows. We describe
related work in Section 2 and the proposed tool in
Section 3. We explain the implementation of the
tool in Section 4. Section 5 discusses the effec-
tiveness of the tool and Section 6 concludes this
paper.

2 Related Work

Tgrep2 is a grep-like tool for tree expres-
sions (Rohde, 2005). The tool allows users to
search tree expressions with a given tree query.
The expressivity of Tgrep2 has been expanded
and a tree query tool Tregex has been developed
(Levy and Andrew, 2006). Besides these tools,
several tools for tree queries are already available,
such as TIGERSearch (Brants et al., 2002),
NiteQL (Heid et al., 2004), LPath+ (Lai and Bird,
2005), and a query language for threaded
trees (Singh, 2012). However, all these
tools are for grep-like purposes but do not
support the whole workflow of the rela-
tion development. Although Odin’s Runes
(Valenzuela-Escárcega et al., 2016) provides an
information extraction framework, it does not
cover the whole workflow. In addition, their
pattern languages are path-based and difficult to
intuitively understand. For example, a Tregex tree
query for the spin-off relation can be written as
follows:
(VP<(VB<<#spin)<(PRT(RP<<#off)))

$--MD>VP$--NP>S

Please refer to (Levy and Andrew, 2006) for the
detailed pattern syntax of Tregex. The above pat-
tern expression is different from that of the usual
parser outputs. Our proposed tool allows users to
easily create a structure-based pattern by directly
editing a constituency tree or a dependency tree
generated by syntax parsers.

3 Proposed Model

Table 1 illustrates the concept of our pro-
posed model. First, we get a syntax
tree by using a parser, such as Stanford’s
CoreNLP (Manning et al., 2014). The left column
shows the syntax tree obtained by parsing the
sample text shown in Section 1. We change the

Figure 1: Architecture

expression a little from the original output of
Stanford’s CoreNLP by adding lemma=, POS=,
and so on. The bold face parts indicate important
structures to represent the spin-off relation. Thus,
we can obtain the generalized structure of the
spin-off relation by removing non-essential sub-
trees and lemma information. The right column
shows an example of generalized structure. This
paper refers to the generalized structure as a
structure-based pattern, in contrast to a path-based
pattern. Here, * means a repeat of any subtree,
while #a[0-2] means target subtrees to be ex-
tracted as elements of the relation. Table 2 shows
examples of extracted relations by applying the
pattern shown in the right column of Table 1.
From a computational point of view, the proposed
tool bundles multiple tree instances based on ab-
stract structure, and gives an index for retrieval of
the tree instances. In the context of NLP (natural
language processing), the main application is
relation extraction.

3.1 Architecture and Workflow

Figure 1 describes the architecture of the proposed
tool. We parse texts that are utilized for a tar-
get application and store the generated linguistic
trees in a data store in advance. Then, we prepare
a text search index for full text search, which is
also used later to retrieve relations extracted by the
tool. The data store and text search index are run-
ning on the server side. If users want to, they can
use the proposed tool in only a local environment
without server side settings.

Figure 2 shows snapshots of the web-based user
interface of the proposed tool. There are 4 tabs:
SAMPLE, VALIDATE, EDIT, and INDEX. The
procedure to develop a pattern of the spin-off rela-
tion is as follows:
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(.POS=ROOT&.lemma=will
(.POS=S&.lemma=will
(.POS=NP&.lemma=Hitachi
(.POS=JJ&.lemma=japanese )
(.POS=NNS&.lemma=electronics )
(.POS=NN&.lemma=maker )
(.POS=NNP&.lemma=Hitachi ))
(.POS=VP&.lemma=will
(.POS=MD&.lemma=will )
(.POS=VP&.lemma=spin
(.POS=VB&.lemma=spin )
(.POS=PRT&.lemma=off
(.POS=RP&.lemma=off ))

(.POS=NP&.lemma=division
(.POS=PRP$&.lemma=its )
(.POS=NN&.lemma=home )
(.POS=NN&.lemma=appliance )
(.POS=CC&.lemma=and )
(.POS=JJ&.lemma=industrial )
(.POS=NN&.lemma=equipment )
(.POS=NNS&.lemma=division ))

(.POS=PP&.lemma=by
...

(.POS=S

*
(#a1.POS=NP *)
(.POS=VP
(*.POS=MD _)

*
(.POS=VP
(#a0.POS=VB&.lemma=spin _)
(.POS=PRT
(.POS=RP&.lemma=off _))

(#a2.POS=NP *) *) *) *)

Table 1: Syntax tree (left) and structure-based pattern (right).

Figure 2: Snapshots of StruAP.

Step 1 In the SAMPLE tab, find several texts of
a basis of a tree structure pattern by keyword
search. The keyword “spin off” draws rele-
vant sentences from the data store by using
the text search index.

Step 2 Choose proper sentences and click the
STORE button to save the sentences into the
local data store.

Step 3 In the VALIDATE tab, prepare a validation
dataset before developing a tree structure pat-
tern. In Figure 2, we decode Hitachi for a1
as a subject phrase, and home appliance for
a2 as a object phrase. Fill out the a[1-2] text
fields with the corresponding words.

Step 4 Click the “c” button to parse the sentence
and generate its syntax tree in the text area

of the right pane. Change the syntax tree to
a tree structure pattern through abstraction as
shown in Table 1, and click the ANNOTATE
button (or Ctrl-Shift-o) to confirm if the pat-
tern works well. A user can see the respective
phrases of a[1-2] in the table area below. Al-
though no syntactic error correction is avail-
able, frequent use of the shortcut key is help-
ful to avoid syntactic errors.

Step 5 Click the SAVE button to add the edited
pattern into the corresponding pattern file.
The rule engine generates text annotations by
applying the tree structure pattern, and writes
the annotations into the local data store. In
the VALIDATE tab, the user can check the
differences of a[1-2] between the validation
dataset written in Step 3 and the generated
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annotations. The differences are highlighted
in red.

Step 6 Click the UPDATE button in the INDEX
tab to write the annotations for all of the
stored documents into the data store on the
server side, and update the text search index
for extracted relations.

By following the above steps, a text search in-
dex for relations is ready for an external applica-
tion. The CALL DICT button and EDIT tab are
related to the lexicon reference explained in Sec-
tion 3.2.

3.2 Detailed Pattern Specifications
Table 3 lists a sample of pattern expressions of
the proposed model. Our model permits leaf node
match (_), alternatives (|), subtree retrieval (#),
negation (!), and quantification (*, ?, +). In addi-
tion, the user can use two unique functions: lexi-
con reference and subpattern call.

Lexicon Reference The following pattern is a
simple one representing a causal relation between
subtree a1 and subtree a2.
(.POS=S *
(#a1.POS=NP *)
(.POS=VP * (.lemma=increase|cause _)
(#a2.POS=NP) *) *)

Here, the pattern (.lemma=increase|... would
be long because many words can be used as a
lemma for the leaf node. In this case, users can
use word lists described in separate files, instead
of writing down all of the words in the pattern
subtree. A pattern using lexicon reference is as
follows:
(.POS=S *
(#a1.POS=NP *)
(.POS=VP * (.lemma=\dic.affect _)
(#a2.POS=NP) *) *)

The affect represents the name of a word list
containing the words increase and cause. Users
can also define a list of words for a1 and a2.

Subpattern Call It is useful to partially refer to
pre-defined subpatterns because the same subpat-
terns occur repeatedly in different tree structure
patterns. The following is an example of a sub-
pattern definition.
(
((ref . (leaf pos)))
(.POS=VP *
(.POS=\arg.pos&.lemma=\dic.spinoff *)
(#a2.POS=NP *) *)

)

Here, ref is a reserved word meaning subpat-
tern definition, leaf is the name of the subpat-
tern, pos is the name of the argument variable.
\arg.pos is expanded to a given argument. The
user can call the subpattern as follows:
(.POS=S *
(#a1.POS=NP *)
(.POS=VP *
(\ref.leaf VB|VBZ) *) *)

Here, \ref.leaf means the call of the subpat-
tern whose name is leaf. VB|VBZ is the argument
of the subpattern and is substituted for \arg.pos
in the subpattern. When creating a pattern for a
sentence with a complicated syntax structure, the
recursive call of a subpattern is useful. An exam-
ple of a recursive call is as follows:
(
((ref . (lib.vp_loop leaf_pattern pos)))
(.POS=VP *
(\ref.vp_loop \arg.leaf_pattern VB) *)

)
(
((ref . (lib.vp_loop leaf_pattern pos)))
(\ref.\arg.leaf_pattern \arg.pos)

)

(.POS=S *
(#a1.POS=NP *)
(\ref.vp_loop leaf VB|VBZ)
*)

This pattern partially corresponds to the pattern
syntax A .+(VP) B of Tregex.

4 Implementation

The proposed tool StruAP is implemented in
Python. Syntax trees are expanded on python
data structures and tree structure patterns are di-
rectly applied on the data structure. This means
we do not use translation from our model to ex-
isting query lauguage, such as SQL. In the cur-
rent implementation, we use Cassandra2 as a data
store and Solr3 as a text search index. We also
use Hadoop4 for parallel processing of the rule en-
gine. While the tool comes with the web-based
user interface shown in Figure 2, command line
tools for the Linux environment are also available.
Users can easily start up the web version of the
tool by using a docker image 5 with several con-
figurations for the data store and the text search in-
dex. For the command line version, users edit files
for tree patterns and lexicon reference with their

2 Cassandra, http://cassandra.apache.org
3 Apache Solr, http://lucene.apache.org/solr
4 Hadoop, http://hadoop.apache.org
5 docker, https://www.docker.com/
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a1 a2 text
Pepsi the restaurant unit Pepsi will spin off the restaurant unit by the end of the year .
Mannesmann its Internet business The chairman also said Mannesmann might spin off its In-

ternet business .
Rhone-Poulenc part of its chemicals ac-

tivities
As part of the plan Rhone-Poulenc would spin off part of its
chemicals activities to focus on healthcare , in a bid to boost
its share price and earnings .

Table 2: Examples of extracted relations. c⃝1994–2010 New York Times.

Pattern Subtree to be matched
(.POS=PRT *) Subtree whose POS is PRT.
(.POS=VB|VBD _) Leaf node whose POS is VB or VBD.
(.POS=VB&.lemma=spin _) Leaf node POS of which is VB, and the lemma of which is spin.
(#a0.POS=VB _) Leaf node whose POS is VB. Retrieve the matched node with the name of a0.
(.POS=NP&.type!=tmod *) Subtree POS of which is NP, the dependency type of which is not tmod.
* Zero or more occurrences of any subtree.
(*.POS!=NP|NN|NNS *) Zero or more occurrences of the subtree whose POS is not NP, NN, nor NNS.
(?.POS=MD|CC|VP *) Zero or one occurrences of the subtree whose POS is MD, CC or VP.
(+.POS=NN|NP *) One or more occurrences of the subtree whose POS is NN or NP.

Table 3: Sample of pattern expressions.

Figure 3: brat view of generated annotations.

favorite editors and run the rule engine from the
Linux command line. We implemented the tool
for the English language and Japanese language.
Stanford’s CoreNLP (Manning et al., 2014) and
CaboCha (Kudo and Matsumoto, 2002) are used
for the English language and Japanese language,
respectively. For the English version, the user can
use both constituent trees and dependency trees as
the basis of the tree structure patterns. On the other
hand, only dependency trees are available for the
Japanese version because CaboCha does not out-
put constituent trees.

We can easily integrate the annotation tool brat 6

into the proposed tool via the data store. Fig-
ure 3 visualizes the generated annotations in the
data store with brat view.

Figure 4 shows a simple example of an appli-
cation that uses extracted relations. This appli-
cation uses the same text search index as that of
the proposed tool. For example, we can retrieve
sentences that include the spin-off relation with
the object phrase of home appliance by entering
home appliance in the object phrase text field. The
highlighted text fragments correspond to the sub-
ject phrases. By using the same search index,

6 brat, http://brat.nlplab.org

Figure 4: Example of application using extracted
relations.

the tool can be used to directly maintain and up-
date the relation data for the application. Simi-
larly, we can implement various applications us-
ing case-specific relations through the index of the
proposed tool.

5 Discussion

We roughly investigated the efficiency of the pro-
posed tool in an actual relation development task.
Table 4 shows the number of tree structure patterns
and the lines of the word lists for lexicon refer-
ence, which are developed by two non-researchers
in an hour. Although developing tree structure pat-
terns is generally difficult, more than 54 patterns
were developed within an hour. We consider that
the proposed tool is easy to use and very effec-
tively identifies essential structures for target re-
lations because the tool provides intuitive pattern
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relation Developer A Developer B
spin-off

# of patterns 8 12
# of words 3 2

sue
# of patterns 7 10
# of words 5 4

penalize
# of patterns 8 9
# of words 8 4

Table 4: Efficiency investigation. Developer A is
translator, but not researcher; Developer B is soft-
ware engineer, but not researcher.

syntax and whole workflow support. The use of
a bracketed syntax to define patterns is arguable.
However, we suppose users can develop lots of
patterns faster by editting bracketed patterns in a
text-based editor, than by use of a graphical tree
editor.

On the other hand, there are not enough words
for lexicon reference for an actual application. Al-
though the function of the lexicon reference is use-
ful, the current tool is not helpful to increase the
variety of predicate words and clue words.

We have already used the tool in several cases.
We have developed 657 patterns in total, and the
number of words in the lexicons used for the pat-
terns is 6406. Especially, our development of
end-to-end argument generation system in debat-
ing (Sato et al., 2015) relied on the proposed tool.
We conclude that the proposed model is effective
when it is necessary to newly define case-specific
relations and non-researchers are involved in de-
velopment of the relation extraction.

6 Conclusion

This paper describes a tool for developing tree
structure patterns, which makes it easy to de-
fine relations among textual phrases, and creates
a search index for these newly defined relations.
The tool assumes that in most practical use cases,
newly defining relations specific to the use cases
is required. In such cases, the proposed tool is ef-
fective to identify essential tree structure patterns.

Future work includes developing semi-
automatic abstraction using frequent subtree
mining and integrating techniques to collect clue
words for lexicon reference. Another direction is
to support collaboration between users. Similar
subpattern search helps users to avoid duplicating
a pattern created by another user.
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Abstract

Semantic relation knowledge is crucial for
natural language understanding. We intro-
duce KnowYourNyms?, a web-based game
for learning semantic relations. While pro-
viding users with an engaging experience,
the application collects large amounts of
data that can be used to improve semantic
relation classifiers. The data also broadly
informs us of how people perceive the re-
lationships between words, providing use-
ful insights for research in psychology and
linguistics.

1 Introduction

Knowledge of semantic relationships can help nu-
merous NLP tasks that need to infer meaning from
text, such as text classification, content analysis
and query answering. We apply the “games with
a purpose” methodology (von Ahn and Dabbish,
2004) to the task of discovering semantic relation-
ships between words. Our aim is to collect a large
volume of accurately labeled lexical relationships
through this type of crowdsourcing. Gamification
offers several advantages compared to a fully au-
tomatic or manual relation identification process
since it enables acquiring considerable amounts of
high quality data at no cost.

We have created a simple game called
KnowYourNyms? with the tag line Keep your brain
on its toes. It asks players to list word for a prompt
in a short amount of time. As the seconds tick
down, they type as many answers as they can for
prompts like “What are kinds of seafood?” or
“What are the parts of a volcano?” or “What’s the
opposite of fat?”. Table 1 shows the hyponyms,
meronyms and antonyms that our players provided
in response to these questions. Their answers are
useful as training data for natural language under-

hyponyms of seafood: fish (54), shrimp (53), lobster (38),
crab (36), clams (24), salmon (17), oysters (12), scallops
(12), shellfish (10), mussels (10), cod (7), tuna (7), tilapia (5),
whale (4), trout (4), octopus (4), shark (4), squid (3), prawn
(3), haddock (3), flounder (2), catfish (2), swordfish (2), eel
(2), sushi (2), bass (2), calamari (2), mussles (2).
Words suggested once: muss-, pearls, suslhi, prawns,
schrimp, seal, hadsoxk, crab”, sepia, scampi, scalop, sea-
weed, dolphin, fi-, seaww-, snapper, s-, pr-, seabass, jelly-
fish, cra-, muscles, oy-, soup, sardine, mahi, herrin, mussells,
tipica, tun-, lob-, sa-, osyter, crawdad, roe, swai-, cram-, pa-,
caviar, seewee-, carp, oyste-, sw-, musse-.
meronyms of volcano: lava (32), rock (12), magma (10),
mountain (9), crater (9), smoke (7), eruption (7), ash (6), fire
(6), vent (4), heat (4), mouth (3), steam (2), danger (2), dust
(2), volcano (2), cone (2), core (2), geodes (2).
Words suggested once: crust, energy, moutain, hot, village,
sulfur, mount-, caldera, throat, pummice, gas, top, side, sill,
stones, sparks, motlen, lawa, japan, opening, soil, head, earth,
metal, op-, cliff, cond-, cr-, pl-, flow, pressure, spout, clay,
pollution, sediment, rim
antonyms of fat: thin (15), skinny (13), slender (5), slim (4),
small (4), tiny (3), fit (3), trim (2), lean (2).
Words suggested once: delgado, svelt, narrow, bare, attrac-
tive, anorexic, teeny, underweight, bulemic, in shape, under-,
wispy, healthy, light, smal-, little

Table 1: Example relationships provided by
KnowYourNyms? players (with frequency counts).

standing applications and may provide useful in-
sights for psycholinguistics research.

Go to www.know-your-nyms.com to play
KnowYourNyms?.

2 Related Work

Several games with a purpose (GWAPs) have
been developed for gathering linguistic annota-
tions for building resources and training systems
(Chamberlain et al., 2013). Lafourcade (2007)
and Fort et al. (2014) developed games for defin-
ing semantic relations and dependency relations
in French. Chamberlain et al. (2008) created
Phrase Detectives to annotate and validate things
like co-reference. Jurgens and Navigli (2014) re-
cently proposed using video games to link Word-
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Figure 1: This example scoring page shows the
scores for the player’s words, and the top answers.

Net senses to images and perform word sense dis-
ambiguation. KnowYourNyms? gathers high qual-
ity semantic relationships between English words
to increase the coverage of resources like Word-
Net and assign a taxonomic structure to the Para-
phrase Database (Ganitkevitch et al., 2013). Addi-
tionally, it provides rich data for training relation
detection systems like LexNET (Shwartz and Da-
gan, 2016), up to now trained on small training
datasets (BLESS (Baroni and Lenci, 2011), EVA-
Lution (Santus et al., 2015), ROOT9 (Santus et al.,
2016) and K&H+N (Necsulescu et al., 2015)).

3 System Overview

KnowYourNyms? is modeled after GWAPs like the
ESP game or the Google Image Labeler, which
use human-based computation to gather metadata
to improve image recognition classifiers (von Ahn
and Dabbish, 2004). At a high level, the appli-
cation is simple. Once a user creates an account,
she may start a round of the game. For each round,
the system selects a specific word (called the “base
word”) and asks the user to name as many seman-
tic relationship pairs for that word as possible in a
set time limit. After the allotted time expires, these
named pairs are recorded in our database and serve
as data points for possible semantic relationships.
The user then sees a display of her scoring per-
formance, which is primarily based on how many
other users named the same relationships for the
given base word. In this way, the scoring is remi-
niscent of Family Feud, a popular game show that
incentivizes answering questions in a way most
similar to your peers. The scoring screen also
shows the most popular answers to the question,

in their appropriate distribution. Once completed,
another round begins. The rounds are short (5-20
seconds, depending on the relation type), which
makes the game fun and easy to play in short peri-
ods of time.

4 System Implementation

4.1 Architecture

The web application was built with the Django
framework, using Python for all backend and
database interaction and standard JavaScript,
HTML, and CSS for the frontend, including the
jQuery, d3.js, and Bootstrap JavaScript/CSS li-
braries. We used AWS Elastic Beanstalk, which
deploys our Django web application to an AWS
EC2 server. The application has multiple com-
ponents that are important to the user experience,
which are separated into three main views.

Welcome Screen This screen gives information
about the purpose of the game, what semantic re-
lationships are, how to play, and a little about our
team. When a user is signed in this screen dis-
plays some statistics about the player, including
number of completed rounds, total score, and av-
erage score per round. Four checkboxes are dis-
played, one for each playable semantic relation-
ship type (synonyms, antonyms, hyponyms, and
meronyms). These allow the user to select which
relations to play. All are selected by default.

Game Play A timer begins immediately as the
round starts. To answer the question prompt, the
user may type as many semantic relationships as
possible into text forms. Each discrete answer is
known as an input word. Forms are dynamically
generated upon pressing tab or enter, for however
many input words are necessary during that round.
At the end of 20 seconds, the round immediately
ends and the user is directed to the scoring page.

Scoring Page Figure 1 shows what a player sees
after the time elapses for a round. This scoring
page displays two items to the player. The first is
a table breakdown of all input words during the
round, mapping each to a score for that word. It
also includes the total round score. The second
is a bar graph showing the top answers for that
question. Here, users can observe which relations
they identified or missed compared to the entire
population.
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Figure 2: The application flow of the KnowYourNyms? game. The bottom half of the figure depicts the
application functionality from the user’s perspective (frontend). The top half of the figure shows the
components of the system backend. Note that the “Semantic Relationship Classifier” is faded because
we trained and tested the Classifier on the players’ data in an offline setting (see Section 6.2).

4.2 Base Word Selection

Base words are those used for each round’s ques-
tion; they are the ‘X’ in a potential (X,Y) seman-
tic relationship pair. Good base words are essen-
tial for good questions, as there aren’t necessar-
ily good synonyms for ‘triceratops’ or many parts
of a ‘sphere’. To address these issues, we build
four separate vocabulary lists for the base words,
one for each allowed semantic relationship type
extracted from WordNet. We select base words
that have at least one synonym or antonym, and
at least three hyponyms or meronyms in WordNet.
To make sure we don’t ask users about rare words,
which might discourage the users from continu-
ing playing, we only retain unigrams and bigrams
that occur at least 1,000,000 times in the Google
n-grams corpus. Table 2 shows the number of
base words retained from WordNet for each re-
lation type. Finally, we have integrated a “skip”
button which allows the users to skip queries for
which they cannot think of any good relations.

4.3 Scoring

We incentivize players to generate many answers
to each prompt by giving them a score at the end of
each round. The score is based on the percentage
of other users who named a word when they were
given the same base word and relationship type.

Relation Base Words
Synonyms 9,172
Antonyms 2,016
Hyponyms 4,107
Meronyms 678

Table 2: # of base words for each relation type.

Finally, the score is also potentially augmented by
a WordNet bonus, which is a simple boolean check
of whether the word pair is linked by this specific
relation in WordNet. The total score for each word
is the sum of these values, sorted in descending
order in the final score table.

4.4 Data Visualization

In order for users to see the most common re-
sponses for each round, a bar graph is included on
the scoring page that shows the top 5 responses
and the percentage of previous users who gave
them. The percentages for scoring are calculated
on the backend. On the frontend, we use the data
visualization library d3.js, in order to dynamically
create a bar graph that is scaled to the appropri-
ate size for the window. This allows the graph to
be seen on mobile devices, or to be dynamically
resized as the user changes the size of a desktop
window.
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5 Design Decisions

5.1 User Identification

We require users to create an account. This design
decision was mainly driven by quality control con-
cerns. Since we don’t expect all users to provide
good answers, it is important that we be able to fil-
ter out malicious users, so that we can gather data
that has sufficiently high quality for research pur-
poses. An additional benefit of user identification
is that it allows to not present a user with the same
query several times, since this could skew the data.

5.2 Vocabulary Selection

The list of base words is traversed in a specific or-
der by each user. Compared to fully random selec-
tion, this has the advantage of not repeating words
until all have been played by the user. Presenting
the user with the same words a few rounds apart
is unacceptable from a user experience standpoint.
Furthermore, having different users play the same
words is important since it leads to better scoring
and percentage visualization. Finally, this traver-
sal is beneficial for learning high confidence rela-
tionships, as we collect data on fewer base words
in a more concentrated way. To cover more words,
we decided to allow a small amount of randomness
which consists in drawing a word randomly from
the whole vocabulary list every five items.

6 Evaluation

6.1 Crowdsourced Approach

To evaluate our game, we asked 160 crowd-
workers to play KnowYourNyms? on Amazon
Mechanical Turk for ten rounds each. Our
intention was to seed the game with data so
that normal users would receive scores based
on words suggested by previous players. Al-
though these workers were only asked to play
ten rounds, many went on to play thirty, forty,
or even a hundred rounds of the game. From
these workers, we received over 15,000 user
inputs. Table 3 gives a breakdown of the re-
lations that we have collected so far. Here are
some examples of the most frequently suggested
word pairs for our relation types. Synonyms
include pony-horse, woods-forest, woods-trees,
marching-walking, electricity-power, four-
quad, looking-seeing, frequent-often, woody-
forest, and pester-annoy. Antonyms include
sleep-awake, limited-unlimited, prefix-suffix,

Users (n) Rels Rels not in WordNet Rels in WordNet
all 17,603 16,813 790

n<=3 15,895 15,265 (96%) 630
3<n<=5 724 672 (93%) 52
5<n<=15 794 723 (91%) 71

15<n<=30 153 126 (82%) 27
n>30 37 27 (73%) 10

Table 3: The number of relations (rels) learned
at different confidence levels, where confidence is
measured by the number of users (n) who named
the relation. We compare this to the number of re-
lations found in WordNet for the same base words.

desirable-undesirable, similarity-difference,
similarity-different, hitch-unhitch, immature-
mature, wake-sleep, and sterile-dirty. Meronyms
include knife-handle, knife-blade, chain-link,
woods-trees, book-cover, writings-words,
ice-water, month-days, aquarium-fish, and
chain-metal. Hyponyms include seafood-fish,
seafood-shrimp, seafood-lobster, sleep-deep,
similarity-same, seafood-crab, plaster-paris,
Asian-Chinese, Asian-Japanese, and hitch-trailer
Bold items are relations that are not present in
WordNet.

We surveyed the crowd workers about their feel-
ings about the game and whether or not they would
play again. The first 30 crowd workers played the
game before anyone else had played, so many of
their scores were empty (the game relies on previ-
ous players). Those workers rated the game on
average 3.9/5 on experience and 3.8/5 on like-
lihood of playing again. However, our second
group of crowd workers was given the game with
many more of the rounds already played, which
improved scoring. These workers rated the ex-
perience 4.46/5 on average, and 4.43/5 for likeli-
hood of playing again. Moreover, many of the sec-
ond round of workers left comments stating that
they “loved this addicting game”, that the game
“is fun”, “makes you think fast” and “really wakes
up the brain”, and made useful suggestions for im-
provement. The positive reaction about playing
the game (especially the shift in positivity as the
scoring became more clear) is evidence that this
game may work on a larger scale, and may allow
us to gather important word relationship data from
players for free.

6.2 Classifier Evaluation

To demonstrate how this game could be used to
collect training data for semantic relation classi-
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Count
Train/
Val

Count
Test

P R F

meronyms 1162 248 0.44 0.91 0.59
hyponyms 337 313 0.50 0.01 0.01
antonyms 1279 22 0.25 0.77 0.38
synonyms 859 14 0.02 0.14 0.03
random 1038 354 0.58 0.40 0.47

total / avg 4675 951 0.50 0.41 0.34

Table 4: Precision, Recall, and F-Score of
the LexNET semantic relation classifier, when
trained and evaluated on data collected by
KnowYourNyms?.

fiers, we used our players’ data to train and eval-
uate a state-of-the-art semantic relationship clas-
sifier, LexNET (Shwartz and Dagan, 2016). Our
dataset consisted of 8613 meronym, antonym, hy-
ponym and synonym pairs proposed by at least five
users, and 6228 random word pairs. From these
14,841 pairs, we extracted a subset of 951 pairs for
testing and used the remaining 4675 pairs whose
constituent words did not overlap with the test set
for training and validation. The classifier achieved
an overall weighted average F-Score of 0.34 over
the test set. The full results of this experiment are
given in Table 4.

7 Discussion

One of the challenging aspects of making this
game fun to play is selecting words and relation
types that are easy for people to think of answers
for. Despite our attempts to filter the vocabu-
lary sets drawn from WordNet to be high frequent
words with several WordNet relations, we found
that many players were stumped by some of our
questions. Here are examples of the questions that
most users pressed the “Pass” button for:

• What are kinds of geology? (71% passed)

• What are kinds of a saver? (70%)

• What is the opposite of conception? (67%)

• What is the opposite of differentiated? (67%)

• What are kinds of hormones? (67%)

• What is another word for notorious? (60%)

• What are kinds of sinking? (56%)

• What are kinds of barley? (56%)

Some prompts are clearly more difficult for
users to answer than others. We hypothesized that

abstract words (e.g. geology, sinking, dissolution)
are more difficult to provide relations for than con-
crete words. An indicator of annotation difficulty
for a word is the number of times users choose
to skip it: if they cannot think of any good re-
lationships, users can choose to pass to the next
round. We calculate the correlation between word
difficulty – measured as the ratio of the number of
times the word was skipped to the number of times
it was seen – and concreteness scores in the dataset
built by Brysbaert et al. (2014) (hereafter CON-
CRETE) which contains ratings for 37,058 English
words and 2,896 two-word expressions. Words are
ranked on a 5-point rating scale going from ab-
stract words (low values) to words with concrete
meaning (high values). We expect abstract words
to be more difficult to handle and more frequently
skipped by our users compared to concrete words.

We perform the correlation calculation
on 412 lemma-relation pairs extracted from
KnowYourNyms?. From these, 40 correspond
to specific terms and named entities (e.g. cy-
tochrome, methyl, Utah, Mexico, etiology, flora,
Maryland) that are not in CONCRETE (it only
includes words known to 85% of the annotators
and excludes proper names). We intend to
use existence in CONCRETE as a criterion for
identifying words that would be too difficult for
the annotators and should be excluded from our
game.

The Pearson correlation results for the remain-
ing 372 words indicate a negative correlation of
-0.2007 between word difficulty and concreteness
(p < 0.001), confirming our assumption that more
abstract words are more difficult to handle. Corre-
lation for the 99 lemmas in CONCRETE that were
seen at least 10 times by our crowdworkers is even
higher, - 0.3851 (p < 0.001),

Finally, we intend to analyze the collected rela-
tions in the light of typicality and gradual semantic
category membership, as proposed in (Vulić et al.,
2016), to make them more useful for textual en-
tailment tasks.

8 Conclusions and Future Work

KnowYourNyms? gamifies the process of gather-
ing pairs of words holding specific semantic rela-
tionships that are not found in existing resources.
While providing users with an entertaining expe-
rience, our application enables collection of large
amounts of data that can be used to improve se-
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mantic relation classifiers and content analysis
tools. This application offers exciting possibili-
ties for further development. As the number of
players grow, our lexical relation dataset will keep
expanding. This will provide new opportunities
for evaluation in full-blown applications and will
richen our understanding of how people perceive
word relations.

9 Software and Data

We release the software that underlies our game
under the BSD open source license. We provide
instructions on how to set up your own instance
of the game and populate it with your own base
words and semantic relationship types. The soft-
ware is available at https://github.com/
rossmechanic/know_your_nyms/. A file
containing the semantic relations collected during
our initial testing of the game is also included in
the repository.
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Abstract

Previous works proposed annotation pro-
jection in parallel corpora to inexpensively
generate treebanks or propbanks for new
languages. In this approach, linguistic an-
notation is automatically transferred from
a resource-rich source language (SL) to
translations in a target language (TL).
However, annotation projection may be
adversely affected by translational diver-
gences between specific language pairs.
For this reason, previous work often re-
quired careful qualitative analysis of pro-
jectability of specific annotation in order
to define strategies to address quality and
coverage issues. In this demonstration,
we present THE PROJECTOR, an interac-
tive GUI designed to assist researchers in
such analysis: it allows users to execute
and visually inspect annotation projection
in a range of different settings. We give an
overview of the GUI, discuss use cases and
illustrate how the tool can facilitate discus-
sions with the research community.

1 Introduction

Natural language processing research relies heav-
ily on the availability of textual corpora annotated
with various levels of syntactic and semantic in-
formation such as treebanks (Marcus et al., 1993)
or propbanks (Palmer et al., 2005). However, the
manual creation of such resources is known to be
highly costly and therefore difficult to scale across
languages and domains (Hovy et al., 2006).
Annotation Projection. As a cost-effective alter-
native, previous work suggested the use of annota-
tion projection (Yarowsky et al., 2001) in parallel
corpora to automatically create NLP resources for
new languages. This approach requires only a par-

The    mouse    is    eating    cheese

MEAL

dobj

EAT.01

Die    Maus    isst    gerade    Käse

DET NOUN VERB NOUNVERB
CONSUMER

nsubj
det

aux

the mouse cheeseeats
DET NOUN NOUNVERB

det nsubj
dobj

now
?
? MEALEAT.01CONSUMER

Figure 1: An English sentence with syntactic and seman-
tic annotations predicted by a parser, and a German trans-
lation. These annotations are transferred onto aligned Ger-
man words, thus automatically labeling the German sentence
(with exception of the unaligned German word gerade).

allel corpus consisting of sentences in a resource-
rich source language (SL) and their translations in
a target language (TL), as well as existing parsers
for the SL. It leverages the hypothesis that trans-
lated sentences will share a degree of syntactic
and, in particular, semantic parallelism (Padó and
Lapata, 2009), thus allowing us to automatically
transfer linguistic annotations from SL to TL.

For example, consider Figure 1 which shows an
English SL sentence and its German TL transla-
tion, with word-level alignments indicated as lines
between the sentences. State-of-the-art parsers
and semantic role labelers (SRL) are used to pre-
dict labels for the English sentence. Following
the word alignments, this annotation is then trans-
ferred onto the German sentence. The English
word cheese, for instance, is aligned to the Ger-
man Käse (cheese). We therefore learn that Käse
is also a noun (NOUN), that in this sentence it is a
direct object (dobj) and that it takes the semantic
role of MEAL. Following this process, we can thus
automatically annotate the German sentence with
(partial) syntactic and semantic labels.
A Need for Qualitative Analysis. However,
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while annotation projection has been successfully
employed to transfer various types of annota-
tion (Yarowsky et al., 2001; Hwa et al., 2005; Padó
and Lapata, 2009; Van der Plas et al., 2011; Ak-
bik et al., 2015), it is not always clear how well
specific annotation can be transferred to a spe-
cific TL. Previous work noted a range of issues in-
cluding non-literal translations and general trans-
lational divergences (Dorr, 1994) between lan-
guages which cause incorrect annotation to be pro-
jected. For this reason, previous work often in-
cluded qualitative analyses and carefully defined
heuristics to address these problems.
Contributions. To facilitate such analysis and
discussion, we present THE PROJECTOR, a web-
based UI that visualizes the projection of syntactic
and shallow semantic annotation in parallel sen-
tences1. Our tool enables researchers to execute
annotation projection for manually created exam-
ples or pre-loaded corpora, and allows researchers
to visually inspect individual sentence pairs and
types of linguistic annotation.

This paper is structured as follows: we first re-
view relevant related work in annotation projec-
tion. We then give an overview of THE PROJEC-
TOR, briefly sketch use cases for this tool and dis-
cuss directions for future research.

2 Previous Work

Syntactic Annotation Projection. Early work
proposed the projection of shallow and deep syn-
tactic information in parallel corpora, including
part-of-speech tags (Yarowsky et al., 2001), syn-
tactic chunks (Yarowsky and Ngai, 2001) and de-
pendency trees (Hwa et al., 2005). However, these
works also noted problems stemming from trans-
lational divergences (Dorr, 1994; Van Leuven-
Zwart, 1989), i.e. systematic differences between
languages on the structural and semantic realiza-
tion levels. This may cause incorrect labels to be
projected, or annotation gaps in the TL corpus.
For instance, as Figure 1 shows, while a contin-
uous process may be expressed in English using
gerunds (the word eating), the continuous verb as-
pect generally does not exist in German which in-
stead uses an adverbial construction (the word ger-
ade, meaning now, which is unaligned and there-
fore remains unlabeled in Figure 1).

To filter out and correct such errors, previ-

1A screencast is available at https://vimeo.com/
217035646

ous work defined various heuristics such as fil-
tering of infrequent alignments (Yarowsky et al.,
2001), transformation rules that encode linguis-
tic knowledge (Hwa et al., 2005) and the use of
cross-lingual word clusters as constraints in pro-
jection (Täckström et al., 2012). More recently,
Tiedemann (2014) argued that the ongoing har-
monization of linguistic annotation across lan-
guages as pursued by the universal dependencies
project (Nivre et al., 2016) has produced tagsets
without language-specific syntax that can more
easily be projected2.
Semantic Annotation Projection. Previous work
also investigated the applicability of annotation
projection to shallow semantic annotation such
as semantic role labels (SRL). Padó and Lapata
(2009) first analyzed the viability of transferring
SRL in the FRAMENET-formalism (Baker et al.,
1998) and found a greater degree of parallelism
for semantic than syntactic annotation. Van der
Plas et al. (2011) applied this approach to the verb-
centric PROPBANK-formalism of SRL (Palmer
et al., 2005).

In our previous work, we defined a two-step
process of filtering and semi-supervised learning
to address problems caused by non-literal transla-
tions and coverage gaps (Akbik et al., 2015). We
applied our approach to generate propbanks for 7
languages from 3 language groups (Akbik et al.,
2015), and experimented with projecting both
syntactic and semantic annotation to three low-
resource languages (Akbik et al., 2016b). Qualita-
tive analysis revealed propositions evoked by com-
plex predication (Bonial et al., 2014) to be a major
source of translational divergences of shallow se-
mantics (Akbik et al., 2016a).
Qualitative Analysis. Previous works illustrated
the need for qualitative analysis to identify error
sources and define strategies to address transla-
tional divergences. However, to the best of our
knowledge, no visualization tool is available that
specifically addresses this task. While there ex-
ist tools that focus on inspecting and correcting
word alignments (Gilmanov et al., 2014) as well as
frameworks for visualization of various layers of
linguistic annotation (Krause and Zeldes, 2016),
THE PROJECTOR differs in that it specializes in
the projection of various types of linguistic anno-
tation in parallel corpora and interactive analysis.

2The gerund verb type, for instance, is abstracted away
from in universal PoS tags to a general VERB class.
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Figure 2: THE PROJECTOR’s main view showing a gold-labeled English sentence from ONTONOTES and a word-aligned
German translation. The German sentence is labeled using annotation projection.

3 THE PROJECTOR User Interface

THE PROJECTOR is a Web-based GUI that allows
users to inspect alignments and projected anno-
tation. We give an overview of the layout, input
fields and visualization options (sec. 3.1) discuss
the two main usage modes (sec. 3.2), and illustrate
two example usage scenarios (sec. 3.3).

3.1 Layout

Figure 2 illustrates THE PROJECTOR’s main view.
It is divided into input fields (top right), visualiza-
tion options (top left) and the visualization pane
(bottom half).

3.1.1 Input Fields
The input fields are grouped to the top left of the
main screen. Two selection options are manda-
tory: the first is the target language dropdown
option to indicate the TL of the annotation pro-
jection approach3. The second is the input option
that can either be set to manual (users manually
supply a sentence or sentence pair) or used to se-
lect a pre-loaded monolingual corpus in CoNLL-U

3At time of writing, we tested setups with the following
TLs: Chinese, French, German and Japanese - through there
is no principal limitation on the scope of TLs

format. At time of writing, we pre-loaded both the
ONTONOTES (Hovy et al., 2006) and the universal
dependencies corpora (Nivre et al., 2016).

There are two textual inputs, namely the SL
sentence and the TL sentence fields. Users popu-
late these fields with a translated sentence pair. At
least one of the two fields must be populated - in
this case, a translation is automatically generated
using the Google Translate API (Wu et al., 2016).
The fields can either be populated by manually en-
tering a sentence, or - if a corpus is selected as in-
put option - be populated by selecting a sentence
using the corpus navigator. Once the selection is
complete and at least one sentence field populated,
users hit the go button to execute and visualize an-
notation projection.

3.1.2 Visualization Options
Visualization options are divided into options that
pertain to the source or target sentence. On the
source side, users can check which layers of vi-
sualization should be displayed. Options include
PoS tags, dependency trees and semantic frames
and roles.

On the target side, users choose between several
options for each layer. PoS tags and dependency
trees can be either predicted using a TL parser
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or projected using annotation projection. By tog-
gling between these options, users compare be-
tween predicted and projected annotation. Since
SRL information is projected onto entire TL con-
stituents, users additionally specify whether they
are identified using predicted or projected depen-
dency tree information. In addition, users choose
whether or not to show the word alignments.

3.1.3 Visualization Pane
The visualization pane displays annotation pro-
jection for a sentence pair according to the cur-
rent settings. If activated, dependency trees are
displayed above a sentence. PoS tags are placed
directly beneath each word. SRL labels are dis-
played as boxes around constituents, where each
layer corresponds to one semantic frame.

3.2 Modes

The tool supports two general modes of interac-
tion: (1) an interactive mode in which users sup-
ply an example sentence (or sentence pair) and ex-
ecute alignment, parsing and projection on-the-fly,
and (2) a corpus mode in which a gold-labeled cor-
pus is loaded that can be browsed and employed in
annotation projection.

3.2.1 Interactive Mode
The first mode is intended for analysis of specific
linguistic constructs in the source or target lan-
guage. Researchers select “manual” as input op-
tion and create an example sentence for the con-
struct of interest. To analyze how a SL construct
transfers to a TL, users enter the example sentence
in the source field. Similarly, to investigate a spe-
cific TL construct, they enter the example sentence
in the target field. Users may supply the corre-
sponding SL or TL translation themselves or sim-
ply leave the other field blank - if only one sen-
tence is provided, our tool uses the Google Trans-
late API to automatically retrieve a translation and
fill in the missing field.
Parsing pipelines. Upon clicking go, the SL
sentence is sent to a pipeline of NLP tools,
namely the STANFORDNLP tools (Manning et al.,
2014) to tokenize, lemmatize, PoS tag and depen-
dency parse the sentence and MATEPLUS (Roth
and Woodsend, 2014) to predict SRL annota-
tion. We used the standard models provided for
STANFORDNLP and trained MATEPLUS over the
version 3 release of propbank annotations (Bo-
nial et al., 2014) for the ONTONOTES corpus.

The target language sentence is parsed using the
transition-based MATE parser (Bohnet and Nivre,
2012) which we trained for each TL over version
1.4 release of the universal dependency treebank.
Alignment and projection. Word alignments are
heuristically detected on-the-fly using word co-
occurrence weights as determined by the Berke-
leyAligner (DeNero and Liang, 2007) over the
2016 release of the OPENSUBTITLES parallel cor-
pus for all supported language pairs (Tiedemann,
2012). Using these alignments, we execute an-
notation projection of all syntactic and semantic
information. Word-level PoS tags and semantic
frames are simply transferred to aligned words in
the target language, while dependencies are trans-
ferred to corresponding word pairs. For semantic
roles (which label entire constituents), we identify
the best matching TL constituent using the Jaccard
distance as described in (Padó and Lapata, 2009).
Results. The GUI displays the sentence pair with
all predicted and projected annotations. Users may
change visualization options, and experiment with
modifications to the sentence pair (for instance,
chose a different translation).

3.2.2 Corpus Mode
The second mode is to enable qualitative analy-
sis for cases in which a gold labeled corpus al-
ready exists either for the source or target lan-
guage. This setting allows us to inspect annota-
tion projection without interference from poten-
tially incorrect parses4. Users select a corpus in
the input field, and then browse sentences using
the navigation field. Depending on whether the
gold-labeled corpus is loaded for the SL or TL
side, a different pipeline of tools is executed:
Gold-labeled SL corpus. If users select an En-
glish gold corpus (ONTONOTES in the current
setup), no SL parsing pipeline is executed. In-
stead, the sentence is automatically translated into
the selected TL and the alignment, TL parsing and
projection pipeline executed. If the translation is
incorrect or lacking, users may manually enter a
better TL translation and re-execute the approach.
Gold-labeled TL corpus. If users select a TL
gold corpus (the universal dependency treebanks
in the current setup), the currently selected sen-
tence is first translated into English and then
parsed using the default English parsing pipeline

4In previous work, we showed that many TL annotation
errors were caused by parsing errors on the SL side that were
propagated during projection (Akbik et al., 2015).
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and word-aligned. The annotation is then pro-
jected back onto the TL sentence where it can be
compared to the original gold labels.

3.3 Example Scenarios

We now present two example usage scenarios.

3.3.1 Scenario 1: Study of Translational
Divergences

In the first scenario, a user may be interested to
study the effects of specific items of SL or TL syn-
tax known to be divergent between languages. For
instance, as previously discussed, one might study
how continuous aspects in English verbs are trans-
ferred to a language that has no such verb aspect.
German, for instance, expresses this information
either implicitly or through a variety of more com-
plex constructions.

To investigate this, the user may type in a num-
ber of sentences in both English and German that
convey continuous information and investigate an-
notation projection. One example may be the sen-
tence pair in Figure 1: Here, the user finds that
(1) the continuous aspect does not introduce errors
since universal PoS tags and dependencies do not
reflect such information, but that (2) the adverbial
construction in German remains unlabeled. Other
examples (see the accompanying screencast) show
that syntactic projection is sometimes affected,
while semantic projection is more robust. Based
on these investigations, the user may conclude that
either heuristic rules or a semi-supervised learning
approach are appropriate to close the quality and
coverage gap.

3.3.2 Scenario 2: Adding A Layer of
Annotation

A second example scenario is to investigate adding
a layer of annotation to an already existing TL
treebank. For instance, the universal dependen-
cies treebanks are annotated with gold-standard
PoS and dependency information for over 40 lan-
guages. However, there is as-yet no semantic layer
of annotation. Previous work proposed to re-use
English propositions as a layer of annotations for
the universal treebanks (Akbik et al., 2015; Haver-
inen et al., 2015), but the applicability of these la-
bels is a matter of ongoing discussion.

To investigate, a user may load a TL univer-
sal dependency corpus and browse example sen-
tences. Each sentence is automatically translated
into English, labeled with semantic roles which

are then projected back onto the TL. Users qual-
itatively analyze whether the propositions are fit-
ting and identify sources of errors such as subopti-
mal automatic translations, source language pars-
ing errors and translational divergences.

4 Demonstration and Outlook

We present THE PROJECTOR as a hands-on demo
where users can enter sentences or sentence pairs
and request parsing and on-the-fly annotation pro-
jection. In order to enable the research commu-
nity to quickly set up annotation projection experi-
ments and discuss crosslingual syntax and seman-
tics, we plan to make the toolkit publicly avail-
able, either through an online demo or in form of
open source code. Our current work on THE PRO-
JECTOR focuses on extending the functionality of
the demo and the projection framework. This in-
cludes adding additional layers of annotation, such
as named entities and word senses, into the pars-
ing and projection pipeline. We also aim to en-
able more flexibility in choosing SL parsers and
heuristics to address translational divergences, as
proposed in previous work.
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Abstract

We provide a visualization library and
web interface for interactively exploring a
parse tree or a forest of parses. The li-
brary is not tied to any particular linguis-
tic representation, but provides a general-
purpose API for the interactive exploration
of hierarchical linguistic structure. To fa-
cilitate rapid understanding of a complex
structure, the API offers several important
features, including expand/collapse func-
tionality, positional and color cues, ex-
plicit visual support for sequential struc-
ture, and dynamic highlighting to convey
node-to-text correspondence.

1 Introduction

Interpreting visual representations of linguistic
structure can be challenging and time-consuming.
Consider the examples provided in Figure 1,
which visualize syntactic parses of the sentence
“Although some people have provided negative re-
views, her restaurants have reliably great music,
good food, and excellent service, and they de-
liver!” These representations can result in cogni-
tive overload, due to several concrete issues:

• The visualizations are static. If one is us-
ing the visualization for debugging purposes,
then typically one cares about only a part of
the linguistic structure, not every last detail.
Unfortunately, a static visualization must in-
clude all information that could possibly be
relevant.

• The visualizations are large. The screen
real estate in Figure 1 is dominated by arrows
that must be carefully tracked by the eye, in
order to understand the relationships between

nodes. Visualizations of long sentences of-
ten run off the side of the screen, requiring
the user to scroll to discover the endpoints of
these arrows.

• All node relationships look identical.
Predicate-argument relationships (e.g.
“restaurants” as the subject of “have”)
get the same visual treatment as modifier
relationships (e.g. “good” as a modifier of
“food”) and sequence elements (e.g. “good
food” as an element of the sequence “great
music, good food, and excellent service”).

In this work, we provide a library and web in-
terface for the interactive visualization of linguis-
tic structure, seeking to minimize the cognitive
load required to understand syntactic and seman-
tic parses. Figure 2 shows a screenshot of our web
UI for the same sentence as Figure 1. It reflects
several of our visualization strategies (described in
more detail in Section 3):

• Instead of a static visualization, we pro-
vide an interactive visualization with an ex-
pand/collapse functionality that allows the
user to focus on what is relevant to her. For
instance, the subclause “although some peo-
ple have provided negative reviews” is col-
lapsed in Figure 2, but can be expanded by
clicking on it.

• To reduce the size of the visualization, we use
a box layout, and use badging to eliminate
simple leaf nodes (e.g. instead of creating a
separate node for the article “her”, it is repre-
sented by a badge on the node “restaurant”).

• We use positional cues to highlight predicate-
argument relationships (subjects appear to
the left, objects to the right, modifiers attach
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Figure 1: Typical visualizations of a constituency parse (top) and a dependency parse (bottom) for
the sentence “Although some people have provided negative reviews, her restaurants have reliably great
music, good food, and excellent service, and they deliver!”

to the bottom) and we provide specialized vi-
sualization for sequential structures (this oc-
curs at two different levels in Figure 2, both
for the clause sequence as well as the entity
sequence “reliably great music, good food,
and excellent service”).

Our library is not tied to any particular linguistic
formalism. In Section 4, we describe the flexible
and configurable API. While our primary use case
has been for creating custom grammars for math-
ematical language (Hopkins et al., 2017), we also
provide a demonstration of how our API can be
used to visualize output from the Stanford Parser
(Socher et al., 2013).

2 Related Work

Most parse visualizations use the source sentence
as an anchor, leaving it readable left-to-right. For
constituency parses (where the words of the sen-
tence are the leaves of the tree), this gives a rep-
resentation like Figure 1 (top). For dependency
parses (where the words of the sentences are the

nodes of the tree), this gives a representation like
Figure 1 (bottom).

Figure 1 was generated from (Podgursky,
2015), which provides open-source code and a
web interface for a static rendering of a con-
stituency parse. There are a number of libraries
(Stenetorp et al., 2012; Montani, 2016; Athar,
2010; Yimam et al., 2013) that provide static ren-
derings of dependency parses similar to Figure 1
(bottom). Among these, Brat (Stenetorp et al.,
2012) provides some interactive elements (like
mouseover highlighting of subtrees, and the abil-
ity to add dependencies via drag-and-drop). Dis-
placy (Montani, 2016) provides a general API
for the static rendering of various dependency
parsing schemes, e.g. Universal Dependencies
(Nivre et al., 2016) and Stanford Dependencies
(De Marneffe and Manning, 2008).

We are not aware of any recent tools for explor-
ing parse forests. Historically, the REDWOODS

annotation environment (Oepen et al., 2004) pro-
duced a static parse forest from a hand-built gram-
mar, and then allowed users to select the best
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Figure 2: A screenshot of our parse visualization tool for the sentence “Although some people have
provided negative reviews, her restaurants have reliably great music, good food, and excellent service,
and they deliver!”

Figure 3: Three screenshots of our visual-
izer for the question “How much wood would a
woodchuck chuck, if a woodchuck could chuck
wood?”: partially expanded (top), fully collapsed
(middle), and fully expanded (bottom).

parse from this forest by repeatedly specifying
constraints (called discriminants in the paper).

3 Key Features

In this section, we describe our key features for fa-
cilitating a rapid understanding of linguistic struc-
ture. As a companion to this section, we invite
readers to use our web demonstration at http://
hierplane.allenai.org/explain to in-
teractively explore examples.1

1The user may experience some slowness when parsing
certain sentences. This is due to the speed of the back-end
parser, not the visualization library.

3.1 Expand/Collapse Functionality

Rather than a static rendering, our dynamic ex-
pand/collapse functionality allows the user to fo-
cus on relevant parts of the linguistic structure,
while the rest is conveniently summarized at a
coarser granularity. In Figure 3, the top screenshot
shows a partially expanded structure that delves
into the internal structure of the if-clause. The
middle and bottom screenshots respectively show
the fully collapsed and expanded visualizations.

3.2 Positional Cues to Distinguish Node
Relations

Linguistic relationships can often be organized
into intuitive clusters. For instance, subjects and
objects can be roughly viewed as required argu-
ments of a verb (exactly one per verb), while mod-
ifiers are optional (a verb can take any number
of them, including zero). Our library allows the
visual expression of these “relationship families”
through positional cues. In Figure 3, the subject
is attached to the left of its verb, the object is at-
tached to the right of its verb, and all modifiers are
attached beneath. For consistency, the object of
the preposition “if” is also attached to its right. At
a glance, this representation allows the user to read
a gloss of the main clause by simply skimming the
top line of the visualization (i.e. “a woodchuck
would chuck how much wood?”).

3.3 Color Cues to Distinguish Node Types

Our library provides support for using color to
distinguish node types. In Figure 3, green rep-
resents events, blue represents entities, red repre-
sents modifiers, and gray is a catch-all for anything
else.
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Figure 4: Dynamic highlighting of the correspondence between the linguistic structure and the source
text: “If Peter and Paula had really picked a peck of pickled peppers, how many peppers did they pick?”

3.4 Badging

Some leaf nodes of linguistic structures convey
very simple information about their parent node.
We allow these nodes to be represented as badges
rather than separate nodes. In Figure 3, the de-
terminers (“a” for “a woodchuck”) and modals
(“would” for “would chuck”) are represented as
badges.

3.5 Sequence Support

Sequential structure is a fundamental linguistic el-
ement that is often difficult to access in a parse vi-
sualization. We make sequences visually explicit
as a container of linked nodes. Examples include
“Peter and Paula” in Figure 4 or the sequence of
top-level clauses “her restaurants have...excellent
service” and “they deliver” in Figure 2. Contrast
this to the undistinguished representations of se-
quential structure found in Figure 1.

3.6 Dynamic Node-to-Text Highlighting

It can be difficult (particularly in semantic parses)
to ascertain how the source text and the linguis-
tic representation correspond. Upon mouse-over
of a node, our visualizer highlights the part of the
source text corresponding to the subtree rooted at
that node. Parts that do not also correspond to
some descendant node in the subtree are strongly
highlighted. In Figure 4, upon mouse-over of
the lower “pick” node, the corresponding segment
“Peter and Paula had really picked a peck of pick-
led peppers” is weakly highlighted. The tokens
“had” and “pecked” are strongly highlighted, be-

Figure 5: Before-and-after screenshots of forest
exploration for the sentence “Because he ate the
pasta with chopsticks, he chipped a tooth.”

cause they do not correspond to any of the node’s
descendants.

3.7 Modular Forest Exploration
Our interactive setting permits a convenient explo-
ration of parse forests. For instance, see Figure 5.
The subtree rooted at “eat” has two interpretations,
attaching “with chopsticks” to the verb or to the
object. An indicator in the node’s upper-right al-
lows the user to browse these interpretations. We
localize ambiguities to the lowest possible node to
allow the user to explore the forest in a convenient,
modular fashion (rather than cycling through an
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exponential number of parses at the root).

Figure 6: System architecture for our web inter-
face. Similar architectures are employed by Brat
and WebAnno.

4 APIs

Our web interface, hosted at http:
//hierplane.allenai.org/explain,
has the architecture shown in Figure 6. The
front-end accepts text input from the user. It
forwards this text to the back-end and receives
a JSON that contains an annotated tree and
styling instructions. Figure 7 shows a simplified
version of the JSON that renders the “He ate
pasta with chopsticks” subtree in Figure 5. This
JSON is passed to the visualization library, which
renders it in HTML and returns this HTML to the
front-end.

4.1 Basic Features
A key feature of our architecture is that the back-
end is in charge of defining the node and edge
types, and specifying how these should be dis-
played. This allows the visualization library to be
independent of any particular linguistic annotation
scheme. To demonstrate this flexibility, our demo
provides two alternative back-ends. By default, it
uses a custom grammar that we have been devel-
oping for parsing mathematical language (e.g.

http://hierplane.
allenai.org/explain/He%
20ate%20pasta%20with%
20chopsticks

utilizes the default back-end). However, we have
also wrapped the Stanford Parser (Socher et al.,
2013) as an alternative back-end. For any given
sentence, one can try out this alternative by replac-
ing the URL prefix

Figure 7: A simplified version of the JSON that
describes the parse tree for “He ate pasta with
chopsticks.”

http://hierplane.allenai.
org/explain/

with

http://hierplane.allenai.
org/explain/stanford/

For instance:

http://hierplane.allenai.
org/explain/stanford/
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He%20ate%20pasta%20with%
20chopsticks

will parse “He ate pasta with chopsticks” using the
Stanford parser.

In the JSON returned by the back-end, each
node in the tree is annotated with its kind and la-
bel (“word”), the type of edge (“link”) connecting
it to its parent, and its badges (“attributes”). The
linkToPosition map allows each node to be posi-
tioned according to its relation to its parent (e.g.
subjects are positioned to the left of their parents,
according to the example JSON). The kindToStyle
map specifies colors for the various node types.

4.2 Advanced Features
To enable interactive node-to-text highlighting,
nodes in the input JSON tree can each be anno-
tated with a span field that contains the indexes of
the start and end characters of the substring cor-
responding to the node. To enable modular for-
est navigation, each node with a next or previous
subtree can be annotated with codes identifying
these subtrees. Navigation arrows are only ren-
dered when they lead to another subtree. When a
user clicks on one, the front-end sends the code
identifying the desired subtree to the back-end,
and expects the requested subtree as a response.

5 Conclusion

In this work, we have tried to rethink the visu-
alization of hierarchical linguistic structure from
the ground up, first identifying the problems that
cause cognitive load (large, static visualizations
with no cues to distinguish node or edge families),
and then designing new tactics to counter these
problems (e.g. expand/collapse functionality, po-
sitional cues to distinguish node relations, explicit
sequence visualization, and dynamic node-to-text
highlighting). We have also created the first tool
to explore parse forests using modern web design.
We plan to make our visualizer freely available as
an open-source library and a web interface.
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Abstract

We present Differential Language Anal-
ysis Toolkit (DLATK), an open-source
python package and command-line tool
developed for conducting social-scientific
language analyses. While DLATK pro-
vides standard NLP pipeline steps such
as tokenization or SVM-classification, its
novel strengths lie in analyses useful
for psychological, health, and social sci-
ence: (1) incorporation of extra-linguistic
structured information, (2) specified lev-
els and units of analysis (e.g. docu-
ment, user, community), (3) statistical
metrics for continuous outcomes, and (4)
robust, proven, and accurate pipelines
for social-scientific prediction problems.
DLATK integrates multiple popular pack-
ages (SKLearn, Mallet), enables interac-
tive usage (Jupyter Notebooks), and gen-
erally follows object oriented principles to
make it easy to tie in additional libraries or
storage technologies.

1 Introduction

The growth of NLP for social and medical sci-
ences has shifted attention in NLP research from
understanding language itself (e.g. syntactic pars-
ing or characterizing morphology) to understand-
ing how language use characterizes people (e.g.
by correlating language use characteristics with
traits of the person producing the language). Much
of this work has been done using Facebook and
Twitter (Coppersmith et al., 2014).

Analyzing language for social science applica-
tions requires different tools and techniques than
conventional NLP. Structured data are often ben-
eficial to facilitate the use of the extensive extra-
linguistic information such as the time and loca-

tion of the post and author demographics (or even
health or school records). Models can be made at
multiple levels of analysis: documents, users, and
different geographic (zip code, state or country) or
temporal resolutions. Many of the outcomes (or
dependent variables) are continuous (e.g. scores
on personality tests), and researchers are often as
interested in interpretable insights as they are with
predictive accuracy (Kern et al., 2014a).

There are small “tricks” to obtain accurate pre-
dictive models or high correlations between lan-
guage features and outcomes. Emoticon-aware to-
kenizers are needed, robust methods for creating
LDA topics (different packages produce clusters
of strikingly different quality), and subtle issues of
regularization arise when combining demographic
and language features in models. When these
choices are combined with the complexity of the
structured data, even NLP and data scientists can
fail to produce high quality models. We there-
fore built a platform that integrates a variety of
open-sourced tools, alongside our “tricks” and op-
timizations, to provide a well-documented, easy-
to-use program for undertaking reproducible re-
search in the area of NLP for the social sciences.

This software, which has now been used for
the data analysis behind 32 papers in psychology,
health care, and NLP, is now available under a
GPLv3 software license.1

2 Overall Framework

The core of DLATK is a Python library depicted
in Figure 1. The base class, DLAWorker, sits on
top of a data engine (e.g. MySQL, HDFS/Spark)
and is used to track corpus basics (corpus loca-
tion, unit-of-analysis). The next level of classes
acts on either: messages, features or outcomes.
MessageAnnotator filters messages (removing du-

1http://dlatk.wwbp.org or http://github.com/dlatk/
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Filters the corpus (language 
filtering, removing duplicates)

MessageAnnotator

acts on the corpus’ text (parsing, 
sentence segmentation, ...)

MessageTransformer

base generic class: works with a 
corpus given a unit of analysis 
(e.g. user_id, tweet_id)

DLAWorker

instantiates dlatk objects for 
interactive use (e.g. creates pandas 
data frames)

FeatureStar

extracts continuous or discrete 
variables from the corpus

FeatureExtractor

works with language features

FeatureGetter

works with extra-linguistic 
information

OutcomeGetter

Data Engine
corpus

extra-
linguistics 

 unit of analysis

analyzes extra-linguistic 
information joint with features 
(DLA, mediation analysis, …)

OutcomeAnalyzer

filters sets of language features 
(PMI, tf-idf, ...)

FeatureRefiner
extracts features from semantic 
annotations (semantic roles, 
named entities, …)

SemanticsExtractor
performs topic modeling or works 
with packages (Mallet) to perform 
topic modeling

TopicsExtractor

performs dimensionality reduction 
on features and outcomes 
(PCA, CCA, …) 

DimensionReducer
performs classification of binary 
outcomes given language features 
and controls

ClassifyPredictor
performs prediction of continuous 
outcomes given language features 
and controls

RegressionPredictor

Classification and Prediction

outcomes, controls

Figure 1: Basic DLATK package class structure.

plicate tweets, language filtering, etc.) while Mes-
sageTransformer acts on message text (tokeniz-
ing, part of speech tagging, etc.). FeatureExtrac-
tor converts document text to features (ngrams,
character ngrams, etc.) and is responsible for
writing while FeatureGetters read for downstream
analysis or further refinement via FeatureRefiner.
OutcomeGetter reads outcome tables (i.e., extra-
linguistic information). Its child class Outcome-
Analyzer works with both linguistic and extra-
linguistic information for statistical analyses (cor-
relation, logistic regression, etc.) and various out-
puts (wordclouds, correlation matrices, etc.).

The bottom classes do not inherit but are utiliz-
ers of FeatureGetters and OutcomeGetters. This
includes two classes for prediction, Regression-
Predictor and ClassifyPredictor which carry out
machine learning tasks: cross validation, feature
selection, training models, building data-driven
lexica, etc, while DimensionReducer provides un-
supervised transformations on language and out-
comes Finally, the FeatureStar class (“star” for
wildcard) is used to interact with the other classes
and transform important information into conve-
nient data structures (e.g. Pandas dataframes).

3 Differential Language Analyses

The prototypical use of DLATK is to perform dif-
ferential language analysis – the identification of
linguistic features which either (a) independently
explain the most variance for continuous outcomes
or (b) are individually most predictive of discrete
outcomes (Schwartz et al., 2013b). Unlike predic-
tive techniques where one seeks to produce out-
come(s) given language (discussed next), here, the

goal is to produce language that is most related
to or independently discriminant of outcomes.2

DLATK supports several metrics for performing
differential language analysis.

Continuous DLA Metrics. We support a vari-
ety of metrics for comparing language to contin-
uous outcomes (e.g. age, degree of depression,
personality factor scores, income). Primary met-
rics are based on Pearson Product-Moment Cor-
relation Coefficient (Agresti and Finlay, 2008).
When one requests control variables (e.g. finding
the relationship with degree of depression, con-
trolling for age and gender) then ordinary least
squares linear regression is used (Rao, 2009)
wherein the control variables are included along-
side the linguistic variable as covariates and the
outcome is the dependent variable.

Discrete DLA Metrics. While linear regression
produces meaningful results for most situations, it
is often ideal to use other metrics for discrete or
Bernoulli outcomes. Logistic regression can be
used in place of linear regression where, by as-
suming a dichotomous outcome, statistical signif-
icance tests are usually more accurate (Menard,
2002). Where controls are not needed, there are
many other options, often less computationally
complex, such as TF-IDF, Informative Dirich-
let Prior,3 or classification accuracy metrics like

2Even in basic prediction methods, like linear regression,
the relationship between each linguistic feature and the out-
come is complex – dependent on the covariance structure
between all the variables. DLA works in a univariate, per-
feature fashion or with a limited set of control variables (e.g.
age and gender when discriminating personality).

3Bayesian approach to log-odds (Monroe et al., 2008).
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Area Under the ROC Curve (Fawcett, 2006).

Multiple Hypothesis Testing. Most of the met-
rics have a corresponding standard significance
test (e.g. Student’s t-test for Pearson correlation
and OLS regression), and most output confidence
intervals by default. Permutation testing has been
implemented for many of metrics without standard
significance tests, such as AUC-ROC, with the lin-
guistic feature vector shuffled relative to outcome
(and controls, if applicable) multiple times to cre-
ate a null distribution. Standard practice in differ-
ential language analysis (Schwartz et al., 2013b)
is to correlate each of potentially thousands of sin-
gle features (e.g., normalized usage of one single-
or multi-word expression) with a given outcome.
Thus, correcting for multiple comparisons is crit-
ical. When used through the interface script,
DLATK by default corrects for multiple compar-
isons using the Benjamini-Hochberg method of
FDR correction (Benjamini and Hochberg, 1995).
Other options, such as the more conservative Bon-
ferroni correction (Dunn, 1961) are also available.

4 Predictive Methods

As with traditional NLP, many social-scientific
research objectives can be framed as prediction
tasks, in which a model is fit to language features
to predict an outcome. DLATK implements many
available regression and classification tools, sup-
plemented with feature selection functions for re-
fining the feature space. A wide range of feature
selection techniques have been empirically refined
for accurate use in regression problems.

Feature selection. DLATK’s ClassifyPredictor
and RegressionPredictor classes include methods
for feature selection, which is critical given what
may be a very large space of linguistic features,
e.g., 100s of thousands of 1- to 3-grams in a cor-
pus. Both classes allow for pass-through of scikit-
learn Pipelines (e.g. univariate feature selection
based on feature correlation with outcome and
family-wise error) and dimensionality reduction
methods (e.g., PCA on feature matrix), including
combination methods where FS and DR steps are
applied to the original data in a serial manner.

Regression Models. DLATK supports a variety
of regression models in order to take in features
as well as extra-linguistic information and out-
put a continuous value predictions. These include
variants on penalized linear regression: Ridge,

Lasso, Elastic-Net, as well as non-linear tech-
niques such as Extremely Random Forests. A
common pipeline, referred to as “magic sauce” ap-
plies univariate feature selection and PCA to lin-
guistic features independent of controls, and then
uses ridge to fit a linear model from a combined
reduced space to the outcomes.

Classification Models. DLATK implements a
rich variety of classifiers, including Logistic Re-
gression and Support Vector Classifiers with L1

and L2 regularization, as well ensemble and gradi-
ent boosting techniques such as Extremely Ran-
domized Trees. As with regression, techniques
have been setup so as to leverage extra-linguistic
information effectively either as additional predic-
tors or controls to try to “-out-predict”.

5 Notable Functionality

Linguistic information Because DLATK was
designed to exploit the full power of social me-
dia, a special emoticon-aware tokenizer is used
while also leveraging Python’s unicode capabili-
ties. Though not specifically designed to be lan-
guage independent, DLATK has been used in one
non-English study (Smith et al., 2016).

Extra-linguistic information. Most functional-
ity in DLATK is designed with extra-linguistic,
also referred to as “outcomes”, in mind. Such
information ranges from meta-information of so-
cial media posts, such as time or location, to user
attributes such as demographics or strong base-
lines one may wish to out-predict. For DLA, this
means that one not only distinguishes target extra-
linguistic information, but that controls are avail-
able. For prediction, extra-linguistic information
can be incorporated as input to a model, taking
into account the fact that such features are often
less sparse and more reliable features of people
than individual linguistic features.

Multiple Levels of Analysis. DLATK allows
one to work with a single corpus at multiple lev-
els of analysis, simply as a parameter to any ac-
tion. For example, one may choose to analyze
tweets themselves or group them by user id, lo-
cation, or even a combination of user and date.
Extra-linguistic information often dictates partic-
ular levels of analyses (e.g. community level mor-
tality rates or user-level personality questionnaire
responses). Analysis setups are flexible for lev-
els of analysis – for example, one can dynamically
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threshold which of the units of analyses are avail-
able (e.g. only include users with at least 1000
words or counties with 50,000 words).

Integration of Popular Packages. DLATK sits
on top of many popular open source packages used
for data analysis and machine learning (scikit-
learn (Pedregosa et al., 2011) and statsmodels
(Seabold and Perktold, 2010)) as well as NLP spe-
cific packages (Stanford parser (Chen and Man-
ning, 2014), TweetNLP (Gimpel et al., 2011) and
NLTK (Loper and Bird, 2002)). LDA topics can
be created with the Mallet (McCallum, 2002) in-
terface. After creation these topics can then be
used downstream in any standard DLATK analysis
pipeline. The pip and conda package management
systems control python library dependencies.

Interactive Usage. The standard way to interact
with DLATK is with the interface script through
the command line. Often users will only see the
two end points (the document input and the anal-
ysis output) and as a result this package is used as
a “black box”. In order to encourage data explo-
ration the FeatureStar class converts the language
features and extra-linguistic information into Pan-
das dataframes (McKinney, 2011) allowing users
to import our methods into existing code. Sample
use cases include opening up predictive models to
explore feature coefficients and easily reading lin-
guistic data into standard data visualization tools.

Visualization. When running DLA we often run
separate correlations over tens of thousands of
language features. While a single word might
not give us considerable insight into our extra-
linguistic information groups of words taken to-
gether can often tell a compelling story. To this
end DLATK offers wordcloud output in the form
of n-gram and topic clouds images. Figure 2
shows 1- to 3-grams significantly correlated with
(a) age (positive; higher age), (b) age (negative;
lower age), (c) educator occupation and (d) tech-
nology occupation. This was run over the Blog
Authorship Corpus (Schler et al., 2006) packaged
with DLATK. Here color represents the words fre-
quency in the corpus (grey to red for infrequent to
frequent) and size represents correlation strength.

Comparison to social-scientific tools. Tradi-
tional programs for text analysis in the social sci-
ences are based on dictionaries (list of words asso-
ciated with a particular psychological ‘construct’

(a) Age (pos) (b) Age (neg)

(c) Educator (d) Technology Worker

Figure 2: 1- to 3-grams correlated with age and
occupation class.

or language categories, such as ‘positive emotion’
or references to work and occupational terms).
According to citations, the most popular tool is
Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al., 2015), followed by DICTION
(Hart, 1984) and the General Inquirer (Stone et al.,
1966). For a given document, these programs pro-
vide the relative frequency of occurrence of terms
from the dictionaries. The use of dictionaries has
the advantage that they provide relatively parsimo-
nious language in a given text sample, and that the
results are in principle comparable across studies.
DLATK also reproduces the functionality of these
dictionary-based approaches. Dictionaries, how-
ever, are often opaque units of analysis, as their
overall frequency counts are determined by a few
highly frequent words. If these words are ambigu-
ous, interpretations of dictionary-based results can
be misleading (Schwartz et al., 2013a). DLATK
allows for the determination of words which drive
a given dictionary category, and it can also pro-
duce data-driven lexica based on predictive mod-
els over ngrams, or even find, within a given dic-
tionary category, the words most associated with.

DLATK can provide researchers with enough
information to generate hypotheses and clarify the
“nomological net” of a construct (Cronbach and
Meehl, 1955); That is, help identify the psycho-
logical and social processes and constructs that re-
late to (are sufficiently correlated with) the out-
come under investigation. Further, the fact that
DLATK incorporates language features and con-
trols in prediction tests allows the researcher to
gauge how much construct-related variance is cap-
tured in language compared to meaningful demo-
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graphic or socioeconomic baselines.

6 Evaluations

DLATK has been used as a data analysis plat-
form in over 30 peer-reviewed publications, with
venues ranging from general-interest (PLoS ONE:
Schwartz et al., 2013b) to computer science meth-
ods proceedings (EMNLP: Sap et al., 2014) to
psychology journals (JPSP: Park et al., 2015).

The most straightforward use for DLATK is
to provide insight on linguistic features asso-
ciated with a given outcome, the differential
language analyses presented in Schwartz et al.
(2013b). Other works to primarily use DLATK
for correlation-type analyses examine outcomes
like age (Kern et al., 2014b), gendered language
and stereotypes (Park et al., 2016; Carpenter et al.,
2016b), and efficacy of app-based well-being in-
terventions (Carpenter et al., 2016a).

Another area one can evaluate the utility of
DLATK is in building predictive models. Table
1 summarizes some predictive models reported in
peer-reviewed publications. DLATK works to cre-
ate models at multiple scales, i.e., for predict-
ing aspects of single messages (e.g., tweet-wise
temporal orientation; Schwartz et al., 2015), or
predicting user-level attributes (e.g., severity of
depression; Schwartz et al., 2014), or predicting
community-level health outcomes (e.g., heart dis-
ease mortality; Eichstaedt et al., 2015).

7 Conclusion

DLATK has been under development for over five
years. We have discussed some of its core func-
tionality, including support for extra-linguistic
features, multiple levels of analysis, and contin-
uous variables. However, its biggest benefits may
be flexibility and reliability due to many years of
refinement over dozens of projects. We aspire for
DLATK to serve as a multipurpose Swiss Army
Knife for the researcher who is trying to under-
stand the manifestations of social, psychological
and health factors in the lives of language users.
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Outcome Score Source
Demographic (user-level)
Age R = 0.83 Sap et al.

(2014)Gender Acc = 0.92
Big-Five Personality (user-level)
Openness R = 0.43

Park et al.
(2015)

Conscientiousness R = 0.37
Extraversion R = 0.42
Agreeableness R = 0.35
Neuroticism R = 0.35
Temporal orientation (message-level)
3-way classif Acc = 0.72 Schwartz et al.

(2015)Intensity & affect (message-level)
Intensity R = 0.85 Preoţiuc-Pietro

et al. (2016)Affect R = 0.65
Mental health (user-level)
PTSD AUC = 0.86 Preoţiuc-Pietro

et al. (2015)Depression AUC = 0.87
Degree of dprssn R = 0.39 Schwartz et al.

(2014)Physical health (US county-level)
Heart disease mor-
tality

R = 0.42 Eichstaedt
et al. (2015)

Table 1: Survey of predictive model scores
trained using DLATK in peer-reviewed publica-
tions. Scores reported are: R: Pearson correlation;
Acc: accuracy; AUC: area under the ROC curve.
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Abstract

We present QUINT, a live system for
question answering over knowledge bases.
QUINT automatically learns role-aligned
utterance-query templates from user ques-
tions paired with their answers. When
QUINT answers a question, it visualizes
the complete derivation sequence from the
natural language utterance to the final an-
swer. The derivation provides an explana-
tion of how the syntactic structure of the
question was used to derive the structure
of a SPARQL query, and how the phrases
in the question were used to instantiate dif-
ferent parts of the query. When an an-
swer seems unsatisfactory, the derivation
provides valuable insights towards refor-
mulating the question.

1 Introduction

Motivation. A KB-QA system takes a natural lan-
guage utterance as input and produces one or more
crisp answers as output (Bast and Haussmann,
2015; Berant et al., 2013; Reddy et al., 2014; Yih
et al., 2015). This is usually done through seman-
tic parsing: translating the utterance to a formal
query in a language such as SPARQL, and execut-
ing this query over a KB like Freebase (Bollacker
et al., 2008) or YAGO (Suchanek et al., 2007) to
return one or more answer entities.

In addition to answering questions, a KB-QA
system should ideally be able to explain how an
answer was derived i.e., how the system under-
stood the users’ questions. While rapid progress is
being made on the KB-QA task, the quality of an-
swers obtained from KB-QA systems are far from

2Work done while at the Max Planck Institute for Infor-
matics

perfect. This is due to a combination of factors
related to the ambiguity of natural language, the
underlying data (e.g., KB incompleteness, gaps in
lexicon coverage) and the KB-QA systems them-
selves (e.g., errors in named entity recognition
and disambiguation, query ranking). Explanations
help address this gap in two ways: (i) helping
users gain confidence when correct answers are re-
turned, and (ii) making sense of the limitations of
the system by looking at explanations for wrong
answers, possibly providing cues to work around
them. For an expert user, explanations also con-
tribute to traceability: identifying the exact point
of failure in the KB-QA system pipeline, which
can be used for subsequent debugging.

In this work, we demonstrate QUINT (Abujabal
et al., 2017), a state-of-the-art KB-QA system that
gives step-by-step explanations of how it derives
answers for questions. Furthermore, when QUINT
is unable to link a specific phrase in the question
to a KB item, it asks the user to reformulate the
phrase. Such reformulations can be used to im-
prove various components in the KB-QA pipeline
such as underlying lexicons. QUINT takes the first
step towards enabling interactive QA in the future,
where the system can ask the user about parts of
the question that it is unsure about.

Example. Take the question “Where was Mar-
tin Luther raised?”: QUINT returns Eisleben

in Germany as the top answer. A quick
look by the user at the derivation reveals that
(i) ‘Martin Luther’ was mapped to the KB
entity MartinLuther, the theologist, and (ii)
‘raised’ was interpreted as the KB predicate
placeOfBirth. For (i), if the user had intended
the US activist MartinLutherKing instead, a sim-
ple reformulation with “martin luther king” in the
input returns Atlanta, the US city where Luther
King was born. On the other hand, for (ii), if
the birthplace was not the specific intent, a quick
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rephrasing of the question to “Where did Martin
Luther live?” results in Saxony-Anhalt, which is
derived from the predicate placesLived.

Motivated by the need for interpretable question
answering, QUINT’s approach to KB-QA relies
on role-aligned templates, where each template
consists of an utterance template based on a de-
pendency parse pattern and a corresponding query
template based on the SPARQL query language.
The template (i) specifies how to chunk an utter-
ance into phrases, (ii) guides how these phrases
map to KB primitives by specifying their seman-
tic roles as predicates, entities, or types, and (iii)
aligns syntactic structure in the utterance to the se-
mantic predicate-argument structure of the query.
Limitations of past work. Prior template-based
approaches rely on a set of manually defined
rules or templates to handle user questions (Be-
rant et al., 2013; Fader et al., 2013, 2014; Unger
et al., 2012; Yahya et al., 2013; Yao and Durme,
2014; Zou et al., 2014). The main drawback
of these approaches is the limited coverage of
templates, making them brittle when it comes to
unconventional question formulations. In con-
trast, QUINT automatically learns templates from
question-answer pairs.

Embedding-based methods (Bordes et al., 2014;
Dong et al., 2015; Yang et al., 2014; Xu et al.,
2016) map questions, KB entities, and subgraphs
to a shared space for KB-QA without explic-
itly generating a semantic representation. This
makes it difficult for such systems to generate fine-
grained explanations to users.

Other approaches to KB-QA (Bast and Hauss-
mann, 2015; Yih et al., 2015) over-generate
query candidates for a given utterance with no
fine-grained alignments to map natural language
phrases in a question onto different KB items,
making explainability challenging.
Contribution. The key contribution of this demo
paper is a live online KB-QA system that visu-
alizes the derivation steps for generating an an-
swer, and thus takes the first steps towards ex-
plainable question-answering. The demo is avail-
able at the following URL: https://gate.
d5.mpi-inf.mpg.de/quint/quint.

2 QUINT

We now give a brief overview of QUINT (Abu-
jabal et al., 2017), the KB-QA system driving
our demonstration. QUINT has a training phase

Role-aligned (Utterance 
dependency parse, 
backbone query)

(Utterance, gold answer)

(Utterance dependency 
parse, backbone query)

Training phase

Role-aligned (Utterance 
template, query template)

Template 
bank

Queries instantiated from 
paired query templates

Answer

Best query

Utterance templates 
matching new utterance

Answering phase

Backbone query 
generation

Alignment with ILP

Token 
generalization

Formal query 
execution

Learning to rank

Template matching 
and instantiation

Figure 1: Overview of QUINT.

for automatically learning templates and a query
ranking function, and an answering phase where
templates are used to instantiate queries that are
ranked by the learned function. Figure 1 shows a
block diagram for QUINT.

2.1 Training phase
The input to QUINT’s training phase is a set
of natural language utterances u ∈ U and the
corresponding gold answer set Au from a KB
such as the one shown in Figure 2. An ex-
ample of a training utterance is u =“Where
was Obama educated?”, which is paired with
the answer set Au = {ColumbiaUniversity,
HarvardUniversity, PunahouSchool}. First,
entity mentions in each utterance u are detected
and disambiguated to Freebase entities using the
AIDA system (Hoffart et al., 2011).

Next, QUINT heuristically constructs a query
to capture the question, the guiding intuition be-
ing that the correct query connects entities in a
question u to an answer entity a ∈ Au. To do
this, QUINT starts by finding, for each answer en-
tity a ∈ Au, the smallest subgraph in the KB that
contains all the entities detected in u and a (black
nodes in Fig. 2 for a = ColumbiaUniversity).
This subgraph is then extended by augmenting it
with all type nodes connected to a (gray nodes
Organization and EducationalInstitution in
Fig. 2). This subgraph is transformed into a back-
bone query q̂ by replacing the answer node (a) and
any cvt nodes with distinct variables (cvt nodes
are used to represent n-ary relations in Freebase).
The resulting q̂ is shown in Figure 3. This is fol-
lowed by aligning the components of q̂ and the de-
pendency parse of u. The alignment problem is
formulated as a constrained optimization and the
best alignment m is obtained using Integer Linear
Programming (ILP).
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cvt1

cvt2

education

major
institution

from

type

spouse

degree

spouseName

type

type

MichelleObama

Organization

ColumbiaUniversity

EducationalInstit. PoliticalScience

Politician

Bachelor

1992

BarackObama

education

?VAR?ANS
institution

type

type

BarackObamaOrganization

EducationalInstitution

Figure 2: An example KB fragment.

To connect natural language phrases in a ques-
tion to KB items, QUINT uses two kinds of
weighted lexicons, a predicate lexicon LP and a
type lexicon LC . Entities, as mentioned above,
are dealt with using an off-the-shelf named en-
tity recognition and disambiguation system. The
output of the ILP solver tells us which tokens in
u are used to instantiate which KB items in the
backbone query q̂. Nodes in the dependency parse
of u as well as nodes and edges in q̂ that are not
part of the alignment m are removed from the de-
pendency parse of u and q̂, respectively. In our
running example, this results in dropping the node
EducationalInstitution from q̂ (Fig. 3). The
obtained alignment is then generalized by drop-
ping concrete values in both u and q̂, which are
referred to as an utterance template ut and a query
template qt, respectively. This role-aligned tem-
plate pair of (ut, qt) is added to a template repos-
itory T . The process is repeated for each train-
ing instance (u, Au). However, since several ut-
terances are likely to have similar syntactic struc-
ture, the number of templates |T | � |U |. Figure 4
shows the generated template from this instance.

Finally, as part of the training phase, QUINT
trains a ranking function to rank the queries gener-
ated from matching a question against the template
repository T . A learning-to-rank framework with
a random forest classifier (Bast and Haussmann,
2015) is used to model a preference function for a
pair of queries, given an input utterance.

2.2 Answering phase

When the trained system receives a new utterance
u′ from the user, the dependency parse of u′ is
matched against the utterance templates in T . For
every match, the paired query template is instanti-
ated using the alignment information together with
the underlying lexicons. Thus, a set of candidate
queries are obtained which are then ranked using
the learning-to-rank framework. Finally, the an-
swer of the top-ranked query is shown to the user.

cvt1

cvt2

education

major
institution

from

type

spouse

degree

spouseName

type

type

MichelleObama

Organization

ColumbiaUniversity

EducationalInstit. PoliticalScience

Politician

Bachelor

1992

BarackObama

education

?VAR?ANS
institution

type

type

BarackObamaOrganization

EducationalInstitution

Figure 3: Backbone query q̂ generated from the
utterance “Where was Obama educated?” and the
answer entity ColumbiaUniversity.

PRED/[1,3]

ut qt?VAR
PRED/[1,3]W/VERB-1

W/NOUN-4

nsubjpass

ENT/[4]

?ANS

W/VERB-3W/WRB-2 TYPE/[2]

typeadvmod auxpass

Figure 4: A pair of (utterance, query) templates.
Shared numbers indicate alignment. W is a place-
holder for any word. ENT/PRED/TY PE are
the semantic roles of nodes and edges.

3 Demonstration

We now give a walkthrough of our demonstra-
tion which shows QUINT’s ability to explain its
answers to both normal and technically proficient
users through brief and detailed explanations, re-
spectively. We use the question “Where was Mar-
tin Luther raised?” to drive this section.

3.1 Question and Answers
Figure 5 shows the main window of QUINT where
the starting point for a user is the question box or
one of the sample questions provided. An expert
user can make several configuration choices (Fig.
5, bottom right):

• Model to load: a model includes a set of
templates learned offline, and a corresponding
learned query ranking function. The choices
correspond to the training part of the We-
bQuestions (Berant et al., 2013) and Free917
(Cai and Yates, 2013) datasets.

• Whether to add answer type to queries: most
KB-QA systems do not capture fine-grained
types, while QUINT does so by design.

• The number of top-ranked queries to show an-
swers for.

• The number of decision trees for the learning-
to-rank module: this is used for query ranking
during the answering phase (Sec. 2.2).

The answers to each of the top-k ranked queries
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Where was Martin Luther raised? Answer

   Sample Questions
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1. Data resource QUINT was trained on
2. Mode of operation
3. Number of SPARQL queries
4. Number of decision trees used by 

the Learning-to-Rank module

Figure 5: User input.

Rank 1 Query Rank 2 Query Rank 3 Query Rank 4 Query Rank 5 Query

Detailed Explanation

Answer(s)

Eisleben

Eisleben is a town in Saxony-Anhalt, Germany. It is famous as the hometown of 
Martin Luther, hence its official name is Lutherstadt Eisleben. As of 2005, Eisleben 
had a population of 24,552. It lies on the Halle–Kassel railway.\nEisleben is 
divided into old and new towns; the latter of which was created for Eisleben's 
miners in the 14th century.\nEisleben was the capital of the district of Mansfelder 
Land and is the seat of the Verwaltungsgemeinschaft Lutherstadt Eisleben.

Brief Explanation

Figure 6: Retrieved answers from the KB.

in response to a question are given in individual
tabs, as shown in Figure 6. To give more context
to the user, wherever applicable, each answer is
accompanied by a picture, a Wikipedia link and
a short description from Freebase. For our run-
ning example question, the answer is Eisleben,
where Martin Luther was born, for the best query.
If we explore the rank-2 query, the answer is
Saxony-Anhalt, which is the province in Ger-
many where he lived.

3.2 Explanations

Explanations show how the given answers were
derived. The ability to generate and display ex-
planations is the core contribution of this system
demonstration. QUINT generates two types of ex-
planations: (i) a brief explanation geared towards
non-technical users and (ii) a detailed explanation
geared towards more advanced users.

Brief explanations provide an accessible and
quick way for users to see how QUINT understood
various parts of the question, resulting in the given
set of answers. Figure 7 shows such an explana-
tion for our running example. Brief explanations

Brief Explanation

QUINT understood your question as follows:

• The phrase “martin luther” is interpreted as Martin Luther

• The words “was, raised” are interpreted as the relation Place of birth

Figure 7: QUINT’s brief explanation.

are particularly useful for normal users who are
interested in confirming whether a given answer
comes from interpreting the question as they in-
tended. Where this is not the case, such an expla-
nation guides users in reformulating their question
to allow QUINT to better understand it.

Detailed explanations are geared towards ad-
vanced users who are familiar with dependency
parses and SPARQL queries. A detailed expla-
nation shows the derivation steps which roughly
correspond to the right hand side of the diagram
in Figure 1. First, the dependency parse of the in-
put question is shown (Fig. 8). Below that is the
matching template consisting of an utterance tem-
plate that fits the utterance, and the correspond-
ing query template that will be instantiated to gen-
erate a query. Shared numbers between the ut-
terance template and the query template indicate
alignment, i.e., which tokens in the utterance are
used to instantiate which KB items in the query.
In this example, we can see that the verb phrase
‘was raised’ and the noun phrase ‘Martin Luther’
are used to instantiate the KB-predicate and the
KB-entity, respectively.

For a user to understand why QUINT maps a
certain syntactic structure to a certain semantic
form in a template, the user can view some train-
ing instances that produced the template. This is
achieved by clicking Template Provenance (Fig.
9). For our example, two such instances are the
questions “Where was Obama educated?” and
“Where are Riddell Helmets manufactured?”.

Finally, the user is shown the SPARQL query
that was executed to retrieve the shown answers
(Fig. 10). The node labeled ?ANS is the tar-
get answer node, and nodes marked as ?VAR
are intermediate join variables. Additionally, an
alignment table with KB items is shown based
on the alignments induced from the template
(lower part of Fig. 10). For KB items, we
find that ‘Martin Luther’ was mapped to the
theologist MartinLuther (other possibilities in-
clude the German diplomat with the same name
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Detailed Explanation

raised/VERB

where/WRB

nsubjpass

was/VERB Martin Luther/NOUN

advmod auxpass

Question
Where was Martin Luther raised?

Dependency parse tree

Matching Template Template Provenance

?VARPRED/[1,2] ?ANSPRED/[1,2]

W/VERB-1

W/NOUN-3

nsubjpass

Utterance Template

Query Template

ENT/[3]

shared numbers indicate alignment among utterance template's nodes 
and query template's nodes and edges

W/VERB-2

auxpass

Figure 8: Question dependency parse and matched
utterance and query template.

and MartinLutherKing), and the lemmatized
phrase ‘be raise’ was mapped to the KB-predicate
placeOfBirth. Looking at the rank-2 query, we
find that ‘raise’ was interpreted as placesLived

in the KB. This is an alternative intention when
the slightly ambiguous phrase ‘raised’ is used.

4 Use Cases

When QUINT returns the correct answer, expla-
nations allow the user to confirm its correctness
by seeing how it was derived. When, on the other
hand, things go wrong and an answer seems in-
correct, explanations can give the user a better un-
derstanding of the limitations of the system (e.g.,
data incompleteness), and insights into overcom-
ing these limitations (e.g., question rephrasing).
We discuss some of these possible scenarios be-
low, accompanied by real examples.

Incomplete lexicon. QUINT uses different lex-
icons to map the phrases in an utterance onto KB
items (Sec. 2). These lexicons are inherently in-
complete. For example, QUINT could not cor-
rectly answer the utterance “countries of euro-
union” (implying the European Union) since the
phrase ‘euro-union’ does not have an entry in
QUINT’s lexicons. Therefore it shows the fol-

Training Utterance: where was obama educated?

educated/VERB-4

where/WRB-1

nsubjpass

was/VERB-2 obama/NOUN-3

advmod auxpass

obama/[3] ?VAR ?ANS
education/[2,4] institution/[2,4]

Training Query

Training Utterance: where are riddell helmets manufactured?

manufactured/VERB-4

where/WRB-1

nsubjpass

are/VERB-2 riddell helmets/NOUN-3

auxpass

riddell helmets/[3] ?VAR ?ANS
headquarters/[2,4] citytown/[2,4]

Training Query

advmod

Figure 9: Structurally similar training instances to
“Where was Martin Luther raised?”.

en.martin_luther ?VAR ?ANS
birth city

Query

Alignment
Lemmatized Phrase Semantic Item Type of Semantic Item
“Martin Luther”
“raise be”

en.martin_luther
birth, city

Entity
Predicate

Figure 10: SPARQL KB-query and KB items.

lowing message urging the user to reformulate the
phrase: The phrase euro-union in your input ques-
tion could not be interpreted. Please reformulate
the phrase.

Incorrect query ranking. QUINT uses a
learning-to-rank framework for ranking SPARQL
queries. Sometimes, the most appropriate query
is not ranked at the top. For example, for the
utterance “What is the former currency of Ger-
many?”, the top answer is Euro, which is incor-
rect. This is because the alignment information
in the matching template fails to capture ‘former’.
However, if the user explores the top-5 SPARQL
queries, she finds that a query with the correct
predicate currencyFormerlyUsed (as opposed
to the incorrect currencyUsed) is indeed there
and retrieves the desired answers DeutscheMark,
GermanRentenmark and GermanPapiermark.

Incorrect disambiguation to KB items.
Sometimes, the phrases in the input utterance are
linked to wrong KB items as originally intended
by the user. For example, for the utterance “What
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language group does English belong to?”, ‘En-
glish’ gets mapped to the wrong entity England,
resulting in an unexpected answer. When the
user sees the brief explanation (Fig. 7), she can
immediately observe this incorrect mapping.
Subsequently, she may rephrase it as ‘English
language’ which may produce the desired answer.

Missed answer type constraints. Answer typ-
ing plays an important role in ensuring precise
QA. For example, in “Which college did Michelle
Obama go to?”, the user explicitly specifies that
she is looking for colleges, as opposed to “Where
did Michelle Obama study?”, which, for exam-
ple, could include her high school as well. Here
‘college’ is mapped to the KB type University

and only when this constraint is added to the
SPARQL query do we get the desired answer set
HarvardLawSchool and PrincetonUniversity.

No matching templates. Sometimes an utter-
ance is syntactically out of scope for QUINT: it
has never seen similar instances during training.
For example: “Germany’s capital during the for-
ties?”. In such cases, QUINT raises the message
We could not find any matching templates. Please
reformulate your question.

5 Conclusion

We presented a demonstration of QUINT, a sys-
tem that uses automatically learned templates to
provide interpretable answers to natural language
questions over knowledge bases. When a user gets
an answer to her question, our demonstration al-
lows her to view the details of how the answer was
derived. This improves her confidence in case of
correct answers, while giving her a better under-
standing of the limitations of the QA system in
case of mistakes, and how to work around them.
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Abstract

In this paper, we describe Function
Assistant, a lightweight Python-based
toolkit for querying and exploring source
code repositories using natural language.
The toolkit is designed to help end-users
of a target API quickly find information
about functions through high-level natu-
ral language queries and descriptions. For
a given text query and background API,
the tool finds candidate functions by per-
forming a translation from the text to
known representations in the API using
the semantic parsing approach of Richard-
son and Kuhn (2017). Translations are
automatically learned from example text-
code pairs in example APIs. The toolkit
includes features for building translation
pipelines and query engines for arbitrary
source code projects. To explore this last
feature, we perform new experiments on
27 well-known Python projects hosted on
Github.

1 Introduction

Software developers frequently shift between us-
ing different third-party software libraries, or
APIs, when developing new applications. Much of
the development time is dedicated to understand-
ing the structure of these APIs, figuring out where
the target functionality lies, and learning about the
peculiarities of how such software is structured or
how naming conventions work. When the target
API is large, finding the desired functionality can
be a formidable and time consuming task. Of-
ten developers resort to resources like Google or
StackOverflow to find (usually indirect) answers
to questions.

We illustrate these issues in Figure 1 using two

## from nltk.parse.dependencygraph.py

c l a s s DependencyGraph ( o b j e c t ) :
"""A container ....for a dependency structure"""

def r e m o v e b y a d d r e s s ( s e l f , a d d r e s s ) :
"""
Removes the node with the given address.
"""
# => implementation

def a d d a r c ( s e l f , h e a d a d d r e s s , mod addres s ) :
"""Adds an arc from the node specified by
head_address to the node specified by
the mod address....
"""

Figure 1: Example function documentation in
Python NLTK about dependency graphs.

example functions from the well-known NLTK
toolkit. Each function is paired with a short
docstring, i.e., the quoted description under each
function, which provides a user of the software
a description of what the function does. While
understanding the documentation and code re-
quires technical knowledge of dependency pars-
ing and graphs, even with such knowledge, the
function naming conventions are rather arbitrary.
The function add arc could just as well be
called create arc. An end-user expecting an-
other naming convention might be left astray when
searching for this functionality. Similarly, the
available description might deviate from how an
end-user would describe such functionality.

Understanding the remove by address
function, in contrast, requires knowing the
details of the particular DependencyGraph
implementation being used. Nonetheless, the
function corresponds to the standard operation of
removing a node from a dependency graph. Here,
the technical details about how this removal is
specific to a given address might obfuscate the
overall purpose of the function, making it hard to
find or understand.
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At a first approximation, navigating a given API
requires knowing correspondences between tex-
tual descriptions and source code representations.
For example, knowing that the English expression
Adds an arc in Figure 1 translates (somewhat ar-
bitrarily) to add arc, or that given address trans-
lates to address. One must also know how to
detect paraphrases of certain target entities or ac-
tions, for example that adding an arc means the
same as creating an arc in this context. Other
technical correspondences, such as the relation be-
tween an address and the target dependency
graph implementation, must be learned.

In our previous work (Richardson and Kuhn
(2017), henceforth RK), we look at learning these
types of correspondences from example API col-
lections in a variety of programming languages
and source natural languages. We treat each
given API, consisting of text and function rep-
resentation pairs, as a parallel corpus for train-
ing a simple semantic parsing model. In addi-
tion to learning translational correspondences, of
the type described above, we achieve improve-
ments by adding document-level features that help
to learn other technical correspondences.

In this paper, we focus on using our models as
a tool for querying API collections. Given a tar-
get API, our model learns an MT-based seman-
tic parser that translates text to code representa-
tions in the API. End-users can formulate natural
language queries to the background API, which
our model will translate into candidate function
representations with the goal of finding the de-
sired functionality. Our tool, called Function
Assistant can be used in two ways: as a black-
box pipeline for building models directly from ar-
bitrary API collections. As well, it can be cus-
tomized and integrated with other outside compo-
nents or models using the tool’s flexible internal
Python API.

In this paper, we focus on the first usage of our
tool. To explore building models for new API col-
lections, we run our pipeline on 27 open source
Python projects from the well-known Awesome
Python project list.1 As in previous work, we
perform synthetic experiments on these datasets,
which measure how well our models can generate
function representations for unseen API descrip-
tions, which mimic user queries.

1github.com/vinta/awesome-python

2 Related Work

Natural language querying of APIs has long been
a goal in software engineering, related to the gen-
eral problem of software reuse (Krueger, 1992).
To date, a number of industrial scale products
are available in this area.2To our knowledge,
most implementations use shallow term match-
ing and/or information-extraction techniques (Lv
et al., 2015), differing from our methods that use
more conventional NLP components and tech-
niques. As we show in this paper and in RK, term
matching and related techniques can sometimes
serve as a competitive baseline, but are almost al-
ways outperformed by our translation approach.

More recently, there has been increased interest
in machine learning on learning code representa-
tions from APIs, especially using resources such
as GitHub or StackOverflow. However, this work
tends to look at learning from many API collec-
tions (Gu et al., 2016), making such systems hard
to evaluate and to apply to querying specific APIs.
Other work looks at learning to generate longer
code from source code annotations for natural lan-
guage programming (Allamanis et al., 2015), of-
ten focusing narrowly on a specific programming
language (e.g., Java) or set of APIs. To our knowl-
edge, none of these approaches include companion
software that facilitate building custom pipelines
for specific APIs and querying.

Technically, our approach is related to work
on semantic parsing, which looks at generating
formal representations from text input for natu-
ral language understanding applications, notably
question-answering. Many existing methods take
direct inspiration from work on MT (Wong and
Mooney, 2006) and parsing (Zettlemoyer and
Collins, 2009). Please see RK for more discussion
and pointers to related work.

3 Technical Approach

In this paper, we focus on learning to generate
function representations from textual descriptions
inside of source code collections, or APIs. We
will refer to these target function representations
as API components. Each component specifies a
function name, a list of arguments, and other op-
tional information such as a namespace.

Given a set of example text-component pairs
from an example API,D = {(xi, zi)}ni=1, the goal

2e.g., www.krugle.com,www.searchcode.com
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is to learn how to generate correct, well-formed
components z ∈ C for each text x. When viewed
as a semantic parsing problem, we can view each z
as analogous to a target logical form. In this paper,
we focus narrowly on Python source code projects,
and thus Python functions z, however our methods
are agnostic to the input natural language and out-
put programming language as shown in RK.

When used for querying, our model takes a text
input and attempts to generate the desired func-
tion representation. Technically, our approach fol-
lows our previous work and has two components:
a simple and lightweight word-based translation
model that generates candidate API components,
and a discriminative model that reranks the trans-
lation model output using additional phrase and
document-level features. All of these models are
implemented natively in our tool, and we describe
each part in turn.

3.1 Translation Model

Given an input text (or query) sequence x =
w1, .., w|x|, the goal is to generate an output API
component z = ui, .., u|z|, which involves learn-
ing a conditional distribution p(z | x). We pursue
a noisy-channel approach, where

p(z | x) ∝ p(x | z)p(z)

By assuming a uniform prior p(z) on output
components, the model therefore involves com-
puting p(x | z), which under a word-based trans-
lation model can be expressed as:

p(x | z) =
∑
a

p(x, a | z)

where the summation ranges over the set of all
many-to-one (word) alignments a from x→ z.

While many different formulations of word-
based models exist, we previously found that the
simplest lexical translation model, or IBM Model
1 (Brown et al., 1993), outperforms even higher-
order alignment models with location parameters.
This model computes all alignments exactly using
the following equation:

p(x | z) ≈
|x|∏
j=1

|z|∑
i=0

pt(wj | ui) (1)

where pt defines a multinomial distribution over a
given component term uj for all words wj .

While many parameter estimation strategies ex-
ist for training word-based models, we similarly
found that the simplest EM procedure of Brown
et al. (1993) works the best. In RK, we describe a
linear-time decoding strategy (i.e., for generating
components from input) over the number of com-
ponents C, which we use in this paper. Our tool
also implements our types of conventional MT de-
coding strategies that are better suited for large
APIs and more complex semantic languages.

3.2 Discriminative Reranking

Following most semantic parsing approaches
(Zettlemoyer and Collins, 2009), we use a dis-
criminative log-linear model to rerank the com-
ponents generated from the underlying translation
model. Such a model defines a conditional distri-
bution: p( z|x; θ) ∝ eθ·φ(x,z), for a parameter vec-
tor θ ∈ Rb, and a set of feature functions φ(x, z).

Our tool implements several different training
and optimization methods. For the purpose of
this paper, we train our models using an online,
stochastic gradient ascent algorithm under a max-
imum conditional log-likelihood objective.

3.2.1 Features
For a given text input x and output component
z, φ(x, z) defines a set of features between these
two items. By default, our pipeline implementa-
tion uses three classes of features, identical to the
feature set used in RK. The first class includes ad-
ditional word-level features, such as word/compo-
nent match, overlap, component syntax informa-
tion, and so on. The second includes phrase and
hierarchical phrase features between text and com-
ponent candidates, which are extracted standardly
from symmetric word-level alignment heuristics.

The other category of features includes
document-level features. This includes informa-
tion about the underlying API class hierarchy,
and relations between words/phrases and abstract
classes within this hierarchy. Also, we use
additional textual description of parameters in the
docstrings to indicate whether word-components
candidate pairs overlap in these descriptions.

4 Implementation and Usage

All of the functionality above is implemented in
the Function Assistant toolkit. The tool is
part of the companion software release for our pre-
vious work called Zubr. For efficiency, the core
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## pipeline parameters
params = [

( ”−b a s e l i n e ” , ” b a s e l i n e ” , F a l s e , ” bool ” ,
”Use b a s e l i n e model [ d e f a u l t = F a l s e ] ” , ” GPipe l ine ” )

]

## Zubr pipeline tasks
t a s k s = [

” zubr . d o c e x t r a c t o r . DocExtractor ” ,# extract docs
” p r o c e s s d a t a ” , # custom function.
” zubr . SymmetricAlignment ” ,# learn trans. model.
” zubr . Datase t ” , # build dataset obj.
” zubr . Fea tureExtrac tor ” , ## build extractor obj.
” zubr . Optimizer ” , ## train reranking model
” zubr . QueryInter face ” , # build query interface
” zubr . web . QueryServer ” , # launch HTTP server

]

def p r o c e s s d a t a ( c o n f i g ) :
"""Preprocess the extracted data using a custom
function or outside library (e.g., nltk)

:param config: The global configuration
"""
p r e p r o c e s s f u n c t i o n ( c o n f i g , . . . )

Figure 2: An example pipeline script for building
a translation model and query server.

functionality is written in Cython 3, which is a
compiled superset of the Python language that fa-
cilitates native C/C++ integration.

The tool is designed to be used in two ways:
first, as a black-box pipeline to build custom trans-
lation pipelines and API query engines. The tool
can also be integrated with other components us-
ing our Cython and Python API. We focus on the
first type of functionality.

4.1 Library Design and Pipelines

Our library uses dependency-injection OOP de-
sign principles. All of the core components are
implemented as wholly independent classes, each
of which has a number of associated configura-
tion values. These components interact via a class
called Pipeline, which glues together various
user-specified components and dependencies, and
builds a global configuration from these compo-
nents. Subsequent instantiation and sharing of ob-
jects is dictated, or injected, by these global con-
figurations settings, which can change dynami-
cally throughout a pipeline run.

Pipelines are created by writing pipeline scripts,
such as the one shown in Figure 2. This file is
an ordinary Python file, with two mandatory vari-
ables. The first params variable specifies vari-
ous high-level configuration parameters associated
with the pipeline. In this case, there is a set-
ting --baseline, which can be evoked to run

3http://cython.org/

a baseline experiment, and will effect the subse-
quent processing pipeline.

The second, and most important, variable is
called tasks, and this specifies an ordering of
subprocesses that should be executed. The fields
in this list are pointers to either core utilities in
the underlying Zubr toolkit (each with the pre-
fix zubr.), or user defined functions. This par-
ticular pipeline starts by building a dataset from
a user specified source code repository, using
DocExtractor, then builds a symmetric trans-
lation model SymmetricAlignment, a fea-
ture extractor FeatureExtractor, a discrim-
inative reranker Optimizer, all via various in-
termediate steps. It finishes by building a query
interface and query server, QueryInterface
and QueryServer, which can then be used for
querying the input API.

As noted already, each subprocesses has a num-
ber of associated configuration settings, which are
joined into a global configuration object by the
Pipeline instance. For the translation model,
settings include, for example, the type of trans-
lation model to use, the number of iterations to
use when training models, and so on. All of
these settings can be specified on the terminal,
or in a separate configuration file. As well, the
user is free to define custom functions, such as
process data, or classes which can be used to
modify the default processing pipeline or imple-
ment new ML features.

4.2 Web Server

The last step in this pipeline builds an HTTP web
server that can be used to query the input API. In-
ternally, the server makes calls to the trained trans-
lation model and discriminative reranker, which
takes user queries and attempts to translate them
into API function representations. These candi-
date translations are then returned to the user as
potential answers to the query. Depending on
the outcome, the user can either rephrase his/her
question if the target function is not found, or
look closer at the implementation by linking to the
function’s source code.

An example screen shot of the query server is
shown in Figure 3. Here, the background API is
the NLTK toolkit, and the query is Train a se-
quence tagger model. While not mentioned ex-
plicitly, the model returns training functions for
the HiddenMarkovModelTagger. The right
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Figure 3: An example screen shot of the Function Assistant web server.

Project # Pairs # Symbols # Words Vocab.
scapy 757 1,029 7,839 1,576
zipline 753 1,122 8,184 1,517
biopython 2,496 2,224 20,532 2,586
renpy 912 889 10,183 1,540
pyglet 1,400 1,354 12,218 2,181
kivy 820 861 7,621 1,456
pip 1,292 1,359 13,011 2,201
twisted 5,137 3,129 49,457 4,830
vispy 1,094 1,026 9,744 1,740
orange 1,392 1,125 11,596 1,761
tensorflow 5,724 4,321 45,006 4,672
pandas 1,969 1,517 17,816 2,371
sqlalchemy 1,737 1,374 15,606 2,039
pyspark 1,851 1,276 18,775 2,200
nupic 1,663 1,533 16,750 2,135
astropy 2,325 2,054 24,567 3,007
sympy 5,523 3,201 52,236 4,777
ipython 1,034 1,115 9,114 1,771
orator 817 499 6,511 670
obspy 1,577 1,861 14,847 2,169
rdkit 1,006 1,380 9,758 1,739
django 2,790 2,026 31,531 3,484
ansible 2,124 1,884 20,677 2,593
statsmodels 2,357 2,352 21,716 2,733
theano 1,223 1,364 12,018 2,152
nltk 2,383 2,324 25,823 3,151
sklearn 1,532 1,519 13,897 2,115

Table 1: New English Github datasets.

side of the image shows the hyperlink path to the
original source in Github for the train function.

5 Experiments

Our current DocExtractor implementation
supports building parallel datasets from raw
Python source code collections. Internally, the
tool reads source code using the abstract syntax
tree utility, ast, in the Python standard library,
and extracts sets of function and description pairs.
In addition, the tool also extracts class descrip-
tions, parameter and return value descriptions, and

information about the API’s internal class hierar-
chy. This last type of information is then used to
define document-level features.

To experiment with this feature, we built
pipelines and ran experiments for 27 popular
Python projects. The goal of these experiments is
to test the robustness of our extractor, and see how
well our models answer unseen queries for these
resources using our previous experimental setup.

5.1 Datasets

The example projects are shown in Table 1. Each
dataset is quantified in terms of # Pairs, or the
number of parallel function-component represen-
tations, the # Symbols in the component output
language, the # (NL) Words and Vocab size.

5.2 Experimental Setup

Each dataset is randomly split into train, test, and
dev. sets using a 70%-30% (or 15%/15%) split.
We can think of the held-out sets as mimicking
queries that users might ask the model. Stan-
dardly, all models are trained on the training sets,
and hyper-parameters are tuned to the dev. sets.

For a unseen text input during testing, the model
generates a candidate list of component outputs.
An output is considered correct if it matches ex-
actly the gold function representation. As before,
we measure the Accuracy @1, accuracy within
top ten (Accuracy @10), and the MRR.

As in our previous work, three additional base-
lines are used. The first is a simple bag-of-words
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Method scapy zipline biopython renpy pyglet kivy pip twisted vispy
BoW 00.0 51.3 17.4 01.7 38.3 12.9 05.8 54.8 20.4 06.6 41.1 16.6 05.7 52.3 19.2 07.3 53.6 22.0 06.2 40.9 17.1 06.6 38.8 16.9 07.3 48.7 18.6
Term Match 21.2 43.3 28.7 28.5 50.8 36.2 23.5 48.1 31.7 25.7 59.5 38.7 20.4 50.9 31.2 30.0 62.6 41.3 19.1 50.2 30.7 17.6 44.1 26.2 29.2 64.0 41.1
Translation 20.3 61.9 34.7 27.6 62.5 40.7 29.6 75.6 45.8 30.8 61.7 42.0 26.1 69.5 41.3 33.3 67.4 45.3 18.6 56.4 32.3 27.7 61.4 39.4 28.6 70.1 42.3
Reranker 21.2 67.2 37.2 30.3 70.5 45.3 32.3 79.1 48.6 38.9 73.5 48.9 29.0 77.1 45.5 35.7 75.6 49.1 25.9 65.8 39.9 28.8 65.8 42.2 33.5 80.4 50.3

Method orange tensorflow pandas sqlalchemy pyspark nupic astropy sympy ipython
BoW 13.4 60.5 29.1 09.4 47.4 21.2 03.7 40.6 15.6 07.3 45.0 18.4 07.5 50.9 20.8 06.4 55.0 22.8 07.7 52.0 21.1 06.4 44.4 18.5 01.9 41.2 13.9
Term Match 37.9 69.7 49.3 25.2 48.7 33.5 19.3 43.7 27.9 17.3 48.4 26.6 20.5 46.9 29.1 23.6 51.0 33.1 26.1 49.1 34.3 20.2 44.9 28.8 23.8 56.7 33.8
Translation 40.3 78.3 54.0 35.3 71.5 48.0 29.1 62.7 41.0 28.8 70.3 43.0 37.1 78.7 52.1 30.9 69.8 44.6 30.7 66.6 43.4 32.8 70.2 45.5 24.5 59.3 36.5
Reranker 45.1 84.1 59.9 38.4 77.7 51.8 31.1 66.1 43.1 35.0 76.1 49.7 41.5 81.5 55.3 29.3 76.7 45.6 33.9 74.4 47.4 32.1 75.0 46.6 29.6 66.4 42.3

Method orator obspy rdkit django ansible statsmodels theano nltk sklearn
BoW 10.6 66.3 28.6 06.7 49.5 20.2 05.3 40.6 17.1 04.5 40.9 16.2 17.9 55.3 30.5 05.6 46.1 18.6 03.2 43.7 16.2 05.0 44.2 16.3 05.2 45.8 17.7
Term Match 31.9 64.7 43.7 19.9 46.6 30.0 13.3 46.6 23.9 19.3 48.0 29.1 24.8 54.0 35.8 16.7 39.9 25.1 16.3 37.1 24.0 19.8 45.6 28.4 24.4 50.6 32.5
Translation 32.7 79.5 47.5 33.8 75.8 48.3 25.3 60.6 37.2 22.9 57.8 34.6 35.5 71.6 47.5 25.4 64.8 37.8 26.2 58.4 37.8 28.2 68.0 41.5 27.9 67.6 41.3
Reranker 32.7 82.7 49.7 37.7 80.0 52.3 25.3 63.3 39.6 25.8 64.5 39.4 40.5 77.0 53.1 28.8 69.1 41.7 27.3 66.1 39.9 31.6 72.5 45.7 29.2 75.5 44.5

Accuracy @1 Accuracy @10 Mean Reciprocal Rank (MRR)

Table 2: Test results on our new Github datasets.

(BoW) model, which uses word-component pairs
as features. The second is a Term Match baseline,
which ranks candidates according to the number
of matches between input words and component
words. We also compare the results of the Trans-
lation (model) without the reranker.

6 Results and Discussion

Test results are shown in Table 2, and largely
conform to our previous findings. The BoW
and Term Match baselines are outperformed by
all other models, which again shows that API
querying is more complicated than simple word-
component matching. The Reranker model leads
to improvements on all datasets as compared with
only using the Translation model, indicating that
document-level and phrase features can help.

We note that these experiments are synthetic,
in the sense that it’s unclear whether the held-
out examples bear any resemblance to actual user
queries. Assuming, however, that each held-out
set is a representative sample of the queries that
real users would ask, we can then interpret the re-
sults as indicating how well our models answer
queries. Whether or not these held-out examples
reflect real queries, we believe that they still pro-
vide a good benchmark for model construction.
All code and data will be released to facilitate fur-
ther experimentation and application building. Fu-
ture work will look at eliciting more naturalistic
queries (e.g., through StackOverflow), and doing
usage studies via a permanent web demo4.

7 Conclusion

We introduce Function Assistant, a lightweight
tool for querying API collections using uncon-

4see demo here: http://zubr.ims.uni-stuttgart.de/

strained natural language. Users can supply our
tool with target source code projects and build cus-
tom translation or processing pipelines and query
servers from scratch. In addition to the tool,
we also created new resources for studying API
querying, in the form of datasets built from 27
popular Github projects. While our approach uses
simple components, we hope will that our tool
and resources will serve as a benchmark for fu-
ture work in this area, and ultimately help to solve
everyday software search and reusability issues.
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Abstract

We present MoodSwipe, a soft keyboard
that suggests text messages given the user-
specified emotions utilizing the real dia-
log data. The aim of MoodSwipe is to
create a convenient user interface to en-
joy the technology of emotion classifica-
tion and text suggestion, and at the same
time to collect labeled data automatically
for developing more advanced technolo-
gies. While users select the MoodSwipe
keyboard, they can type as usual but sense
the emotion conveyed by their text and re-
ceive suggestions for their message as a
benefit. In MoodSwipe, the detected emo-
tions serve as the medium for suggested
texts, where viewing the latter is the in-
centive to correcting the former. We con-
duct several experiments to show the supe-
riority of the emotion classification mod-
els trained on the dialog data, and further
to verify good emotion cues are important
context for text suggestion.

1 Introduction

Knowing how and when to express emotion is
a key component of emotional intelligence (Sa-
lovey and Mayer, 1990). Effective leaders are
good at expressing emotions (Bachman, 1988);
expressing positive emotions in group activities
improves group cooperation, fairness, and overall
group performance (Barsade and Gibson, 1998);
and expressing negative emotions can promote re-
lationships (Graham et al., 2008). However, in
the mobile device era where text-based commu-
nication is part of life, technologies are rarely
utilized to assist users to express their emotions
properly via text. For instance, business people
in heated disputes with their clients may need

assistance to rephrase their angry messages into
neutral descriptions before sending them. Sim-
ilarly, people may have trouble finding the per-
fect words to show how much they appreciate a
friend’s help. Or people may want to deliberately
express anger to extract concessions in negotia-
tions, or to make a joke, such as with the “Obama’s
Anger Translator” skit, in which the comedian
“translates” the U.S. President’s calm statements
into emotional tirades. While emotion classifi-
cation has been used in helping users to better
understand other people’s emotions (Wang et al.,
2016; Huang et al., 2017), these technologies have
rarely been used to support user needs in express-
ing emotions. Most prior work focuses on inter-
face design, for instance using kinetic typography
or dynamic text (Bodine and Pignol, 2003; Forl-
izzi et al., 2003; Lee et al., 2006) , affective but-
tons (Broekens and Brinkman, 2009), or text color
and emoticons (Sánchez et al., 2006) to enable
emotion expression in instant messengers. Other
work explores the relations between user typing
patterns and their emotions (Zimmermann et al.,
2003; Alepis et al., 2006; Tech, 2016). However,
the text itself is still the essential part of text-based
communication; visual cues and typing patterns
are only minor factors. Other work even describes
attempts to incorporate body signals such as fluc-
tuating skin conductivity levels (DiMicco et al.,
2002), thermal feedback (Wilson et al., 2016),
or facial expressions (El Kaliouby and Robinson,
2004) to enrich emotion expression, but these re-
quire additional equipment and are less scalable.

In this paper we introduce MoodSwipe1, a soft
keyboard that automatically suggests text accord-
ing to user-specified emotions. As shown in Fig-
ure 1, MoodSwipe receives user input text from

1MoodSwipe is available at: https://play.
google.com/store/apps/details?id=sinica.
moodswipe&hl=en
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Type Swipe SelectSwipe(s)
Emotion Detected Switch Emotion Switch Emotion (Again) Select Suggested Text

Figure 1: The user interface of MoodSwipe keyboard, which includes a standard soft keyboard, a color
bar above the keyboard, and a circle button to the right of the color bar. Users swipe the color bar to
specify their emotions and view the messages suggested for different emotions.

the keyboard, and immediately shows the detected
emotion of the input message. Seven emotions
(Anger, Joy, Sadness, Fear, Anticipation, Tired
and Neutral) are detected and presented by their
corresponding colors as defined by the research
of psychologists and user studies (Wang et al.,
2016). Users swipe the color bar to change the
detected emotion according to their mood and
view the messages suggested for different emo-
tions. For example, if the user types “I disagree,”
MoodSwipe suggests a relevant message telling
the user how one would say the same thing when
he or she is happy, sad, or angry.

The contributions of this work are three-fold.
First, we address the long-standing challenge of
collecting self-reported emotion labels for dialog
messages. Unlike posts on social media, where
users often spontaneously tag their own emotions,
self-reported emotion labels for dialog messages
are expensive to collect. Users often feel disturbed
when they are asked to annotate their own emo-
tions on the fly. MoodSwipe provides a handy
service which is entertaining and easy to use. It
provides a natural incentive for users to label their
own emotions on the spot. Second, MoodSwipe
closes the loop of bi-directional interactive emo-
tion sensing. Most prior work powered by emo-
tion detection focused on helping users when re-
ceiving messages (Wang et al., 2016) instead of
when sending them. MoodSwipe enables auto-

Emotion Suggestion

Anger Red (#F43131) I'm in a pissy mood. I'm sorry.

Joy Yellow (#E1D500) I'm doing fine.

Sadness Navy Blue (#518CCF) I'm upset, but I'm fine.

Fear Green (#17C617) (no suggestion)

Anticipation Orange (#E78300) Oh, I'm fine, I'm widw awake. What's up?

Tired Purple (#C350DF) I'm working.

Neutral White (#FFFFFF) I'm fine.

Color

Figure 2: Mapping between colors and emotions,
and example suggestion texts for “I am fine.”

mated support, helping users express their emo-
tions in text, and therefore supplies the missing
piece for an emotion-sensitive text-based commu-
nication environment. Finally, MoodSwipe in-
troduces a new interaction paradigm, in which
users explicitly provide feedback to systems about
why they select this suggested response. Clas-
sic response suggestion tasks such as dialog gen-
eration (Li et al., 2016) or automated email re-
ply (Kannan et al., 2016) assume that the in-the-
moment context of each user (e.g., the current
emotion) is unknown. MoodSwipe opens up pos-
sibilities for users to explicitly and actively pro-
vide context on the fly, which the automated mod-
els can use to provide better suggestions.

2 The MoodSwipe Keyboard

The user interface and workflow of MoodSwipe
are shown in Figure 1. The MoodSwipe keyboard
interface contains three major parts: (i) a standard
soft keyboard, (ii) a color bar above the keyboard,
and (iii) a circle button to the right of the color
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bar. When the user starts typing, MoodSwipe de-
tects the emotion of the input text in real time, and
the color bar background changes color on-the-fly
to reflect the current emotion of the user input text.
MoodSwipe’s seven emotions and their colors are
shown in Figure 2, which was developed based on
psychological work and user studies (Wang et al.,
2016). Based on the emotion MoodSwipe cur-
rently displays, the color bar also shows the user
the suggested text. Those suggested messages for
the input “I am fine” are also listed in Figure 2.

When the user swipes the color bar, one of
MoodSwipe’s seven emotion colors is brought up
in descending order of the classification probabil-
ity for the input message. The user swipes right
to see the predicted emotion with a lower proba-
bility and its suggested text, or swipes left to see
the previous one. In Figure 1, the user types “Why
don’t you come?” and MoodSwipe detects Anger
(red) and suggests “Then tell me why you don’t
come!”. The user swipes right to see the option
“Ohhhh why cannot you come?” for emotion Sad-
ness (blue). The user keeps swiping until he or
she reaches a suitable message (“Oh!! But...why
don’t you come I don’t want to go alone!”) and
then clicks the circle button at color bar’s right side
to replaces the user input with the suggested text.
Then with this replacement, the user self-reports
that the emotion label of the user’s message “Why
don’t you come?” should be more Fear (green)
than Anger (red) in the current dialog context.

MoodSwipe actively triggers emotion detec-
tion and updates color accordingly when the user
presses the spacebar, which usually indicates the
completion of a word, or has a 500ms pause after
the last user input. To lighten server loads and re-
duce possible conflicts with the second condition,
the minimum time interval between two triggers is
set at 400ms. All users activities are recorded, in-
cluding typed text, suggested texts, emotion labels
selected/abandoned, and all the timestamps.

3 Use Cases

In this section we outline several possible use
cases of MoodSwipe. First, MoodSwipe can help
users to better understand their own messages’
emotions perceived by other users. Our prior
study (Huang et al., 2017) shows that not all users
are clearly aware of what emotion their messages
will convey. In this scenario, MoodSwipe is able
to act as an early assistant or reminder when com-

posing a message. Second, MoodSwipe can assist
users to better express themselves when “words
fail me.” Sometimes users could experience strong
emotions and have difficulty in finding good ways
to express themselves via text, and they can type
keywords into MoodSwipe to search for better
messages from its dialog database. Third, users
can alternate the perceived emotions in their
own texts for various purposes. For instance,
some people might need assistance to rephrase
their angry messages into neutral descriptions, and
some people may want to deliberately express
anger to extract concessions in negotiations. Fi-
nally, MoodSwipe can be used as a tool to help
new users quickly adapt to the language style of
a community. MoodSwipe is powered by mes-
sages that were collected from young IM users.
An elder new user who is not very familiar with
the language styles of the young generation can
use MoodSwipe to rephrase his/her sentence so
that it can be better received by young users.

4 Back-end System, Experiments and
Discussions

Two major functions of the MoodSwipe keyboard
are to guess for the users the emotion of their cur-
rent text message and to provide text suggestions
based on that. In this section, we describe sev-
eral models we developed and different settings
used to evaluate their performance. Our advan-
tage in conducting these experiments comes from
our emotion-based chat app EmotionPush (Wang
et al., 2016) and the social dialogs it has collected.

4.1 Experimental Materials

For the experiments, we adopted the Emotion-
Push dataset (available soon). A total number
of 162,031 message logs were collected for this
dataset. To evaluate the performance of emotion
classification, we had native speakers manually la-
bel the emotions of the randomly selected 8,818
messages. These manual emotion attribute were
all chosen from the seven emotion labels defined
for the keyboard. Among these 8,818 emotion la-
beled messages, 70% were for training, 10% for
validation and 20% for testing. Two different emo-
tion corpus, LJ40K (Yang and Liu, 2013) and the
tweet data, are utilized for comparison. LJ40K
contains 40 emotions and for each of the emotions,
1,000 blogs are collected. The 40 emotions are
then mapped to the 7 emotions according to our
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previous work (Wang et al., 2016). On the other
hand, the tweet data is built by Twitter streaming
API2 with a filter of using the 40 emotions as hash-
tag. A total number of 19,480 tweets are collected
and further categorized into 7 emotions.

The text message suggestion function provided
by MoodSwipe recommends responses given the
input text message and its corresponding emotion
label from users. For the experiments, we selected
messages from the labeled 8,818 messages accord-
ing to two rules: 1) to ensure a proper turn, the pre-
vious message must be sent from another user in-
stead of the same message owner, and 2) the emo-
tion label must not be neutral. We drop a small
number of short messages containing hindi or pure
punctuation (e.g., “!!!”) for which text suggestions
cannot be found, as in these cases we are unable to
evaluate the performance of different settings. A
total of 1,366 messages were collected for the sen-
tence suggestion experiment (707 Joy, 223 Anger,
189 Sadness, 124 Anticipation, 72 Fear and 51
Tired). For the evaluation, text suggestions are
generated for these messages using MoodSwipe.

4.2 Emotion Classification

Two models are developed for emotion classifi-
cation: the general CNN (Kim, 2014) with 125
filters, including 25 filters for each filter length
ranging from 1 to 5, and the LSTM (Hochreiter
and Schmidhuber, 1997). These two models are
trained on blog data, tweet data, and our dialog
data, respectively, and then tested on the dialog
data. In Table 1 we report the results of three major
emotions with these two models, as the other emo-
tions are minor and the training data insufficient to
build a reliable model (anticipation 1.77%, tired
0.8%, fear 1.19%, total 3.77%). Only accuracies
trained on the dialog data for three major emotions
are all over 0.9 (see CNN3 and LSTM3), which
supports the use of dialogs in MoodSwipe. Con-
sidering time-consuming issue, we adopted CNN
as the final model for MoodSwipe.

4.3 Text Suggestion & Results

The purpose of the experiments for test message
suggestion is to determine whether the system
generates better suggested texts given the user-
specified emotion. We designed a retrieval-based
model utilizing Lucene (McCandless et al., 2010)

2https://dev.twitter.com/streaming/
overview

Model Joy Anger Sadness Neutral
(Wang et al., 2016) .779 .771 .853 .323
CNN1 .832 .960 .750 .513
CNN2 .645 .942 .503 .222
CNN3 .905 .962 .973 .820
LSTM1 .230 .967 .963 .222
LSTM2 .596 .959 .516 .222
LSTM3 .906 .965 .964 .816

Table 1: Accuracy of the emotion classification
task tested on dialog data while trained on blog1,
tweet2 and dialog3 data.

and then applied it on the EmotionPush dataset
which contains 162,031 social dialog messages.
When searching for similar messages, Lucene first
applies term matching on the dataset using query
message. Messages containing at least one same
word would be candidates which is then ranked by
BM25 (Robertson et al., 2009). When the user re-
ceived a message and is composing a response, the
user manually specifies an emotion (e.g., Anger)
that he/she wants to convey in the message, and the
following two settings for generating responses.

1. [Baseline]: Given the message that the
user received, MoodSwipe first retrieves its
most similar message (by Lucene) from the
database, and then returns the response of
that retrieved message as the suggestion.

2. [+Emotion]: The procedure is identical
as [Baseline], just that the suggested text
must convey the user-specified emotion.
For instance, if the user specifies Anger,
MoodSwipe takes the message that the user
received and from database finds its most
similar message whose response’s emotion is
labelled as Anger as the suggestion.

Note that the emotions in our database are anno-
tated by automatic algorithms instead of humans.

To assess the quality of suggested messages in
each setting, we used the 1,366 messages collected
in sentence suggestion experiment to conduct hu-
man evaluations with crowd workers recruited via
Amazon Mechanical Turk. For each message, we
first show the crowd workers its 10 previous mes-
sages in the original chat log. We then show
the following three messages, in a random order,
as the follow-up line candidates of the displayed
chat log: 1) the actual user input response, 2)
the suggested texts in [Baseline], and 3) the sug-
gested texts in [+Emotion]. Workers are asked to
rank these three candidate messages based on their
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Setting Clarity Comfort Responsiveness
Rank of Messages and Suggested Texts

Input 1.522 1.570 1.531
Baseline 2.245 2.220 2.244

+Emotion 2.233 2.210 2.225
Good Suggestion Rate (%)

Baseline 26.12 28.38 26.44
+Emotion 26.09 28.65 26.70

Table 2: Human evaluation results. In Baseline the
user-specified emotions are not available.

Good Suggestion Rate (%)
Setting Anger Anticipation Fear

Baseline 40.36 21.29 31.39
+Emotion 37.49 20.32 25.28

Setting Joy Sadness Tired
Baseline 25.35 29.31 27.45

+Emotion 28.18 26.56 29.41

Table 3: Good suggestion rates of comfort for
messages of different emotions.

clarity, comfort, and responsiveness of being the
follow-up line of the given chat log (Liu et al.,
2010) (rank = 1, 2, or 3. Lower is better.) For
each message, we recruit 5 workers and average
their results. Table 2 shows the average ranking
and the “Good Suggestion Rate” of each setting,
which is the proportion of the suggested messages
that have a better (lower) ranking than the original
user input response. While the original input re-
sponses still have a better (lower) average ranking,
Table 2 shows that 26% to 28% of the suggested
texts are considered good by crowd workers and
thus could be useful to users. Results also show
that the [+Emotion] setting on average generates
slightly better suggestions than [Baseline] setting
in all three aspects.

With the consideration that in the three evalua-
tion aspects comfort is most relevant to emotions,
we further analyze the comfort result of each emo-
tion (Table 3.) Among all emotions, the Good
Suggestion Rates for Anger messages are the high-
est (40.36% and 37.49%), which are even much
higher than the average rates (about 28% as shown
in Table 2). This result suggests that our method is
particularly useful for expressing Anger emotions.

These results show the potential benefits of in-
cluding emotion signals in a response sugges-
tion application. While the simple retrieval-based
model (where emotions act only as “filters”) may
be of limited use, MoodSwipe is still able to sug-
gest responses that are better than the user re-
sponses around 25% of time. We believe that

when MoodSwipe is deployed, more data can be
collected and a more sophisticated models can be
developed to boost the benefit of emotion context.

4.4 Collecting User-reported Labels
One merit of MoodSwipe is the capability to col-
lect user-reported labels. MoodSwipe can obtain
labels from two major user actions, select and
swipe, respectively.

1. [Select] When the user first types a response,
browses all suggestions, and finally selects
one suggested text, MoodSwipe can record
the user’s original typed text and label its
emotion as that of the selected text.

2. [Swipe] When the user first types a response,
swipes directly to a specific emotion (e.g.,
Joy) and stops there, even without selecting
the suggested text, it often still indicates that
the user wants to express this emotion (e.g.,
Joy.) Therefore, MoodSwipe can record the
user’s current typed text and label it as the
same emotion, even the user does not select
the suggested text eventually.

5 Conclusion

We have developed the sender side MoodSwipe
to cooperate with the receiver side applications
and complete the emotion sensitive communica-
tion framework. MoodSwipe provided a conve-
nient interface which facilitating users on using
the modern emotion classification and text sug-
gestion techniques. In MoodSwipe, data are la-
beled automatically according to frond-end cues in
the background. We show that the user-specified
emotion can benefit text suggestion, though the
performance can still be improved by increasing
the size of the dialog database. MoodSwipe is
available at Google Play, and a demo video is
provided at: https://www.youtube.com/
watch?v=SZ1biWoiq3Y
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Abstract

We introduce ParlAI (pronounced “par-lay”),
an open-source software platform for dialog
research implemented in Python, available at
http://parl.ai. Its goal is to provide a
unified framework for sharing, training and
testing dialog models; integration of Amazon
Mechanical Turk for data collection, human
evaluation, and online/reinforcement learning;
and a repository of machine learning models
for comparing with others’ models, and im-
proving upon existing architectures. Over 20
tasks are supported in the first release, includ-
ing popular datasets such as SQuAD, bAbI
tasks, MCTest, WikiQA, QACNN, QADaily-
Mail, CBT, bAbI Dialog, Ubuntu, OpenSubti-
tles and VQA. Several models are integrated,
including neural models such as memory net-
works, seq2seq and attentive LSTMs.

1 Introduction
The purpose of language is to accomplish communi-
cation goals, which typically involve a dialog between
two or more communicators (Crystal, 2004). Hence,
trying to solve dialog is a fundamental goal for re-
searchers in the NLP community. From a machine
learning perspective, building a learning agent capa-
ble of dialog is also fundamental for various reasons,
chiefly that the solution involves achieving most of the
subgoals of the field, and in many cases those subtasks
are directly impactful to the task.

On the one hand dialog can be seen as a single task
(learning how to talk) and on the other hand as thou-
sands of related tasks that require different skills, all us-
ing the same input and output format. The task of book-
ing a restaurant, chatting about sports or the news, or
answering factual or perceptually-grounded questions
all fall under dialog. Hence, methods that perform task
transfer appear crucial for the end-goal. Memory, log-
ical and commonsense reasoning, planning, learning
from interaction, learning compositionality and other
AI subgoals also have clear roles in dialog.

However, to pursue these research goals, we require
software tools that unify the different dialog sub-tasks

Figure 1: The tasks in the first release of ParlAI.

Figure 2: MTurk Live Chat for collecting QA datasets
in ParlAI.

and the agents that can learn from them. Working on
individual datasets can lead to siloed research, where
the overfitting to specific qualities of a dataset do not
generalize to solving other tasks. For example, meth-
ods that do not generalize beyond WebQuestions (Be-
rant et al., 2013) because they specialize on knowledge
bases only, SQuAD (Rajpurkar et al., 2016) because
they predict start and end context indices (see Sec. 7),
or bAbI (Weston et al., 2015) because they use support-
ing facts or make use of its simulated nature.

In this paper we present a software platform, Par-
lAI (pronounced “par-lay”), that provides researchers
a unified framework for training and testing dialog
models, especially multitask training or evaluation over
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many tasks at once, as well as seamless integration with
Amazon Mechanical Turk. Over 20 tasks are supported
in the first release, including many popular datasets, see
Fig. 1. Included are examples of training neural mod-
els with PyTorch and Lua Torch1. Using Theano2 or
Tensorflow3 instead is also straightforward.

The overarching goal of ParlAI is to build a
community-based platform for easy access to both
tasks and learning algorithms that perform well on
them, in order to push the field forward. This pa-
per describes our goals in detail, and gives a technical
overview of the platform.

2 Goals

The goals of ParlAI are as follows:
A unified framework for development of dialog
models. ParlAI aims to unify dialog dataset input for-
mats fed to machine learning agents to a single format,
and to standardize evaluation frameworks and metrics
as much as possible. Researchers can submit their new
tasks and their agent training code to the repository to
share with others in order to aid reproducibility, and to
better enable follow-on research.
General dialog involving many different skills.
ParlAI contains a seamless combination of real and
simulated language datasets, and encourages multitask
model development & evaluation by making multitask
models as easy to build as single task ones. This should
reduce overfitting of model design to specific datasets
and encourage models that perform task transfer, an im-
portant prerequisite for a general dialog agent.
Real dialog with people. ParlAI allows collecting,
training and evaluating on live dialog with humans via
Amazon Mechanical Turk by making it easy to connect
Turkers with a dialog agent, see Fig. 2. This also en-
ables comparison of Turk experiments across different
research groups, which has been historically difficult.
Towards a common general dialog model. Our aim
is to motivate the building of new tasks and agents
that move the field towards a working dialog model.
Hence, each new task that goes into the repository
should build towards that common goal, rather than be-
ing seen solely as a piece of independent research.

3 General Properties of ParlAI

ParlAI consists of a number of tasks and agents that
can be used to solve them. All the tasks in ParlAI
have a single format (API) which makes applying any
agent to any task, or multiple tasks at once, simple.
The tasks include both fixed supervised/imitation learn-
ing datasets (i.e. conversation logs) and interactive (on-
line or reinforcement learning) tasks, as well as both
real language and simulated tasks, which can all be

1
http://pytorch.org/ and http://torch.ch/

2
http://deeplearning.net/software/theano/

3
https://www.tensorflow.org/

teacher = SquadTeacher(opt)
agent = MyAgent(opt)
world = World(opt, [teacher, agent])
for i in range(num_exs):
world.parley()
print(world.display())

def parley(self):
for agent in self.agents:
act = agent.act()
for other_agent in self.agents:
if other_agent != agent:
other_agent.observe(act)

Figure 3: ParlAI main for displaying data (top) and the
code for the world.parley call (bottom).

seamlessly trained on. ParlAI also supports other me-
dia, e.g. images as well as text for visual question an-
swering (Antol et al., 2015) or visually grounded dia-
log (Das et al., 2017). ParlAI automatically downloads
tasks and datasets the first time they are used. One
or more Mechanical Turkers can be embedded inside
an environment (task) to collect data, train or evaluate
learning agents.

Examples are included in the first release of train-
ing with PyTorch and Lua Torch. ParlAI uses ZeroMQ
to talk to languages other than Python (such as Lua
Torch). Both batch training and hogwild training of
models are supported and built into the code. An ex-
ample main for training an agent is given in Fig. 3.

4 Worlds, Agents and Teachers
The main concepts (classes) in ParlAI are worlds,
agents and teachers:
• world – the environment. This can vary from be-

ing very simple, e.g. just two agents conversing,
to much more complex, e.g. multiple agents in an
interactive environment.

• agent – an agent that can act (especially, speak) in
the world. An agent is either a learner (i.e. a ma-
chine learned system), a hard-coded bot such as
one designed to interact with learners, or a human
(e.g. a Turker).

• teacher – a type of agent that talks to the learner in
order to teach it, e.g. implements one of the tasks
in Fig. 1.

After defining a world and the agents in it, a main
loop can be run for training, testing or displaying,
which calls the function world.parley() to run one time
step of the world. Example code to display data is given
in Fig. 3, and the output of running it is in Fig. 4.

5 Actions and Observations
All agents (including teachers) speak to each other in
a single common format – the observation/action ob-
ject (a python dict), see Fig. 5. It is used to pass text,
labels and rewards between agents. The same object
type is used for both talking (acting) and listening (ob-
serving), but with different values in the fields. Hence,
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python examples/display_data.py -t babi

[babi:Task1k:4]: The office is north of the kitchen.
The bathroom is north of the office.
What is north of the kitchen?
[cands: office|garden|hallway|bedroom|kitchen|bathroom]

[RepeatLabelAgent]: office
- - - - - - - - - - - - - - - - - - - - -
˜˜
[babi:Task1k:2]: Daniel went to the kitchen.
Daniel grabbed the football there.
Mary took the milk there.
Mary journeyed to the office.
Where is the milk?
[cands: office|garden|hallway|bedroom|kitchen|bathroom]

[RepeatLabelAgent]: office

Figure 4: Example output to display data of a given
task (see Fig. 3 for corresponding code).

the object is returned from agent.act() and passed in to
agent.observe(), see Fig. 3.

The fields of the message are as follows:
• text: a speech act.
• id: the speaker’s identity.
• reward: a real-valued reward assigned to the re-

ceiver of the message.
• episode done: indicating the end of a dialog.
For supervised datasets, there are some additional

fields that can be used:
• label: a set of answers the speaker is expecting

to receive in reply, e.g. for QA datasets the right
answers to a question.

• label candidates: a set of possible ways to re-
spond supplied by a teacher, e.g. for multiple
choice datasets or ranking tasks.

• text candidates: ranked candidate predictions
from a learner. Used to evaluate ranking metrics,
rather than just evaluate the single response in the
text field.

• metrics: A teacher can communicate to a learning
agent metrics on its performance.

Finally other media can also be supported with addi-
tional fields:

• image: an image, e.g. for Visual Question An-
swering or Visual Dialog datasets.

As the dict is extensible, we can add more fields over
time, e.g. for audio and other sensory data, as well as
actions other than speech acts.

Each of these fields are technically optional, depend-
ing on the dataset, though the text field will most likely
be used in nearly all exchanges. A typical exchange
from a ParlAI training set is shown in Fig. 6.

6 Code Structure

The ParlAI codebase has five main directories:
• core: the primary code for the platform.
• agents: contains agents which can interact with

the worlds/tasks (e.g. learning models).
• examples: contains examples of different mains

(display data, training and evaluation).

Observation/action dict
Passed back and forth between agents & environment.

Contains:
.text text of speaker(s)
.id id of speaker(s)
.reward for reinforcement learning
.episode done signals end of episode

For supervised dialog datasets:
.label
.label candidates multiple choice options
.text candidates ranked candidate responses
.metrics evaluation metrics

Other media:
.image for VQA or Visual Dialog

Figure 5: The observation/action dict is the central
message passing object in ParlAI: agents send this mes-
sage to speak, and receive a message of this form to
observe other speakers and the environment.

• tasks: contains code for the different tasks avail-
able from within ParlAI.

• mturk: contains code for setting up Mechanical
Turk and sample MTurk tasks.

6.1 Core

The core library contains the following files:
• agents.py: defines the Agent base class for all

agents, which implements the observe() and act()
methods, the Teacher class which also reports
metrics, and MultiTaskTeacher for multitask train-
ing.

• dialog teacher.py: the base teacher class for
doing dialog with fixed chat logs.

• worlds.py: defines the base World class, Di-
alogPartnerWorld for two speakers, MultiAgent-
DialogWorld for more than two, and two contain-
ers that can wrap a chosen environment: Batch-
World for batch training, and HogwildWorld for
training across multiple threads.

• dict.py: code for building language dictionar-
ies.

• metrics.py: computes exact match, F1 and
ranking metrics for evaluation.

• params.py: uses argparse to interpret command
line arguments for ParlAI

6.2 Agents

The agents directory contains machine learning agents.
Currently available within this directory:
• drqa: an attentive LSTM model DrQA (Chen

et al., 2017) implemented in PyTorch that has
competitive results on SQuAD (Rajpurkar et al.,
2016) amongst other datasets.

• memnn: code for an end-to-end memory network
(Sukhbaatar et al., 2015) in Lua Torch.
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Teacher: {
’text’: ’Sam went to the kitchen.\n Pat gave Sam the

milk.\nWhere is the milk?’,\\
’labels’: [’kitchen’],
’label_candidates’: [’hallway’, ’kitchen’, ’bathroom’],
’episode_done’: False

}

Student: {
’text’: ’hallway’

}

Teacher: {
’text’: ’Sam went to the hallway\nPat went to the

bathroom\nWhere is the milk?’,
’labels’: [’hallway’],
’label_candidates’: [’hallway’, ’kitchen’, ’bathroom’],
’done’: True

}

Student: {
’text’: ’hallway’

}
...

Figure 6: A typical exchange from a ParlAI training set
involves messages passed using the observation/action
dict (the test set would not include labels). Shown here
is the bAbI dataset.

• remote agent: basic class for any agent connect-
ing over ZeroMQ.

• seq2seq: basic GRU sequence to sequence model
(Sutskever et al., 2014)

• ir baseline: information retrieval (IR) base-
line that scores responses with TFIDF-weighted
matching (Ritter et al., 2011).

• repeat label: basic class for merely repeating all
data sent to it (e.g. for debugging).

6.3 Examples

This directory contains examples of different mains:.
• display data: display data from a particular

task provided on the command-line.
• display model: show the predictions of a pro-

vided model.
• eval model: compute evaluation metrics for a

given model on a given task.
• train model: execute a standard training proce-

dure with a given task and model, including log-
ging and possibly alternating between training and
validation.

For example, one can display 10 random examples
from the bAbI tasks (Weston et al., 2015):
python display data.py -t babi -n 10

Display multitasking bAbI and SQuAD (Rajpurkar
et al., 2016) at the same time:

python display data.py -t babi,squad

Evaluate an IR baseline model on the Movies Subred-
dit:

python eval model.py -m ir baseline -t

‘#moviedd-reddit’ -dt valid

Train an attentive LSTM model on the SQuAD dataset
with a batch size of 32 examples:

python train model.py -m drqa -t squad

-b 32

6.4 Tasks

Over 20 tasks are supported in the first release, includ-
ing popular datasets such as SQuAD (Rajpurkar et al.,
2016), bAbI tasks (Weston et al., 2015), QACNN and
QADailyMail (Hermann et al., 2015), CBT (Hill et al.,
2015), bAbI Dialog tasks (Bordes and Weston, 2016),
Ubuntu (Lowe et al., 2015) and VQA (Antol et al.,
2015). All the datasets in the first release are shown
in Fig. 14.

The tasks are separated into five categories:
• Question answering (QA): one of the simplest

forms of dialog, with only 1 turn per speaker. Any
intelligent dialog agent should be capable of an-
swering questions, and there are many kinds of
questions (and hence datasets) that one can build,
providing a set of very important tests. Question
answering is particularly useful in that the evalu-
ation is simpler than other forms of dialog if the
dataset is labeled with QA pairs and the questions
are mostly unambiguous.

• Sentence Completion (Cloze Tests): the agent has
to fill in a missing word in the next utterance in a
dialog. Again, this is specialized dialog task, but
it has the advantage that the datasets are cheap to
make and evaluation is simple, which is why the
community has built several such datasets.

• Goal-Oriented Dialog: a more realistic class of
tasks is where there is a goal to be achieved by
the end of the dialog. For example, a customer
and a travel agent discussing a flight, one speaker
recommending another a movie to watch, and so
on.

• Chit-Chat: dialog tasks where there may not be
an explicit goal, but more of a discussion — for
example two speakers discussing sports, movies
or a mutual interest.

• Visual Dialog: dialog is often grounded in physi-
cal objects in the world, so we also include dialog
tasks with images as well as text.

Choosing a task in ParlAI is as easy as specifying
it on the command line, as shown in the dataset dis-
play utility, Fig. 4. If the dataset has not been used
before, ParlAI will automatically download it. As all
datasets are treated in the same way in ParlAI (with
a single dialog API, see Sec. 5), a dialog agent can
switch training and testing between any of them. Im-
portantly, one can specify many tasks at once (multi-
tasking) by simply providing a comma-separated list,
e.g. the command line arguments -t babi,squad, to
use those two datasets, or even all the QA datasets at
once (-t #qa) or indeed every task in ParlAI at once
(-t #all). The aim is to make it easy to build and
evaluate very rich dialog models.

Each task is contained in a folder with the following
standardized files:

4All dataset descriptions and references are at http://
parl.ai in the README.md and task list.py.
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• build.py: file for setting up data for the task,
including downloading the data the first time it is
requested.

• agents.py: contains teacher class(es), agents
that live in the world of the task.

• worlds.py: optionally added for tasks that need
to define new/complex environments.

To add a new task, one must implement build.py
to download any required data, and agents.py for the
teacher. If the data consist of fixed logs/dialog scripts
such as in many supervised datasets (SQuAD, Ubuntu,
etc.) there is very little code to write. For more com-
plex setups where an environment with interaction has
to be defined, new worlds and/or teachers can be im-
plemented.

6.5 Mechanical Turk

An important part of ParlAI is seamless integration
with Mechanical Turk for data collection, training or
evaluation. Human Turkers are also viewed as agents
in ParlAI and hence human-human, human-bot, or mul-
tiple humans and bots in group chat can all converse
within the standard framework, switching out the roles
as desired with no code changes to the agents. This is
because Turkers also receive and send via the same in-
terface: using the fields of the observation/action dict.
We provide two examples in the first release:

(i) qa collector: an agent that talks to Turkers to col-
lect question-answer pairs given a context para-
graph to build a QA dataset, see Fig. 2.

(ii) model evaluator: an agent which collects ratings
from Turkers on the performance of a bot on a
given task.

Running a new MTurk task involves implementing
and running a main file (like run.py) and defining sev-
eral task specific parameters for the world and agent(s)
you wish humans to talk to. For data collection tasks
the agent should pose the problem and ask the Turker
for e.g. the answers to questions, see Fig. 2. Other pa-
rameters include the task description, the role of the
Turker in the task, keywords to describe the task, the
number of hits and the rewards for the Turkers. One
can run in a sandbox mode before launching the real
task where Turkers are paid.

For online training or evaluation, the Turker can talk
to your machine learning agent, e.g. LSTM, memory
network or other implemented technique. New tasks
can be checked into the repository so researchers can
share data collection and data evaluation procedures
and reproduce experiments.

7 Demonstrative Experiment

To demonstrate ParlAI in action, we give results in Ta-
ble 1 of DrQA, an attentive LSTM architecture with
single task and multitask training on the SQuAD and
bAbI tasks, a combination not shown before with any
method, to our knowledge.

This experiment simultaneously shows the power of
ParlAI — how easy it is to set up this experiment — and
the limitations of current methods. Almost all methods
working well on SQuAD have been designed to predict
a phrase from the given context (they are given labeled
start and end indices in training). Hence, those models
cannot be applied to all dialog datasets, e.g. some of
the bAbI tasks include yes/no questions, where yes and
no do not appear in the context. This highlights that re-
searchers should not focus models on a single dataset.
ParlAI does not provide start and end label indices as
its API is dialog only, see Fig. 5. This is a deliberate
choice that discourages such dataset overfitting/ spe-
cialization. However, this also results in a slight drop
in performance because less information is given5 (66.4
EM vs. 69.5 EM, see (Chen et al., 2017), which is still
in the range of many existing well-performing meth-
ods, see https://stanford-qa.com).

Overall, while DrQA can solve some of the bAbI
tasks and performs well on SQuAD, it does not match
the best performing methods on bAbI (Seo et al., 2016;
Henaff et al., 2016), and multitasking does not help.
Hence, ParlAI lays out the challenge to the commu-
nity to find learning algorithms that are generally ap-
plicable and that benefit from training over many dialog
datasets.

8 Related Software

There are many existing independent dialog datasets,
and training code for individual models that work on
some of them. Many are framed in slightly different
ways (different formats, with different types of super-
vision), and ParlAI attempts to unify this fragmented
landscape.

There are some existing software platforms that are
related in their scope, but not in their specialization.
OpenAI’s Gym and Universe6 are toolkits for devel-
oping and comparing reinforcement learning (RL) al-
gorithms. Gym is for games like Pong or Go, and Uni-
verse is for online games and websites. Neither focuses
on dialog or covers the case of supervised datasets as
we do.

CommAI7 is a framework that uses textual commu-
nication for the goal of developing artificial general in-
telligence through incremental tasks that test increas-
ingly more complex skills, as described in (Mikolov
et al., 2015). CommAI is in a RL setting, and con-
tains only synthetic datasets, rather than real natural
language datasets as we do here. In that regard it has
a different focus to ParlAI, which emphasizes the more
immediate task of real dialog, rather than directly on
evaluation of machine intelligence.

5As we now do not know the location of the true answer,
we randomly pick the start and end indices of any context
phrase matching the given training set answer, in some cases
this is unique.

6
https://gym.openai.com/ and https://universe.openai.com/

7
https://github.com/facebookresearch/CommAI-env

83



Task Single Multitask
bAbI 10k 1: Single Supporting Fact 100 100

2: Two Supporting Facts 98.1 54.3
3: Three Supporting Facts 45.4 58.1
4: Two Arg. Relations 100 100
5: Three Arg. Relations 98.9 98.2
11: Basic Coreference 100 100
12: Conjunction 100 100
13: Compound Coref. 100 100
14: Time Reasoning 99.8 99.9
16: Basic Induction 47.7 48.2

SQuAD (Dev. Set) 66.4 63.4

Table 1: Test Accuracy of DrQA on bAbI 10k and
SQuAD (Exact Match metric) using ParlAI. The subset
of bAbI tasks for which the answer is exactly contained
in the text is used.

9 Conclusion and Outlook
ParlAI is a framework allowing the research commu-
nity to share existing and new tasks for dialog as well
as agents that learn on them, and to collect and evaluate
conversations between agents and humans via Mechan-
ical Turk. We hope this tool enables systematic devel-
opment and evaluation of dialog agents, helps push the
state of the art in dialog further, and benefits the field
as a whole.
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Abstract

Geographic information extraction from
textual data sources, called geoparsing, is
a key task in text processing and central
to subsequent spatial analysis approaches.
Several geoparsers are available that sup-
port this task, each with its own (often lim-
ited or specialized) gazetteer and its own
approaches to toponym detection and res-
olution. In this demonstration paper, we
present HeidelPlace, an extensible frame-
work in support of geoparsing. Key fea-
tures of HeidelPlace include a generic
gazetteer model that supports the integra-
tion of place information from different
knowledge bases, and a pipeline approach
that enables an effective combination of
diverse modules tailored to specific geop-
arsing tasks. This makes HeidelPlace a
valuable tool for testing and evaluating
different gazetteer sources and geoparsing
methods. In the demonstration, we show
how to set up a geoparsing workflow with
HeidelPlace and how it can be used to
compare and consolidate the output of dif-
ferent geoparsing approaches.

1 Introduction

The ever-growing amount of available text data
raises the need for automated Information Extrac-
tion (IE) to obtain structured information from
text. A central step in such an extraction proce-
dure is the semantic annotation of the contained
information (Zhang and Rettinger, 2014). For
tasks such as event detection or content analysis,
temporal and spatial information play a crucial
role. In particular, the linking of place mentions
to geographic databases, so-called geoparsing, is
an integral element of textual analyses (Andogah

et al., 2012). Geoparsing describes the process of
identifying place mentions in text (so called to-
ponyms) and linking them to unambiguous spa-
tial references. Consider the example text “Hei-
delberg was founded in 1196 AD”, which con-
tains the place mention “Heidelberg”. Typically,
geoparsing involves three components: gazetteers,
toponym recognition and toponym resolution. A
Gazetteer is a dictionary of geographic features
that serves as a knowledge repository for places
of interest. Toponym recognition deals with the
detection of place names in documents. For in-
stance, “Heidelberg” can be detected by match-
ing candidate strings to a gazetteer of city names.
With the help of toponym resolution (also called
toponym linking), each identified toponym is then
matched to an unambiguous spatial reference (e.g.,
latitude and longitude coordinates). In our ex-
ample above, the spatial reference may be taken
from the matched gazetteer entry. Due to ambigu-
ous names of mentioned places, this task often
requires toponym disambiguation. For instance,
“Heidelberg” refers to several places world-wide.
If the gazetteer contains founding dates, we can
infer that the text refers to Heidelberg in Germany.

Linguistic peculiarities, as well as the relevance
of different places and place features, greatly vary
with the application domain. Hence, geopars-
ing is a non-trivial process that requires fine tun-
ing according to the respective use-case. As a
result, a variety of geoparsing approaches have
been proposed (Hoffart, 2015; Leidner, 2007;
Lieberman and Samet, 2011, 2012), many of
which are domain-specific. There exist sev-
eral specialized gazetteers, such as GeoNames1,
a large gazetteer for a broad spectrum of place
types, OpenStreetMap2, a community-built geo-

1http://geonames.org
2http://openstreetmap.org
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graphic knowledge-base, and Pleiades3, a historic
gazetteer. However, reusing and comparing exist-
ing geoparsers is often difficult, since they gen-
erally come with their own gazetteer and pro-
cessing pipeline. Configurability and extensibil-
ity are rarely considered. As a result, it is of-
ten problematic to adjust a geoparser to other ap-
plication domains or to include other algorithms.
Especially the adjustment to a different gazetteer
source tends to be troublesome. Each gazetteer
uses its own data model and most geoparsers use
the data model of their primary gazetteer resource.
If the underlying gazetteer data model is not de-
signed to be flexible, or if the geoparser is too
tightly coupled with a specific gazetteer source, a
reuse may not be possible.

CLAVIN4, an open-source geoparsing frame-
work, strives to overcome these issues by pro-
viding an extensible toolbox of geoparsing meth-
ods. However, the framework strongly relies on
GeoNames as gazetteer, which is often not an ideal
choice. Switching to another data source would
entail a significant rewrite of the code base.

Thus, a generalized gazetteer data model is re-
quired that is compatible with different gazetteer
sources. Only then can significant software mod-
ifications due to gazetteer specific data modeling
be avoided, and the adaptation work be reduced to
the transformation of data sources to the generic
data model. While CLAVIN’s modular design al-
lows to add new modules, its processing pipeline
is too restrictive to enable complex geoparsing ap-
proaches that rely on information exchange be-
tween different modules.

Contributions. In this work, we present Hei-
delPlace, a geoparsing framework that includes a
generic gazetteer model and an implementation
of the entire geoparsing process. The generic
gazetteer model supports the integration and man-
agement of heterogeneous, large-scale gazetteer
sources, and is flexible enough to integrate con-
cepts from different gazetteers. A variety of
concepts proposed in gazetteer research are in-
cluded (Hill, 2000; Keler et al., 2009; Moura
and Davis, 2014), which allow the description of
places in a comprehensive and yet flexible manner.

The extensibility of HeidelPlace is realized in
two ways. First, modularization is a central design
aspect, with different geoparsing approaches be-

3http://pleiades.stoa.org
4https://clavin.bericotechnologies.com

ing represented as modules. They can be used and
combined in a plug-in like manner, allowing the
integration of newly developed modules. Second,
interactions between the different components are
handled transparently by the framework, using an
annotation-based processing pipeline. Therefore,
the user can focus on obtaining appropriate con-
figurations through experimentation. To further
increase the efficiency of developing new geop-
arsing methods, we include user-friendly GUIs
that make the geoparsing process transparent. The
open-source project HeidelPlace and the data used
for this demonstration are available for download
from the EventAE project website5.

2 Framework and System Overview

HeidelPlace includes a geoparsing framework for
developing new geoparsers as well as GUIs to
make the geoparsing process transparent to the
user. The architecture of our proposed geoparsing
framework is visualized in Figure 1, which high-
lights the three major components that we describe
in the following. The GUIs are introduced towards
the end of this section and in Section 3.

Annotation Pipeline: In order to execute
the geoparsing process (either entirely or par-
tially) on input documents, we utilize the
annotation pipeline of the Stanford CoreNLP
toolkit (Manning et al., 2014), which is built
atop three key interdependent concepts, namely
Annotation objects, Annotators, and
AnnotationPipelines. An Annotation
object stores key-value information about a
document with arbitrary structure. As depicted in
Figure 1, this may be the original text of a pro-
cessed document, identified tokens, or mentions
of named entities. An Annotator is a config-
urable module that performs some processing task
on a given document. It can read and write anal-
ysis information from and to the Annotation
objects, allowing to pass information among
different Annotators. The annotator does not
implement the processing task itself, but dele-
gates between different modules that implement
the same functionality. For instance, Tokenizer
modules scan the original text of a document with
specific strategies and return a set of identified to-
kens. A TokenizerAnnotator is configured
by the user to utilize a particular Tokenizer

5http://event.ifi.uni-heidelberg.de/
?page_id=517

86



Figure 1: The geoparsing framework architecture, including the three major components: annotation
pipeline, geoparsing modules, and gazetteer.

module. It passes all required information to the
module and adds annotations for retrieved output
tokens. This additional layer of abstraction al-
lows to separate pipeline maintenance tasks from
the implementation of the actual data processing
methods. The AnnotationPipeline consists
of a set of Annotators, which are run sequen-
tially over the input document.

Geoparsing Modules: The main objective of
our framework is the unification of the geopars-
ing process, with a focus on extensibility and us-
ability. Therefore, we use a modular design and
an easy-to-use processing pipeline as described
above. The geoparsing process is divided into four
steps, which are represented by modules:
• ToponymRecognizer: Extracts topo-

nyms from a given input text document.
• ToponymLinker: Links each toponym to

places in the gazetteer. Due to ambiguity,
multiple matches per toponym are possible.
• ToponymDisambiguator: Resolves am-

biguous matches.
• SpatialInference: Infers the location

of unlinked toponyms.
For each step, an Annotator feeds the correct
input to the respective module and then adds its
output to the Annotation object.

The processing steps need to be executed in se-
quence, but may be re-run multiple times. For ex-
ample, running a disambiguation process before
the entity recognition step does not make sense.
However, re-running a recognition module after a
first complete geoparsing pass may improve the
results in the second run.

Gazetteer: We developed a generic gazetteer
model that allows to incorporate a wide spectrum
of place related information. Its central concept
is a geographic place, which may have multiple
names, footprints, types, properties, and relation-
ships, depending on the available data. This al-
lows us to incorporate data from multiple hetero-
geneous sources.

To enable multilingual and context sensitive
geoparsing, we allow each place name to have a
language entry and a set of flags (e.g., is historic or
is official). By supporting multiple footprints per
place, different spatial representations like points,
lines, or polygons are possible. This enables the
use of different geographic resolutions and allows
us to capture irregularities such as historic changes
or political border conflicts. Since a place may
fulfil different functions, multiple types can be as-
signed to each geographic place. In addition, each
place may have an arbitrary number of properties
with an assigned type and value (e.g., its popula-
tion or a Wikipedia link). To link places within the
gazetteer, typed place relationships can be defined
(e.g., sister city or topographic neighbor) and used
to implement administrative hierarchies. Option-
ally, relationships may have a value assigned, e.g.,
a place co-occurrence score (Overell and Rüger,
2008; Spitz et al., 2016). With a flexible type
scheme, complex ontologies for place types, prop-
erty types, and relationship types can be created
by using parent-child and similar-to relationships
among types. This allows the integration of type
systems of existing gazetteers, while maintaining
expressiveness by linking related types. Figure 2
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Figure 2: Mapping of GeoNames and OSM ad-
ministrative levels to a German administrative hi-
erarchy in the HeidelPlace gazetteer model.

shows an exemplary mapping of GeoNames and
OSM administrative levels to administrative hi-
erarchies in the PlaceType entity class of the
HeidelPlace gazetteer model. Furthermore, prove-
nance and validity times can be recorded for each
place and its descriptors. This allows to docu-
ment data origin and temporal validity such as the
change in population, which is especially impor-
tant for historic text corpora.

To support easy access to the gazetteer database,
we provide an API written in Java using JPA.
This includes a mapping of the database schema
to Java classes as well as a flexible query inter-
face. It serves as an abstraction layer for com-
plex database-level access to the underlying data
model. A set of predefined filters for each place
descriptor can be used to narrow the place search.
Users may implement more filters through the JPA
Criteria API. For advanced use cases, plain SQL
queries support low-level access if desired.

Gazetteer Creation and Integration: Before
we can perform actual geoparsing, we first need
to fill our gazetteer with data. To demonstrate the
applicability of the proposed gazetteer model, we
implemented the model in a relational database
schema using PostgreSQL 9.4 with PostGIS 2.2.
We developed an importer for GeoNames to il-
lustrate how the transformation and integration of
data into our model works. A subset of the GeoN-
ames dump from September 7th, 2016 was im-
ported into the gazetteer database. It consists of
4.6 million places, with high coverage of higher-
level administrative divisions and many populated
places. We obtain basic POI coverage by adding
hotels, airports, and castles. More than 6.3 mil-
lion place names were extracted, 3.8 million of
which are distinct (1.66 places per toponym, 1.38

Figure 3: The gazetteer browsing GUI. The search
filters can be specified at the top. On the left side
the places are listed and shown on a map. The data
for a selected place is displayed on the right side.

toponyms per place). We use this data for the
demonstration scenario. Due to the complexity of
merging gazetteers, we refrain from elaborating on
the conflation of gazetteers in this demonstration.

3 Demonstration Scenario

In the following, we describe the demonstration of
four key usage scenarios of the framework.

Gazetteer Browsing: To make the geopars-
ing process transparent to the user, visual feed-
back is important. For the gazetteer component,
we provide a user-friendly GUI called “Gazetteer
Viewer”, which was developed using JavaFX (see
Figure 3). The GUI allows users to conveniently
browse the gazetteer data and aids them in under-
standing the underlying data model. The user can
narrow search results by specifying a set of fil-
ters in the filter mask in the top area. By clicking
”Search”, the gazetteer is scanned for places that
match the specified criteria. A list of identified
places and an overview map with their locations
are displayed on the left side. If a place is selected
in the list or map, its details are shown on the right
side. To follow links between places, double click-
ing on an entry in the relationship table opens a
separate view with details of the related place.

With this tool, data exploration can be greatly
improved. Neither manual database queries nor
knowledge about the database layout are required.
Furthermore, the data is clearly structured and vi-
sualized to quickly convey relevant information.
To display the geoparsing process, we developed a
second GUI as described in the following.
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Figure 4: The geoparsing GUI. The input filed for text and the modules selection is located at the top.
The annotations are shown below in an interactive area where the user can gain more information. For
each geoparsing method a separate result view is shown.

Performing Geoparsing: The usage of the
geoparsing framework is demonstrated with a set
of exemplary geoparsing modules. Here, the fo-
cus lies on showcasing the interplay between the
modules and not on methodical sophistication.
For toponym recognition, we include three mod-
ules. The first module applies the location name
finder of OpenNLP, while the second uses Stan-
ford NER to detect location entities. The third
module is based on gazetteer look-ups for proper
nouns as well as basic linguistic considerations. A
single toponym linking module is also provided,
which links toponyms to gazetteer entries via an
exact name matching filter. For toponym disam-
biguation, two basic modules are implemented.
The first module gives precedence to places with
higher population, whereas the second module
gives precedence to pairs of candidate places that
are geographically closer. Since spatial inference
is a non-trivial task, we implement no exemplary
inference module in this demonstration.

To exemplify how a geoparser can be imple-
mented based on our geoparsing framework, we
provide a JavaFX-based GUI called “Geoparser
Viewer”. The viewer is depicted in Figure 4. It
supports a set of pre-configured modules and vi-
sualizes the geoparsing process. In the viewer, the
user first provides an input text document and se-
lects a module per geoparsing step. The geopars-

ing process can then be run by clicking “Geop-
arse”. Alternatively, geoparsing can be executed
step-by-step by clicking the respective buttons.
Resulting annotations are visualized in the bottom
part of the window (in Figure 4, results for mul-
tiple geoparsing methods are shown, as described
in the last use-case). This visualization helps the
user to analyze the geoparsing results, as we dis-
cuss in the next scenario. The simple replacement
of modules highlights the benefit of a modular de-
sign and clearly structured processing pipeline.

Analyzing Geoparsing Results: If a geopars-
ing method produces unexpected output or if its
behavior is not clear, detailed analysis of the pro-
cess is required. The result view of the “Geoparser
Viewer” allows to conveniently analyze the geop-
arsing results. On the left side, identified named
entities are highlighted in the original text. Since
geoparsers may use general NER tools like Stan-
fordNER, our recognition module can also add an-
notations for named entities other than locations.
Knowing the type of other entities may be of use
for later processing steps (e.g., disambiguation).
Therefore, each color represents a named entity
type (among others, yellow for persons, red for
locations, blue for organizations). Additionally,
a list with all identified named entities is shown.
Selections in the text are reflected in the list and
vice versa. If a location entity is selected, a list of
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linked places from the gazetteer is shown. A map
displays the location for a selected linked place to
quickly surmise the geographic context.

The results of the geoparsing process highly de-
pend on the gazetteer data. For example, the type,
administrative level, population, or mention fre-
quency of a place may influence the recognition
and disambiguation step. Hence, it may be of in-
terest to see what information is stored for a linked
place to draw conclusions about the geoparser de-
cisions. By double-clicking on a linked place en-
try, a separate view is shown that is similar to the
“Gazetteer Viewer”. With such a visual analy-
sis, experimentation and debugging of geoparsing
methods is greatly simplified.

Comparing Geoparsing Methods: Another
valuable feature is the comparison of different
geoparsing modules. In the “Geoparser Viewer”,
multiple geoparsing methods can be compared
qualitatively. If multiple modules per geoparsing
step are selected, each combination from the cross
product of all module combinations is considered
a geoparsing method. After clicking “Geoparse”
or any of the step-by-step buttons, a result view
for each method is shown (see Figure 4).

The clearly structured and interactive visualiza-
tion allows the user to quickly surmise the differ-
ences between several geoparsing methods. Of
course, this does not replace quantitative perfor-
mance analyses that allow for a more representa-
tive performance evaluation. Instead, it provides
the means to easily test special cases and helps to
better understand the geoparsing process and the
employed modules.

4 Conclusion and Ongoing Work

In this paper, we presented HeidelPlace, a flexi-
ble and extensible geoparsing framework built on
two paradigms. On the one hand, it introduces a
generic gazetteer model that supports the integra-
tion of heterogeneous gazetteer sources. A com-
fortable query API and a user-friendly GUI aid
users in maintaining and exploring the gazetteer.
On the other hand, HeidelPlace utilizes a mod-
ularized pipeline for the entire geoparsing pro-
cess. Since each geoparsing step is represented as
a module within a flexible annotation-based pro-
cessing pipeline, new approaches can easily be in-
tegrated and tested.

Our ongoing work includes the implementa-
tion of an evaluation component that enables a

standardized quantitative comparison of different
geoparsing approaches, the development of an
UIMA component to simplify integration into ex-
isting IE pipelines, a web-service that supports re-
mote queries to the gazetteer and geoparser, and
the implementation of state-of-the-art modules as
a starting point for a production-ready toolbox that
can be improved and expanded by the community.
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Abstract

Interpretability of a predictive model is
a powerful feature that gains the trust of
users in the correctness of the predictions.
In word sense disambiguation (WSD),
knowledge-based systems tend to be much
more interpretable than knowledge-free
counterparts as they rely on the wealth of
manually-encoded elements representing
word senses, such as hypernyms, usage
examples, and images. We present a WSD
system that bridges the gap between these
two so far disconnected groups of meth-
ods. Namely, our system, providing access
to several state-of-the-art WSD models,
aims to be interpretable as a knowledge-
based system while it remains completely
unsupervised and knowledge-free. The
presented tool features a Web interface
for all-word disambiguation of texts that
makes the sense predictions human read-
able by providing interpretable word sense
inventories, sense representations, and dis-
ambiguation results. We provide a public
API, enabling seamless integration.

1 Introduction

The notion of word sense is central to computa-
tional lexical semantics. Word senses can be either
encoded manually in lexical resources or induced
automatically from text. The former knowledge-
based sense representations, such as those found
in the BabelNet lexical semantic network (Nav-
igli and Ponzetto, 2012), are easily interpretable
by humans due to the presence of definitions, us-
age examples, taxonomic relations, related words,
and images. The cost of such interpretability is
that every element mentioned above is encoded

manually in one of the underlying resources, such
as Wikipedia. Unsupervised knowledge-free ap-
proaches, e.g. (Di Marco and Navigli, 2013; Bar-
tunov et al., 2016), require no manual labor, but
the resulting sense representations lack the above-
mentioned features enabling interpretability. For
instance, systems based on sense embeddings are
based on dense uninterpretable vectors. Therefore,
the meaning of a sense can be interpreted only on
the basis of a list of related senses.

We present a system that brings interpretability
of the knowledge-based sense representations into
the world of unsupervised knowledge-free WSD
models. The contribution of this paper is the first
system for word sense induction and disambigua-
tion, which is unsupervised, knowledge-free, and
interpretable at the same time. The system is based
on the WSD approach of Panchenko et al. (2017)
and is designed to reach interpretability level of
knowledge-based systems, such as Babelfy (Moro
et al., 2014), within an unsupervised knowledge-
free framework. Implementation of the system is
open source.1 A live demo featuring several dis-
ambiguation models is available online.2

2 Related Work

In this section, we list prominent WSD systems
with openly available implementations.

Knowledge-Based and/or Supervised Systems
IMS (Zhong and Ng, 2010) is a supervised all-
words WSD system that allows users to integrate
additional features and different classifiers. By de-
fault, the system relies on the linear support vec-
tor machines with multiple features. The AutoEx-
tend (Rothe and Schütze, 2015) approach can be
used to learn embeddings for lexemes and synsets

1https://github.com/uhh-lt/wsd
2http://jobimtext.org/wsd
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Figure 1: Software and functional architecture of the WSD system.

of a lexical resource. These representations were
successfully used to perform WSD using the IMS.

DKPro WSD (Miller et al., 2013) is a modu-
lar, extensible Java framework for word sense dis-
ambiguation. It implements multiple WSD meth-
ods and also provides an interface to evaluation
datasets. PyWSD3 project also provides imple-
mentations of popular WSD methods, but these
are implemented in the Python language.

Babelfy (Moro et al., 2014) is a system based
on the BabelNet that implements a multilingual
graph-based approach to entity linking and WSD
based on the identification of candidate meanings
using the densest subgraph heuristic.

Knowledge-Free and Unsupervised Systems
Neelakantan et al. (2014) proposed a multi-sense
extension of the Skip-gram model that features
an open implementation. AdaGram (Bartunov
et al., 2016) is a system that learns sense embed-
dings using a Bayesian extension of the Skip-gram
model and provides WSD functionality based on
the induced sense inventory. SenseGram (Pelev-
ina et al., 2016) is a system that transforms word
embeddings to sense embeddings via graph clus-
tering and uses them for WSD. Other methods to
learn sense embeddings were proposed, but these
do not feature open implementations for WSD.

Among all listed systems, only Babelfy imple-
ments a user interface supporting interpretable vi-
sualization of the disambiguation results.

3 Unsupervised Knowledge-Free
Interpretable WSD

This section describes (1) how WSD models are
learned in an unsupervised way from text and (2)
how the system uses these models to enable human
interpretable disambiguation in context.

3https://github.com/alvations/pywsd

3.1 Induction of the WSD Models
Figure 1 presents architecture of the WSD sys-
tem. As one may observe, no human labor
is used to learn interpretable sense representa-
tions and the corresponding disambiguation mod-
els. Instead, these are induced from the input text
corpus using the JoBimText approach (Biemann
and Riedl, 2013) implemented using the Apache
Spark framework4, enabling seamless processing
of large text collections. Induction of a WSD
model consists of several steps. First, a graph of
semantically related words, i.e. a distributional
thesaurus, is extracted. Second, word senses are
induced by clustering of an ego-network of related
words (Biemann, 2006). Each discovered word
sense is represented as a cluster of words. Next,
the induced sense inventory is used as a pivot to
generate sense representations by aggregation of
the context clues of cluster words. To improve
interpretability of the sense clusters they are la-
beled with hypernyms, which are in turn extracted
from the input corpus using Hearst (1992) pat-
terns. Finally, the obtained WSD model is used to
retrieve a list of sentences that characterize each
sense. Sentences that mention a given word are
disambiguated and then ranked by prediction con-
fidence. Top sentences are used as sense usage ex-
amples. For more details about the model induc-
tion process refer to (Panchenko et al., 2017). Cur-
rently, the following WSD models induced from a
text corpus are available:

Word senses based on cluster word features.
This model uses the cluster words from the in-
duced word sense inventory as sparse features that
represent the sense.

Word senses based on context word features.
This representation is based on a sum of word vec-
tors of all cluster words in the induced sense inven-
tory weighted by distributional similarity scores.

4http://spark.apache.org
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Super senses based on cluster word features.
To build this model, induced word senses are
first globally clustered using the Chinese Whispers
graph clustering algorithm (Biemann, 2006). The
edges in this sense graph are established by disam-
biguation of the related words (Faralli et al., 2016;
Ustalov et al., 2017). The resulting clusters rep-
resent semantic classes grouping words sharing a
common hypernym, e.g. “animal”. This set of se-
mantic classes is used as an automatically learned
inventory of super senses: There is only one global
sense inventory shared among all words in contrast
to the two previous traditional “per word” models.
Each semantic class is labeled with hypernyms.
This model uses words belonging to the semantic
class as features.

Super senses based on context word features.
This model relies on the same semantic classes
as the previous one but, instead, sense represen-
tations are obtained by averaging vectors of words
sharing the same class.

3.2 WSD API
To enable fast access to the sense inventories and
effective parallel predictions, the WSD models ob-
tained at the previous step were indexed in a rela-
tional database.5 In particular, each word sense
is represented by its hypernyms, related words,
and usage examples. Besides, for each sense, the
database stores an aggregated context word rep-
resentation in the form of a serialized object con-
taining a sparse vector in the Breeze format.6 Dur-
ing the disambiguation phrase, the input context is
represented in the same sparse feature space and
the classification is reduced to the computation of
the cosine similarity between the context vector
and the vectors of the candidate senses retrieved
from the database. This back-end is implemented
as a RESTful API using the Play framework.7

3.3 User Interface for Interpretable WSD
The graphical user interface of our system is im-
plemented as a single page Web application using
the React framework.8 The application performs
disambiguation of a text entered by a user. In par-
ticular, the Web application features two modes:

Single word disambiguation mode is illus-
trated in Figure 2. In this mode, a user specifies

5https://www.postgresql.org
6https://github.com/scalanlp/breeze
7https://www.playframework.com
8https://facebook.github.io/react

an ambiguous word and its context. The output of
the system is a ranked list of all word senses of the
ambiguous word ordered by relevance to the input
context. By default, only the best matching sense
is displayed. The user can quickly understand the
meaning of each induced sense by looking at the
hypernym and the image representing the sense.
Faralli and Navigli (2012) showed that Web search
engines can be used to acquire information about
word senses. We assign an image to each word in
the cluster by querying an image search API9 us-
ing a query composed of the ambiguous word and
its hypernym, e.g. “jaguar animal”. The first hit
of this query is selected to represent the induced
word sense. Interpretability of each sense is fur-
ther ensured by providing to the user the list of
related senses, the list of the most salient context
clues, and the sense usage examples (cf. Figure 2).
Note that all these elements are obtained without
manual intervention.

Finally, the system provides the reasons behind
the sense predictions by displaying context words
triggered the prediction. Each common feature is
clickable, so a user is able to trace back sense clus-
ter words containing this context feature.

All words disambiguation mode is illustrated
in Figure 3. In this mode, the system performs dis-
ambiguation of all nouns and entities in the input
text. First, the text is processed with a part-of-
speech and a named entity taggers.10 Next, each
detected noun or entity is disambiguated in the
same way as in the single word disambiguation
mode described above, yet the disambiguation re-
sults are represented as annotations of a running
text. The best matching sense is represented by a
hypernym and an image as depicted in Figure 3.
This mode performs “semantification” of a text,
which can, for instance, assist language learners
with the understanding of a text in a foreign lan-
guage: Meaning of unknown to the learner words
can be deduced from hypernyms and images.

4 Evaluation

In our prior work (Panchenko et al., 2017), we per-
formed a thorough evaluation of the method im-
plemented in our system on two datasets showing
the state-of-the-art performance of the approach as
compared to other unsupervised knowledge-free

9https://azure.microsoft.com/en-us/
services/cognitive-services/search

10http://www.scalanlp.org

93



Figure 2: Single word disambiguation mode: results of disambiguation of the word “Jaguar” (B) in the
sentence “Jaguar is a large spotted predator of tropical America similar to the leopard.” (A) using the
WSD disambiguation model based on cluster word features (C). The predicted sense is summarized with
a hypernym and an image (D) and further represented with usage examples, semantically related words,
and typical context clues. Each of these elements is extracted automatically. The reasons of the predic-
tions are provided in terms of common sparse features of the input sentence and a sense representation
(E). The induced senses are linked to BabelNet using the method of Faralli et al. (2016) (F).

Figure 3: All words disambiguation mode: results of disambiguation of all nouns in a sentence.
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# Words # Senses Avg. Polysemy # Contexts

863 2,708 3.13 11,712

Table 1: Evaluation dataset based on BabelNet.

methods for WSD, including participants of the
SemEval 2013 Task 13 (Jurgens and Klapaftis,
2013) and two unsupervised knowledge-free WSD
systems based on word sense embeddings (Bar-
tunov et al., 2016; Pelevina et al., 2016). These
evaluations were based on the “lexical sample”
setting, where the system is expected to predict a
sense identifier of the ambiguous word.

In this section, we perform an extra evalua-
tion that assesses how well hypernyms of ambigu-
ous words are assigned in context by our system.
Namely, the task is to assign a correct hypernym
of an ambiguous word, e.g. “animal” for the word
“Jaguar” in the context “Jaguar is a large spotted
predator of tropical America”. This task does not
depend on a fixed sense inventory and evaluates at
the same time WSD performance and the quality
of the hypernymy labels of the induced senses.

4.1 Dataset

In this experiment, we gathered a dataset consist-
ing of definitions of BabelNet 3.7 senses of 1,219
frequent nouns.11 In total, we collected 56,003
sense definitions each labeled with gold hyper-
nyms coming from the IsA relations of BabelNet.

The average polysemy of words in the gathered
dataset was 15.50 senses per word as compared
to 2.34 in the induced sense inventory. This huge
discrepancy in granularities lead to the fact that
some test sentences cannot be correctly predicted
by definition: some (mostly rare) BabelNet senses
simply have no corresponding sense in the induced
inventory. To eliminate the influence of this id-
iosyncrasy, we kept only sentences that contain at
least one common hypernym with all hypernyms
of all induced senses. The statistics of the result-
ing dataset are presented in Table 1, it is available
in the project repository.

4.2 Evaluation Metrics

WSD performance is measured using the accuracy
with respect to the sentences labeled with the di-
rect hypernyms (Hypers) or an extended set of hy-
pernym including hypernyms of hypernyms (Hy-

11Most of the nouns come from the TWSI (Biemann, 2012)
dataset, while the remaining nouns were manually selected.

WSD Model Accuracy
Inventory Features Hypers HyperHypers

Word Senses Random 0.257 0.610
Word Senses MFS 0.292 0.682
Word Senses Cluster Words 0.291 0.650
Word Senses Context Words 0.308 0.686

Super Senses Random 0.001 0.001
Super Senses MFS 0.001 0.001
Super Senses Cluster Words 0.174 0.365
Super Senses Context Words 0.086 0.188

Table 2: Performance of the hypernymy labeling
in context on the BabelNet dataset.

perHypers). A correct match occurs when the pre-
dicted sense has at least one common hypernym
with the gold hypernyms of the target word in a
test sentence.

4.3 Discussion of Results
Word Senses. All evaluated models outperform
both random and most frequent sense baselines,
see Table 2. The latter picks the sense that cor-
responds to the largest sense cluster (Panchenko
et al., 2017). In the case of the traditional “per
word” inventories, the model based on the con-
text features outperform the models based on clus-
ter words. While sense representations based on
the clusters of semantically related words contain
highly accurate features, such representations are
sparse as one sense contains at most 200 features.
As the result, often the model based on the cluster
words contain no common features with the fea-
tures extracted from the input context. The sense
representations based on the aggregated context
clues are much less sparse, which explains their
superior performance.

Super Senses. In the case of the super sense
inventory, the model based solely on the cluster
words yielded better results that the context-based
model. Note here that (1) the clusters that rep-
resent super senses are substantially larger than
word sense clusters and thus less sparse, (2) words
in the super sense clusters are unweighted in con-
trast to word sense cluster, thus averaging of word
vectors is more noise-prone. Besides, the perfor-
mance scores of the models based on the super
sense inventories are substantially lower compared
to their counterparts based on the traditional “per
word” inventories. Super sense models are able
to perform classification for any unknown word
missing in the training corpus, but their disam-
biguation task is more complex (the models need
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to choose one of 712 classes as compared to an
average of 2–3 classes for the “per word” invento-
ries). This is illustrated by the near-zero scores of
the random and the MFS baselines for this model.

5 Conclusion

We present the first openly available word
sense disambiguation system that is unsupervised,
knowledge-free, and interpretable at the same
time. The system performs extraction of word and
super sense inventories from a text corpus. The
disambiguation models are learned in an unsuper-
vised way for all words in the corpus on the ba-
sis on the induced inventories. The user inter-
face of the system provides efficient access to the
produced WSD models via a RESTful API or via
an interactive Web-based graphical user interface.
The system is available online and can be directly
used from external applications. The code and the
WSD models are open source. Besides, in-house
deployments of the system are made easy due to
the use of the Docker containers.12 A prominent
direction for future work is supporting more lan-
guages and establishing cross-lingual sense links.
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Abstract
Named-entity recognition (NER) aims at
identifying entities of interest in a text. Ar-
tificial neural networks (ANNs) have re-
cently been shown to outperform existing
NER systems. However, ANNs remain
challenging to use for non-expert users. In
this paper, we present NeuroNER, an easy-
to-use named-entity recognition tool based
on ANNs. Users can annotate entities us-
ing a graphical web-based user interface
(BRAT): the annotations are then used
to train an ANN, which in turn predict
entities’ locations and categories in new
texts. NeuroNER makes this annotation-
training-prediction flow smooth and ac-
cessible to anyone.

1 Introduction
Named-entity recognition (NER) aims at identify-
ing entities of interest in the text, such as location,
organization and temporal expression. Identified
entities can be used in various downstream appli-
cations such as patient note de-identification and
information extraction systems. They can also be
used as features for machine learning systems for
other natural language processing tasks.

Early systems for NER relied on rules de-
fined by humans. Rule-based systems are time-
consuming to develop, and cannot be easily trans-
ferred to new types of texts or entities. To address
these issues, researchers have developed machine-
learning-based algorithms for NER, using a vari-
ety of learning approaches, such as fully super-
vised learning, semi-supervised learning, unsuper-
vised learning, and active learning. NeuroNER
is based on a fully supervised learning algorithm,
which is the most studied approach (Nadeau and
Sekine, 2007).

∗ These authors contributed equally to this work.

Fully supervised approaches to NER include
support vector machines (SVM) (Asahara and
Matsumoto, 2003), maximum entropy mod-
els (Borthwick et al., 1998), decision trees (Sekine
et al., 1998) as well as sequential tagging meth-
ods such as hidden Markov models (Bikel et al.,
1997), Markov maximum entropy models (Kumar
and Bhattacharyya, 2006), and conditional ran-
dom fields (CRFs) (McCallum and Li, 2003; Tsai
et al., 2006; Benajiba and Rosso, 2008; Filannino
et al., 2013). Similar to rule-based systems, these
approaches rely on handcrafted features, which are
challenging and time-consuming to develop and
may not generalize well to new datasets.

More recently, artificial neural networks
(ANNs) have been shown to outperform other
supervised algorithms for NER (Collobert et al.,
2011; Lample et al., 2016; Lee et al., 2016;
Labeau et al., 2015; Dernoncourt et al., 2016).
The effectiveness of ANNs can be attributed to
their ability to learn effective features jointly
with model parameters directly from the training
dataset, instead of relying on handcrafted features
developed from a specific dataset. However,
ANNs remain challenging to use for non-expert
users.

Contributions NeuroNER makes state-of-the-
art named-entity recognition based on ANN avail-
able to anyone, by focusing on usability. To enable
users to create or modify annotations for a new
or existing corpus, NeuroNER interfaces with the
web-based annotation program BRAT (Stenetorp
et al., 2012). NeuroNER makes the annotation-
training-prediction flow smooth and accessible to
anyone, while leveraging the state-of-the-art pre-
diction capabilities of ANNs. NeuroNER is open
source and freely available online1.

1NeuroNER is available at: https://github.com/
Franck-Dernoncourt/NeuroNER
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2 Related Work

Existing publicly available NER systems geared
toward non-experts do not use ANNs. For
example, Stanford NER (Finkel et al., 2005),
ABNER (Settles, 2005), the MITRE Identifica-
tion Scrubber Toolkit (MIST) (Aberdeen et al.,
2010), (Boag et al., 2015), BANNER (Leaman
et al., 2008) and NERsuite (Cho et al., 2010) rely
on CRFs. GAPSCORE uses SVMs (Chang et al.,
2004). Apache cTAKES (Savova et al., 2010) and
Gate’s ANNIE (Cunningham et al., 1996; May-
nard and Cunningham, 2003) use mostly rules.
NeuroNER, the first ANN-based NER system for
non-experts, is more generalizable to new corpus
due to the ANNs’ capability to learn effective fea-
tures jointly with model parameters.

Furthermore, in many cases, the NER systems
assume that the user already has an annotated cor-
pus formatted in a specific data format. As a result,
users often have to connect their annotation tool
with the NER systems by reformatting annotated
data, which can be time-consuming and error-
prone. Moreover, if users want to manually im-
prove the annotations predicted by the NER sys-
tem (e.g., if they use the NER system to accelerate
the human annotations), they have to perform ad-
ditional data conversion. NeuroNER streamlines
this process by incorporating BRAT, a widely-
used and easy-to-use annotation tool.

3 System Description

NeuroNER comprises two main components: an
NER engine and an interface with BRAT. Neu-
roNER also comes with real-time monitoring tools
for training, and pre-trained models that can be
loaded to the NER engine in case the user does
not have access to labelled training data. Figure 1
presents an overview of the system.

3.1 NER engine

The NER engine takes as input three sets of data
with gold labels: the training set, the validation
set, and the test set. Additionally, it can also take
as input the deployment set, which refers to any
new text without gold labels that the user wishes
to label. The files that comprise each set of data
should be in the same format as used for the anno-
tation tool BRAT or the CoNLL-2003 NER shared
task dataset (Tjong Kim Sang and De Meulder,
2003), and organized in the corresponding folder.

The NER engine’s ANN contains three layers:

• Character-enhanced token-embedding layer,

• Label prediction layer,

• Label sequence optimization layer.

The character-enhanced token-embedding layer
maps each token to a vector representation. The
sequence of vector representations corresponding
to a sequence of tokens is then input to label pre-
diction layer, which outputs the sequence of vec-
tors containing the probability of each label for
each corresponding token. Lastly, the label se-
quence optimization layer outputs the most likely
sequence of predicted labels based on the se-
quence of probability vectors from the previous
layer. All layers are learned jointly. The model ar-
chitecture is detailed in (Dernoncourt et al., 2016).

The ANN as well as the training process
have several hyperparameters such as charac-
ter embedding dimension, character-based token-
embedding LSTM dimension, token embedding
dimension, and dropout probability. All hyperpa-
rameters may be specified in a configuration file
that is human-readable, so that the user does not
have to dive into any code. Listing 1 presents an
excerpt of the configuration file.

[dataset]
dataset_folder = dat/conll

[character_lstm]
using_character_lstm = True
char_embedding_dimension = 25
char_lstm_dimension = 50

[token_lstm]
token_emb_pretrained_file = glove.txt
token_embedding_dimension = 200
token_lstm_dimension = 300

[crf]
using_crf = True
random_initial_transitions = True

[training]
dropout = 0.5
patience = 10
maximum_number_of_epochs = 100
maximum_training_time = 10
number_of_cpu_threads = 8

Listing 1: Excerpt of the configuration file used
to define the ANN as well as the training process.
Only the dataset folder parameter needs to
be changed by the user: the other parameters have
reasonable default values, which the user may op-
tionally tune.
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Figure 1: NeuroNER system overview. In the NeuroNER engine, the training set is used to train the
parameters of the ANN, and the validation set is used to determine when to stop training. The user can
monitor the training process in real time via the learning curve and TensorBoard. To evaluate the trained
ANN, the labels are predicted for the test set: the performance metrics can be calculated and plotted by
comparing the predicted labels with the gold labels. The evaluation can be done at the same time as
the training if the test set is provided along with the training and validation sets, or separately after the
training or using a pre-trained model. Lastly, the NeuroNER engine can label the deployment set, i.e.
any new text without gold labels.
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3.2 Real-time monitoring for training

As training an ANN may take many hours, or
even a few days on very large datasets, NeuroNER
provides the user with real-time feedback during
the training for monitoring purpose. Feedback is
given through two different means: plots gener-
ated by NeuroNER, and TensorBoard.

Plots NeuroNER generates several plots show-
ing the training progress and outcome at each
epoch. Plots include the evolution of the overall
F1-score over time, confusion matrices visualizing
the number of correct versus incorrect predictions
for each class, and classification reports showing
the F1-score, precision and recall for each class.

TensorBoard As NeuroNER is based on Ten-
sorFlow , it leverages the functionalities of Tensor-
Board. TensorBoard is a suite of web applications
for inspecting and understanding TensorFlow runs
and graphs. It allows to view in real time the per-
formances achieved by the ANN being trained.
Moreover, since it is web-based, these perfor-
mances can be conveniently shared with anyone
remotely. Lastly, since graphs generated by Ten-
sorBoard are interactive, the user may gain further
insights on the ANN performances.

3.3 Pre-trained models

Some users may prefer not to train any ANN
model, either due to time constraints or unavail-
able gold labels. For example, if the user wants to
tag protected health information, they might not be
able to have access to a labeled identifiable dataset.
To address this need, NeuroNER provides a set
of pre-trained models. Users are encouraged to
contribute by uploading their own trained models.
NeuroNER also comes with several pre-trained to-
ken embeddings, either with word2vec (Mikolov
et al., 2013a,b) or GloVe (Pennington et al., 2014),
which the NeuroNER engine can load easily once
specified in the configuration file.

3.4 Annotations

NeuroNER is designed to smoothly integrate with
the freely available web-based annotation tool
BRAT, so that non-expert users may create or im-
prove annotations. Specifically, NeuroNER ad-
dresses two main use cases:

• creating new annotations from scratch, e.g. if
the goal is to annotate a dataset for which no
gold label is available,

• improving the annotations of an already la-
beled dataset: the annotations may have been
done by another human or by a previous run
of NeuroNER.

In the latter case, the user may use NeuroNER in-
teractively, by iterating between manually improv-
ing the annotations and running the NeuroNER en-
gine with the new annotations to obtain more ac-
curate annotations.

NeuroNER can take as input datasets in the
BRAT format, and outputs BRAT-formatted pre-
dictions, which makes it easy to start training di-
rectly from the annotations as well as visualize and
analyze the predictions. We chose BRAT for two
main reasons: it is easy to use, and it can be de-
ployed as a web application, which allows crowd-
sourcing. As a result, the user may quickly gather
a vast amount of annotations by using crowd-
sourcing marketplaces such as Amazon Mechan-
ical Turk (Buhrmester et al., 2011) and Crowd-
Flower (Finin et al., 2010).

One limitation of NeuroNER is that it does not
allow overlapping annotations in the BRAT for-
mat. However, NeuroNER is not restricted to
named-entity recognition: it may be used for any
sequence labeling, such as part-of-speech tagging
and chunking.

3.5 System requirements
NeuroNER runs on Linux, Mac OS X, and Mi-
crosoft Windows. It requires Python 3.5, Tensor-
Flow 1.0 (Abadi et al., 2016), scikit-learn (Pe-
dregosa et al., 2011), and BRAT. A setup script is
provided to make the installation straightforward.
It can use the GPU if available, and the number of
CPU threads and GPUs to use can be specified in
the configuration file.

3.6 Performances
To assess the quality of NeuroNER’s predictions,
we use two publicly and freely available datasets
for named-entity recognition: CoNLL 2003 and

Model CoNLL 2003 i2b2 2014
Best published 90.9 97.9
NeuroNER 90.5 97.7

Table 1: F1-scores (%) on the test set compar-
ing NeuroNER with the best published methods in
the literature, viz. (Passos et al., 2014) for CoNLL
2003, (Dernoncourt et al., 2016) for i2b2 2014.
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i2b2 2014. CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) is a widely studied dataset with
4 usual types of entity: persons, organizations, lo-
cations and miscellaneous names. We use the En-
glish version.

The i2b2 2014 dataset (Stubbs et al., 2015)
was released as part of the 2014 i2b2/UTHealth
shared task Track 1. It is the largest publicly avail-
able dataset for de-identification, which is a form
of named-entity recognition where the entities
are protected health information such as patients’
names and patients’ phone numbers. 22 systems
were submitted for this shared task.

Table 1 compares NeuroNER with state-of-the-
art systems on CoNLL 2003 and i2b2 2014. Al-
though the hyperparameters of NeuroNER were
not optimized for these datasets (the default hyper-
parameters were used), the performances of Neu-
roNER are on par with the state-of-the-art sys-
tems.

4 Conclusions

In this article we have presented NeuroNER, an
ANN-based NER tool that is accessible to non-
expert users and yields state-of-the-art results. Ad-
dressing the need of many users who want to cre-
ate or improve annotations, NeuroNER smoothly
integrates with the web-based annotation tool
BRAT.
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Abstract

In this demonstration we present SUP-
WSD, a Java API for supervised Word
Sense Disambiguation (WSD). This
toolkit includes the implementation of
a state-of-the-art supervised WSD sys-
tem, together with a Natural Language
Processing pipeline for preprocessing
and feature extraction. Our aim is
to provide an easy-to-use tool for the
research community, designed to be
modular, fast and scalable for training
and testing on large datasets. The source
code of SUPWSD is available at http:
//github.com/SI3P/SupWSD.

1 Introduction

Word Sense Disambiguation (Navigli, 2009,
WSD), is one of the long-standing challenges
of Natural Language Understanding. Given a
word in context and a pre-specified sense inven-
tory, the task of WSD is to determine the in-
tended meaning of that word depending on the
context. Several WSD approaches have been pro-
posed over the years and extensively studied by
the research community, ranging from knowledge-
based systems to semi-supervised and fully su-
pervised models (Agirre et al., 2014; Moro et al.,
2014; Taghipour and Ng, 2015b; Iacobacci et al.,
2016). Nowadays a new line of research is emerg-
ing, and WSD is gradually shifting from a purely
monolingual (i.e. English) setup to a wider mul-
tilingual setting (Navigli and Moro, 2014; Moro
and Navigli, 2015). Since scaling up to multiple
languages is considerably easier for knowledge-
based systems, as they do not require sense-
annotated training data, various efforts have been
made towards the automatic construction of high-
quality sense-annotated corpora for multiple lan-

guages (Otegi et al., 2016; Delli Bovi et al., 2017),
aimed at overcoming the so-called knowledge ac-
quisition bottleneck of supervised models (Pile-
hvar and Navigli, 2014). These efforts include
the use of Wikipedia, which can be considered
a full-fledged, manually sense-annotated resource
for numerous languages, and hence exploited as
training data (Dandala et al., 2013).

Beside the automatic harvesting of sense-
annotated data for different languages, a variety of
multilingual preprocessing pipelines has also been
developed across the years (Padr and Stanilovsky,
2012; Agerri et al., 2014; Manning et al., 2014).
To date, however, very few attempts have been
made to integrate these data and tools with a su-
pervised WSD framework; as a result, multilin-
gual WSD has been almost exclusively tackled
with knowledge-based systems, despite the fact
that supervised models have been proved to con-
sistently outperform knowledge-based ones in all
standard benchmarks (Raganato et al., 2017). As
regards supervised WSD, It Makes Sense (Zhong
and Ng, 2010, IMS) is indeed the de-facto state-of-
the-art system used for comparison in WSD, but it
is available only for English, with the last major
update dating back to 2010.

The publicly available implementation of IMS
also suffers from two crucial drawbacks: (i) the
design of the software makes the current code dif-
ficult to extend (e.g. with classes taking as input
more than 15 parameters); (ii) the implementation
is not optimized for larger datasets, being rather
time- and resource-consuming. These difficulties
hamper the work of contributors willing to update
it, as well as the effort of researchers that would
like to use it with languages other than English.

In this paper we present SUPWSD, whose ob-
jective is to overcome the aforementioned draw-
backs, and facilitate the use of a supervised WSD
software for both end users and researchers. SUP-
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Figure 1: Architecture design of SUPWSD.

WSD is designed to be modular and highly flex-
ible, enabling contributors to extend it with ease.
Its usage is simple and immediate: it is based on
a jar file with only 2 commands and 3 parameters,
along with an XML configuration file for specify-
ing customized settings. SUPWSD supports the
most widely used preprocessing tools in the re-
search community: Stanford coreNLP (Manning
et al., 2014), openNLP1, and TreeTagger (Schmid,
2013); as such, SUPWSD can directly handle all
the languages supported by these tools. Finally,
its architecture design relies on commonly used
design patterns in Java (such as Factory and Ob-
server among others), which make it flexible for a
programmatic use and easily expandable.

2 SUPWSD: Architecture

In this section we describe the workflow of SUP-
WSD. Figure 1 shows the architecture design of
our framework: it is composed of four main mod-
ules, common for both the training and testing

1opennlp.apache.org/

phase: (i) input parsing, (ii) text preprocessing,
(iii) features extraction and (iv) classification.

Input parsing. Given either a plain text or an
XML file as input, SUPWSD first parses the
file and extracts groups of sentences to provide
them as input for the subsequent text preprocess-
ing module. Sentence grouping is used to paral-
lelize the preprocessing module’s execution and
to make it less memory-intensive. Input files are
loaded in memory using a lazy procedure (i.e. the
parser does not load the file entirely at once, but
processes it according to the segments of inter-
est) which enables a smoother handling of large
datasets. The parser specification depends on the
format of the input file via a Factory patterns, in
such a way that new additional parsers can eas-
ily be implemented and seamlessly integrated in
the workflow (c.f. Section 3). SUPWSD currently
features 6 different parsers, targeted to the various
formats of the Senseval/SemeEval WSD compe-
tition (both all-words and lexical sample), along
with a parser for plain text.

Text preprocessing. The text preprocessing
module runs the pre-specified preprocessing
pipeline on the input text, all the way from sen-
tence splitting to dependency parsing, and re-
trieves the data used by the feature extraction mod-
ule to construct the features. This module con-
sists of a five-step pipeline: sentence splitting, to-
kenization, part-of-speech tagging, lemmatization
and dependency parsing. SUPWSD currently sup-
ports two preprocessing options: Stanford and Hy-
brid. Both can be switched on and off using the
configuration file. The former (default choice)
provides a wrapper for the Stanford NLP pipeline,
and selects the default Stanford model for each
component. The latter, instead, enables the user
to customize their model choice for each and every
preprocessing step. For instance, one possible cus-
tomization is to use the openNLP models for tok-
enization and sentence splitting, and the Stanford
models for part-of-speech tagging and lemmatiza-
tion. In addition, the framework enables the user
to provide an input text where preprocessing infor-
mation is already included.

The communication between the input parsing
and the text preprocessing modules (Figure 1) is
handled by the Analyzer, a component that han-
dles a fixed thread pool and outputs the feature in-
formation collected from the input text.
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Figure 2: The XML configuration file used by SUPWSD.

Features extraction. The feature extraction
module takes as input the data extracted at pre-
processing time, and constructs a set of features
that will be used in the subsequent stage to train
the actual SUPWSD model. As in the previous
stage, the user can rely on the configuration file
(Figure 2) to select which features to enable or
disable. SUPWSD currently supports five stan-
dard features: (i) part-of-speech tag of the target
word and part-of-speech tags surrounding the tar-
get word (with a left and a right window of length
3); (ii) surrounding words, i.e. the set of word
tokens (excluding stopwords from a pre-specified
list) appearing in the context of the target word;
(iii) local collocations, i.e. ordered sequences of
tokens around the target word; (iv) pre-trained
word embedding, integrated according to three dif-
ferent strategies, as in Iacobacci et al. (2016);2 (v)
syntactic relations, i.e. a set of features based on
the dependency tree of the sentence, as in Lee and
Ng (2002). SUPWSD allows the user to select ap-
propriate cutoff parameters for features (i) to (iii),
in order to filter them out according to a minimum
frequency threshold.

Classification. The classification module con-
stitutes the last stage of the SUPWSD pipeline.
On the basis of the feature set constructed in the
previous stage, this module leverages an off-the-
shelf machine learning library to run a classifi-
cation algorithm and generate a model for each
sense-annotated word type in the input text. The
current version of SUPWSD relies on two widely
used machine learning frameworks: LIBLIN-

2We implemented a cache mechanism in order to deal ef-
ficiently with large word embedding files.

EAR3 and LIBSVM4. The classification module
of SUPWSD operates on top of these two libraries.

Using the configuration file (Figure 2) the user
can select which library to use and, at the same
time, choose the underlying sense inventory. The
current version of SUPWSD supports two sense
inventories: WordNet (Miller et al., 1990)5 and
BabelNet (Navigli and Ponzetto, 2012)6. Specify-
ing a sense inventory enables SUPWSD to exploit
the Most Frequent Sense (MFS) back-off strategy
at test time for those target words for which no
training data are available.7 If no sense inventory
is specified, the model will not provide an answer
for those target words.

3 SUPWSD: Adding New Modules

In this section we illustrate how to implement new
modules for SUPWSD and integrate them into the
framework at various stages of the pipeline.

Adding a new input parser. In order to
integrate a new XML parser, it is enough
to extend the XMLHandler class and im-
plement the methods startElement,
endElement and characters (see the
example in Figure 3). With the global variable
mAnnotationListener, the programmatic
user can directly specify when to transmit the
parsed text to the text preprocessing module.
Instead, in order to integrate a general parser for
custom text, it is enough to extend the Parser

3http://liblinear.bwaldvogel.de
4https://www.csie.ntu.edu.tw/˜cjlin/

libsvm
5https://wordnet.princeton.edu
6http://babelnet.org
7The MFS is based on the lexicographic order provided

by the sense inventory (either WordNet or BabelNet).
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Figure 3: An example of XML parser.

class and implement the parse method. An
example is provided by the PlainParser class
that implements a parser for a plain textual file.

Adding a new preprocessing module. To add
a new preprocessing module into the pipeline,
it is enough to implement the interfaces in the
package modules.preprocessing.units.
It is also possible to add a brand new step to
the pipeline (e.g. a Named Entity Recognition
module) by extending the class Unit and im-
plementing the methods to load the models asyn-
chronously.

Figure 4: The abstract class modeling a feature
extractor.

Adding a new feature. A new feature for SUP-
WSD can be implemented with a two-step pro-
cedure. The first step consists in creating a class

Figure 5: The abstract class modeling a classifier.

that extends the abstract class Feature. The
builder of this class requires a unique key and
a name. It is also possible to set a default
value for the feature by implementing the method
getDefaultValue. The second step consists
in implementing an extractor for the new fea-
ture via the abstract class FeatureExtractor
(Figure 4). Each FeatureExtractor has a
cut-off value and declares the name of the class
through the method getFeatureClass.

Adding a new classifier. A new classifier for
SUPWSD can be implemented by extending the
generic abstract class Classifier (Figure 5),
which declares the methods to train and test the
models. Feature conversion is carried out with the
generic method getFeatureNodes.

Figure 6: Command line usage for SUPWSD.

4 SUPWSD: Usage

SUPWSD can be used effectively via the com-
mand line with just 4 parameters (Figure 6): the
first parameter toggles between the train and test
mode; the second parameter contains the path to
the configuration file; the third and fourth parame-
ters contain the paths to the dataset and the associ-
ated key file (i.e. the file containing the annotated
senses for each target word) respectively.

Figure 2 shows an example configuration file
for SUPWSD. As illustrated throughout Section 2,
the SUPWSD pipeline is entirely customizable by
changing these configuration parameters, and al-
lows the user to employ specific settings at each
stage of the pipeline (from preprocessing to ac-
tual classification). The working directory
tag encodes the path in the file system where
the trained models are to be saved. Finally, the
writer tag enables the user to choose the pre-
ferred way of printing the test results (e.g. with or
without confidence scores for each sense).

SUPWSD can also be used programmatically
through its Java API, either using the toolkit (the
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Tr. Corpus System Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15

SemCor

IMS 70.9 69.3 61.3 65.3 69.5
SUPWSD 71.3 68.8 60.2 65.8 70.0
IMS+emb 71.0 69.3 60.9 67.3 71.3

SUPWSD+emb 72.7 70.6 63.1 66.8 71.8
IMS-s+emb 72.2 70.4 62.6 65.9 71.5

SUPWSD-s+emb 72.2 70.3 63.3 66.1 71.6
Context2Vec 71.8 69.1 61.3 65.6 71.9

MFS 65.6 66.0 54.5 63.8 67.1

SemCor +
OMSTI

IMS 72.8 69.2 60.0 65.0 69.3
SUPWSD 72.6 68.9 59.6 64.9 69.5
IMS+emb 70.8 68.9 58.5 66.3 69.7

SUPWSD+emb 73.8 70.8 64.2 67.2 71.5
IMS-s+emb 73.3 69.6 61.1 66.7 70.4

SUPWSD-s+emb 73.1 70.5 62.2 66.4 70.9
Context2Vec 72.3 68.2 61.5 67.2 71.7

MFS 66.5 60.4 52.3 62.6 64.2

Table 1: F-scores (%) of different models in five all-words WSD datasets.

main class SupWSD, provided with the two static
methods train and test, shares the same usage
of the command line interface) or using an HTTP
RESTful service.

5 Evaluation

We evaluated SUPWSD on the evaluation frame-
work of Raganato et al. (2017)8, which includes
five test sets from the Senseval/Semeval series and
two training corpus of different size, i.e. Sem-
Cor (Miller et al., 1993) and OMSTI (Taghipour
and Ng, 2015a). As sense inventory, we used
WordNet 3.0 (Miller et al., 1990) for all open-class
parts of speech. We compared SUPWSD with the
original implementation of IMS, including the best
configurations reported in Iacobacci et al. (2016)
which exploit word embedding as features. As
shown in Table 1, the performance of SUPWSD
consistently matches up to the original implemen-
tation of IMS in terms of F-Measure, sometimes
even outperforming its competitor by a consider-
able margin; this suggests that a neat and flexible
implementation not only brings benefits in terms
of usability of the software, but also impacts on
the accuracy of the model.

5.1 Speed Comparisons
We additionally carried out an experimental eval-
uation on the performance of SUPWSD in terms
of execution time. As in the previous exper-
iment, we compared SUPWSD with IMS and,

8http://lcl.uniroma1.it/wsdeval

IMS SUPWSD
train Semcor/sec. ∼ 360 ∼ 120
train Semcor+OMSTI/sec. ∼ 3000 ∼ 510
test/sec. ∼ 110 ∼ 22

Table 2: Speed comparison for both the training
and testing phases.

given that both implementations are written in
Java, we tested their programmatic usage within a
Java program. We relied on a testing corpus with
1M words and more than 250K target instances to
disambiguate, and we used both frameworks on
SemCor and OMSTI as training sets. All exper-
iments were performed using an Intel i7-4930K
CPU 3.40GHz twelve-core machine. Figures in
Table 2 show a considerable gain in execution time
achieved by SUPWSD, which is around 3 times
faster than IMS on Semcor, and almost 6 times
faster than IMS on OMSTI.

6 Conclusion and Release

In this demonstration we presented SUPWSD, a
flexible toolkit for supervised Word Sense Disam-
biguation which is designed to be modular, highly
customizable and easy to both use and extend for
end users and researchers. Furthermore, beside the
Java API, SUPWSD provides an HTTP RESTful
service for programmatic access to the SUPWSD
framework and the pre-trained models.

Our experimental evaluation showed that, in ad-
dition to its flexibility, SUPWSD can replicate or
outperform the state-of-the-art results reported by
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the best supervised models on standard bench-
marks, while at the same time being optimized in
terms of execution time.

The SUPWSD framework (including the source
code, the pre-trained models, and an online demo)
is available at http://github.com/SI3P/
SupWSD. We release the toolkit here described
under the GNU General Public License v3.0,
whereas the RESTful service is licensed under a
Creative Commons Attribution-Non Commercial-
Share Alike 3.0 License.
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Abstract

We present a novel interactive summa-
rization system that is based on abstrac-
tive summarization, derived from a recent
consolidated knowledge representation for
multiple texts. We incorporate a cou-
ple of interaction mechanisms, providing
a bullet-style summary while allowing to
attain the most important information first
and interactively drill down to more spe-
cific details. A usability study of our im-
plementation, for event news tweets, sug-
gests the utility of our approach for text
exploration.

1 Introduction

Multi-document summarization (MDS) tech-
niques aim to assist readers in obtaining the most
important information when reading multiple
texts on a topic. The dominant MDS approach
focuses on constructing a short summary of some
targeted length, capturing the most important
information, mimicking a manually-crafted
“static” summary. As an alternative, few papers
considered interactive summarization, where
the presented information can be interactively
explored by the user according to needs and
interest (Christensen et al., 2014; Leuski et al.,
2003; Yan et al., 2011).

In this paper we propose further contribution
to this approach, focusing on interactive abstrac-
tive summarization. We suggest that an abstrac-
tive summarization approach, based on extracted
“atomic” facts, is particularly suitable in the inter-
active setting as it allows more flexible informa-
tion presentation. Intuitively, it makes more sense
for a user to explore information at the level of in-
dividual facts, rather than the coarser level of full

original sentences, as in prior work on interactive
extractive summarization (see Section 6).

We build on the abstractive approach in sup-
porting two useful modes of interaction. First,
we present information in a bullet-style summary,
where the most important information is initially
displayed in bullet sentences, while further de-
tails may be obtained by unfolding additional bul-
lets. Specifically, we implemented this approach
for summarizing news tweets on a certain event
along a time line (see Figure 2). Our second mode
of interaction is concept expansion, which allows
viewing complementary information about a con-
cept via its alternative term mentions, while track-
ing the concept occurrences throughout the sum-
mary (see Figure 3). This information is hidden in
static summaries that use original sentences (ex-
tractive) or a single term per concept (abstractive).

To facilitate the modular construction of inter-
active summaries, we utilize as input a consol-
idated representation of texts, in particular the
recent Open Knowledge Representation (OKR)
of Wities et al. (2017). Briefly, this representation
captures the propositions of the texts, where co-
refferring concepts or propositions are collapsed
together while keeping links to the original men-
tions (see Section 2). We leverage OKR structures
to extract information at the level of atomic facts,
to expand information from collapsed mentions
and to retrieve the sources from which summary
sentences were derived.

The novelties of our interactive scheme call
for verifying its effectiveness and usefulness for
users. For that, we have implemented our ap-
proach in a prototype system (Sections 3-4). This
system automatically produces an interactive sum-
mary from input OKR data, which we assume to
be parsed from original texts by an external black-
box tool. We have examined our system through
a set of standard usability tests (Brooke, 1996;
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Lund, 2001) on gold standard OKR datasets that
enabled us to study its contribution in isolation
(Section 5). Our results show that the proposed
system is highly valuable for readers, providing
an appealing alternative to standard static summa-
rization.

2 Preliminaries

As mentioned above, our interactive summariza-
tion system is based on a consolidated representa-
tion for the information in multiple texts. We next
review some background on such representations
and then describe the particular Open Knowledge
Representation that we use.

2.1 Consolidated Representation

Motivated by summarization and text exploration,
recent work considered the consolidation of tex-
tual information in various structures. As promi-
nent examples, the studies of Liu et al. (2015)
and Li et al. (2016) construct graph-based rep-
resentations whose nodes are predicates or argu-
ments thereof, extracted from the original text, and
the predicate-argument relations are captured by
edges. Identical or coreferring concepts are col-
lapsed in a single node.

Rospocher et al. (2016) present a more super-
vised approach where concepts in the graph are
linked to DBPedia1 entries. This along with other
metadata is used to detect coreferences and disam-
biguate concepts.

None of these works considers interactive sum-
maries, and in particular none incorporates suffi-
cient data for our modes of user interaction. We
next briefly review the Open Knowledge Rep-
resentation recently introduced by Wities et al.
(2017), which is used by our system.

2.2 Open Knowledge Representation

We illustrate the components of the OKR for-
malism that are central to our summarization
method via the example OKR structure in Figure 1
(see Wities et al. (2017) for full details). On the
top, there are four original tweets. On the bottom,
there are two consolidated propositions (marked
P1 and P2) and four entities (marked E1-E4) de-
rived from these tweets. The figure depicts three
types of links captured in OKR, as follows.

Mention links connect each proposition or en-
tity with its set of mention terms, namely, ev-

1http://wiki.dbpedia.org/

Figure 1: Four tweets on an event and their OKR structure.

ery form of reference to the entity/proposition
throughout the texts. E.g., E1 from Figure 1 is
mentioned in the tweets as “man”, “shooter” or
“Radcliffe Haughton”. Mentions of propositions
are stored as templates with argument placehold-
ers, e.g., “[a2] dead in [a3]”. Through their men-
tions, entities and propositions are further linked
with their occurrences in the original texts (omit-
ted from the figure).

Argument links connect propositions with their
arguments, which may be entities or (nested)
propositions. Since a proposition may have sev-
eral templates with different arguments, argument
IDs (marked a1-a3 in P1) are used to capture co-
referring arguments within the same proposition.
For example, a2 and a3 appear as arguments in the
two templates of P1, and refer to entity E2 and
proposition P2 respectively.

Entailment links, marked by directed edges in
Figure 1, track semantic entailment (in context)
between different types of OKR components. For
example, in E1, “Radcliffe Haughton” entails
“man” or “shooter”, namely, the former is more
specific/informative in the given context.

3 Comprehensive Summary Information

The architecture of our system consists of two
main steps: (1) a preprocessing step in which
we generate comprehensive summary information
and (2) interactive display of selected information.
In this section we describe the first step, which is
based on an input OKR structure. Our UI for ex-
ploring the summary information interactively is
described in the following section.

The general scheme for generating summary in-
formation in our system is as follows.

1. Partition the OKR propositions into groups.
2. Generate representative summary sentences

for each group of propositions. These yield
the bullet-style summary sentences.
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3. Generate metadata for each representative
sentence: a knowledge score, concept expan-
sions and timestamp.

For the current system, we implemented a baseline
method for each of these steps, which nonetheless
achieved high satisfaction scores in the usability
study (see Section 5).

We partition propositions, as captured in the
OKR structure, into distinct groups such that the
propositions of each group are (transitively) con-
nected by argument links (ignoring link direction).
E.g., in Figure 1, P2 is nested in P1 and thus the
two are grouped together.

Next, for the “root” (i.e., not nested) proposi-
tion in a group, we generate alternative candidate
sentences. This is done by filling, in its templates,
all the possible combinations of relevant argument
mentions, and recursively so for nested proposi-
tions. For example, for P1 we would generate
“[3 people] dead in [shooting in [Wisconsin]]”,
“[3 people] dead in [[spa] shooting]”, “[Three]
dead in [[spa] shooting]”, and so on (22 candidate
sentences in total).

From each set of candidates we choose one rep-
resentative sentence. Importantly, this means that
unlike bounded-length summary paragraphs our
comprehensive summary information effectively
covers all the propositions in the original texts. In-
stead of filtering upfront less salient information,
it is only hidden initially in the UI and can be un-
folded by the user (see Section 4). For a represen-
tative sentence, we choose a candidate with high
language model score,2 high knowledge score (de-
fined below) and small length. This is done by op-
timizing a weighted sum of these factors.

The knowledge score of each sentence intu-
itively reflects how common its mentions are in
the original texts as well as how informative (spe-
cific) they are, based on the OKR entailment
links. Reconsidering Figure 1 for example, in the
tweet “Three dead in spa shooting”, the concepts
“three”, “dead” and “spa shooting” should be
rewarded for appearing each in two tweets, but
“three” should be rewarded less than “3 people”,
which is more informative.

We use the following heuristically formulated
equation to calculate the score of each generated

2For the language model, we trained an LSTM model
(https://github.com/yandex/faster-rnnlm)
on a collection of 100M tweets.

Figure 2: The initial view of a summary about a shooting in a
Wisconsin spa covering 109 tweets. Ten generated sentences
cover the most salient information throughout these tweets,
and are ordered along the event timeline.

sentence s:

score(s) =
∑

m∈mentions(s)

α+ β · depth(m)

where mentions(s) are the mentions of predicates
and entities in the sentence. depth(m) assigns a
given mention m its depth in the relevant lexical
entailment graph within the OKR. We have empir-
ically set α = 1, β = 0.1.

Each concept (entity or proposition) in the sum-
mary sentences is linked to its mentions and orig-
inal texts using the OKR. The set of mentions is
cleaned from duplicates (strings with small edit
distance), yielding the concept expansion for sets
with > 1 different mentions. This gives extra
information about concepts that otherwise might
have been missed. In Figure 3, for example,
the “suspected gunman” is also identified as “Ja-
maican”. For the tweet summarization scenario,
we also compute the timestamp of each represen-
tative sentence as the time of the first tweet men-
tioning its root proposition.

4 Interactive User Interface

We now describe the web application3 we imple-
mented, designed for the interactive exploration of
multiple tweets on a specific event. Our backend is
implemented in Python 2.7 and runs on a CentOS
server. The frontend is implemented with the An-
gularJS library. JSON is used for data interchange.

Figure 2 shows the initial screen summarizing
a set of 109 tweets about the shooting in a Wis-
consin spa from our running example. Bullet-style
sentences (generated as explained in Section 3) are

3http://u.cs.biu.ac.il/˜shapiro1/okr/
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Figure 3: The concept expansion pop-up consisting of men-
tions referring to the same person as “suspected gunman”,
revealing further information (e.g. “Jamaican”).

Figure 4: The tweets pop-up shows a scrollable pane with the
source tweets for a generated sentence.

displayed along the event timeline, in descend-
ing order of their timestamps. As an indication
of salience, to the right of each sentence, a pie
chart shows the “percentage” of knowledge it cov-
ers according to its normalized knowledge score.
The pie chart on the top shows the total knowledge
“covered” by the currently visible sentences.

Initially, only sentences exceeding a certain in-
formation score threshold are displayed, as a con-
cise bullet-style summary of the event. Other sen-
tences are folded (e.g., between timestamps 01:07
and 22:55 in Figure 2). The user can then decide
whether and which sentences to unfold, according
to (a) time intervals of interest on the timeline; (b)
the number of folded sentences, as indicated in the
middle of the line; and (c) the amount of additional
knowledge to be unfolded, which is highlighted
on the top pie chart when hovering over folded
sentences. By repeatedly unfolding sentences, the
user can gradually discover the full timeline of the
event with all consolidated data from the tweets.

Another mode of discovering information is via
concept expansion: hovering over a highlighted
concept (e.g., “suspected gunman”) opens a pop-
up with different mentions of the same concept in
the summary (Figure 3); clicking it further high-
lights all of its coreferences in the summary. Fi-
nally, the user can also click the Twitter icon to
inspect the source tweets (Figure 4).

5 System Usability Tests

To assess and improve the value of our system,
we have conducted two usability studies employ-
ing standard usability tests. The tests were per-
formed on a dataset of human annotated OKR
structures (of the form of Figure 1) released by
Wities et al. (2017). We took their 6 largest clus-
ters of event tweets, of about 100 tweets each. This
gold-standard dataset enabled us to study in iso-
lation the merits of our novel system. Given the
positive results that we report below, we plan, in
future work, to integrate and study our system in a
fully automated pipeline.

5.1 Preliminary Usability Study

A first usability study was conducted with two
goals: to examine the usefulness of our ideas and
to understand user needs.

Methodology. The evaluation phase of a proto-
type requires only a few evaluators, according to
the “discount” usability testing principle (Nielsen,
1993). Thus, six students not familiar with our
project were recruited as evaluators. We asked
them to perform a series of predefined tasks on one
of the six selected events. During the system us-
age we observed the users’ activity and employed
a “think aloud” technique to obtain user remarks.
Each on-screen activity was captured using “De-
but Video Capturing Software”4. After perform-
ing all tasks, users were asked to fill the SU Scale
(SUS) questionnaire (Brooke, 1996) for subjective
usability evaluation.

Results. Table 1 lists the average scores ob-
tained for each of the ten SUS questions, on a scale
of 1 to 5. Overall, users found the prototype easy
to use and showed willingness to use it frequently.

The SUS questionnaire yields an important sin-
gle number in [0, 100] representing a composite
measure of the overall usability of the system.
This number is calculated based on the ten ques-
tion scores. As seen in Table 2, except for one
dissatisfied user5, the system received high scores
ranging from 70 to 95. The observation and ver-
bal reports during the test yielded a list of require-
ments that helped improve our prototype.

4http://www.nchsoftware.com/capture/
5This user had software quality assurance background and

seemed to inspect for very minor software and user experi-
ence bugs, which we have later addressed.
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SUS Question Avg. Score

I think that I would like to use this system
frequently.

3.83

I found the system unnecessarily complex. 2.33

I thought the system was easy to use. 3.33

I think that I would need the support of a
technical person to be able to use this sys-
tem.

2.17

I found the various functions in this system
were well integrated.

3.83

I thought there was too much inconsistency
in this system.

1.67

I would imagine that most people would
learn to use this system very quickly.

3.5

I found the system very cumbersome to use. 1.33

I felt very confident using the system. 3.67

I needed to learn a lot of things before I
could get going with this system.

2.17

Table 1: The ten SUS questions asked after the usability study
and the average answer score on a scale of 1 to 5.

User 1 2 3 4 5 6

SUS Score 70 80 95 72.5 82.5 27.5

Table 2: SUS scores for each user, calculated based on the
ten SUS question scores.

5.2 Comparative Usability Test

After updating our system to incorporate improve-
ments obtained from the preliminary study, we
conducted another comparative study to examine
the relative effectiveness of our system.

Methology. We have compared our system, here
denoted by IAS (for Interactive Abstractive Sum-
mary), with two baseline approaches:
• Tweet: a list of all the original tweets in the

event dataset.
• Static: the full ordered list of sentences gen-

erated by our system (Section 3), with no in-
teractive features nor metadata (such as con-
cept expansion, knowledge scores, etc.).

As mentioned earlier, we have used the gold-
standard OKR structures for 6 of the events re-
leased by Wities et al. (2017). Six users were each
presented with two events in each interface (IAS,
Tweet, Static), where the assignment of event to
interface and order of interfaces were different for
each user. The users explored the information that
describes each event in the assigned interface, and
at the end were asked to complete the USE Ques-
tionnaire (Lund, 2001).

Dimension Tweet Static IAS

Usefulness 2.1 1.8 2.3
Knowledge Exploration 2.0 1.8 2.6
Satisfaction 2.0 1.7 2.3
Ease of Use 2.5 2.3 2.1
Ease of Learning 2.7 2.5 2.3

Table 3: USE questionnaire dimensions score comparison of
the three system interfaces on a scale of 1 to 3.

This questionnaire required users to rank each
of the three interfaces on a scale from 1 to 3 ac-
cording to 33 statements. The original 30 USE
statements represent four dimensions: Usefulness,
Satisfaction, Ease of Use, and Ease of Learning.
We added three statements to rank user’s experi-
ence of knowledge exploration.6

Results. Table 3 shows the average rank of each
interface in each of the examined dimensions.
While our system was naturally somewhat more
complex to use than the baselines, which only re-
quire reading, it consistently received the highest
ranks in the dimensions of Usefulness, Satisfac-
tion and Knowledge Exploration. This indicates
that interactivity indeed provides substantial value
to the user, regardless of the summary sentences
(as evident by the comparison to baseline Static).

The ranked USE statements also serve as an
indication for the quality of our summary when
compared to the other baselines. Standard summa-
rization metrics are designed for static summaries7

and are thus not expressly adequate for our inter-
active system due to its content being dynamic and
user-manipulated. Having demonstrated here that
interactive summaries are useful, designing and
conducting dedicated quality tests for interactive
summaries is a priority in our future work.

6 Related Work

A vast body of work has been dedicated to the
problem of multi-text summarization. We focus
here on the rather few studies that enhance sum-
marization with user interaction.

The iNeATS system (Leuski et al., 2003) was
an early attempt for interactive summarization, al-
lowing explicit control over parameters such as

6The three additional statements are: The system moti-
vated me to actively explore more information; The system
made me feel that I know the highlights of the event; The
system helped me notice the important details of the event.

7The ROUGE and Pyramid methods are the common met-
rics to evaluate summaries.
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length, participating elements, etc. Yan et al.
(2011) have studied a more implicit approach, at-
tempting to discover user preferences such as top-
ics and contexts via user clicks. Both approaches
involve repeatedly updating a summary paragraph
based on user feedback.

The more recent SUMMA system (Christensen
et al., 2014) resembles ours in supporting hierar-
chical summarization. Salient summary sentences
are high in the hierarchy and further details can be
discovered by drilling down into lower levels.

All of the aforementioned methods compute ex-
tractive summaries, which are composed of sen-
tences from the original texts. In comparison, our
abstractive approach has a few appealing advan-
tages. Most importantly, this approach facilitates
the construction of flexible bullet-style summaries
since we are not confined to existing sentences,
which may combine several atomic facts of vary-
ing saliency or require textual context. This, in
turn, allows users to browse data at the level of
atomic facts and avoids the need to regenerate the
summary in order to incorporate user feedback.

7 Conclusion and Future Work

In this paper we presented a novel system for the
interactive exploration of abstractive summary in-
formation. Our system builds on the Open Knowl-
edge Representation (Wities et al., 2017) for con-
solidating the information of multiple texts, and
produces a summary that fully captures this infor-
mation. The interactive UI allows focusing on the
most salient facts as well as gradually obtaining
further details via different interaction modes. Our
usability studies provide supportive evidence for
the usefulness of our approach.

Our results shed light on a few important di-
rections for future research. In general, our in-
teractive abstractive method should be ported to
other domains and types of corpora. E.g., while
in the case of news tweets, sentence ordering was
done along a timeline, the ordering of consolidated
summary sentences may in general be a nontrivial
task. Further, our approach for summary sentence
generation can be enhanced, e.g., by using ma-
chine learning techniques to select the best repre-
sentative sentences. For evaluation, we will design
tests adequate for assessing the quality of an inter-
active summary, and use them in a more extensive
user study that will incorporate a fully automated
pipeline (i.e., an OKR parser).
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Abstract

LangPro is an automated theorem prover
for natural language.1 Given a set of
premises and a hypothesis, it is able to
prove semantic relations between them.
The prover is based on a version of an-
alytic tableau method specially designed
for natural logic. The proof procedure op-
erates on logical forms that preserve lin-
guistic expressions to a large extent. The
nature of proofs is deductive and transpar-
ent. On the FraCaS and SICK textual en-
tailment datasets, the prover achieves high
results comparable to state-of-the-art.

1 Introduction

Nowadays many formal logics come with their
own proof systems and with the automated theo-
rem provers based on these systems. If we share
Montagues’s famous belief that there is “no im-
portant theoretical difference between natural lan-
guages and the artificial languages of logicians”,
then there plausibly exists a proof system for nat-
ural languages too. On the other hand, studies on
Natural Logic seek a formal logic whose formu-
las are as close as possible to linguistic expres-
sions. Inspired by these research ideas, Muskens
(2010) proposed an analytic tableau system for
natural logic, where higher-order logic based on
a simple type theory is used as natural logic and a
version of analytic tableau method is designed for
it. Later, Abzianidze (2015b,a, 2016a) made the
tableau system suitable for wide-coverage reason-
ing by extending it and implementing a theorem
prover based on it.

This paper presents the Prolog implementation
of the theorem prover, called LangPro, in detail
and completes the previous publications in terms

1https://github.com/kovvalsky/LangPro

LangPro

CCG
parser

LLFgen
& Aligner

NLog
Prover

p1...
pn

h

v
⊥
#

trees LLFsIn Out

Figure 1: LangPro checks whether a set of
premises p1, . . . , pn entails (v), contradicts (⊥) or
is neutral (#) to a hypothesis h.

of the system description. The rest of the paper
is organized as follows. First, we briefly intro-
duce the tableau system and the employed natu-
ral logic. Then we characterize the architecture
and functionality of LangPro (see Figure 1). Be-
fore concluding, we briefly compare the prover to
the related textual entailment systems.

2 Natural Tableau

An analytic tableau method is a proof procedure
which searches a model, i.e. a possible situ-
ation, satisfying a set of logic formulas. The
search is performed by gradually applying infer-
ence rules, also called tableau rules, to the for-
mulas. A tableau rule has antecedents and conse-
quent and is easy to read, e.g., according to NOT
in Figure 3, if no A is B, then for any entity c, ei-
ther it is not A or it is not B. A tableau proof,
in short a tableau, is often depicted as an upside-
down tree with initial formulas at its root (Fig-
ure 2). After each rule application, new inferred
formulas are introduced in the tableau. Depend-
ing on the applied rules, the tableau can branch or
grow in depth. A tableau branch models a situ-
ation that satisfies all the formulas in the branch.
Closed branches, marked with ×, correspond to
inconsistent situations. The search for a possi-
ble situation fails if all branches are closed—the
tableau is closed.

The natural tableau is a tableau method for a
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1 several pug bark : T
2 every(which bark dog)(be vicious) : T

3 no pug(be evil) : T

4 pug :c :T
5 bark :c :T

6 which bark dog :c :F

8 bark :c :F

10 ×

9 dog :c :F

11 ×

7 be vicious :c :T

12 vicious :c :T

13 pug :c :F

15 ×

14 be evil :c :F

16 evil :c :F

17 ×

∃T[1]

×[5,8] ×[4,9]

AUX[7]

×[4,13] AUX[14]

×[12,16]

∀T[2]

∧F[6]

NOT[3]

Figure 2: The tableau proves: several pugs bark.
every dog which barks is vicious. ⊥ no pug is evil.

version of natural logic.2 The terms of the nat-
ural logic, called Lambda Logical Forms (LLFs),
are simply typed λ-terms built up from variables
and constant lexical terms with the help of func-
tion application and λ-abstraction. The format of
a tableau entry, i.e. node, is a tuple consisting of a
modifier list, an LLF, an argument list and a truth
sign. The parts are delimited with a colon. The
empty lists are omitted for conciseness. For ex-
ample, the entries (1) and (2) both mean that it is
true that c barks loudly in Paris, where (α, β) is a
functional type that expects an argument of type α
and returns a value of type β.3

innp,vp,vpParisnp : loudlyvp,vpbarkvp : ce : T (1)

(innp,vp,vpParisnp)(loudlyvp,vpbarkvp ce) : T (2)

In order to prove a certain logical relation
between premises and a hypothesis, the natural
tableau searches a situation for the counterexam-
ple of the relation. The relation is proved if the
situation is not found, otherwise it is refuted. An
example of a closed natural tableau is shown in
Figure 2. It proves the contradiction relation as it
fails to find a situation for the counterexample—
the premises and the hypothesis being true. In or-

2It is an extended version of Muskens’ original tableau
system. The extension is three-fold and concerns the type
system, the format of tableau entries and the inventory of
tableau rules (Abzianidze, 2015b).

3LLFs are typed with syntactic and semantic types. In-
teraction between these types is established via the subtyping
relation, e.g., entities being a subtype of NPs, e <: np, makes
barkvp ce well-formed, where vp abbreviates (np, s).

C A B : [
#–

C ] : F

A : [
#–

C ] : F B : [
#–

C ] : F
∧F

C ∈ {and,which}

AAUX B : [
#–

C ] : X

B : [
#–

C ] : X
AUX

Q A B : T

A : c : T
B : c : T

∃T

Q ∈ {several, a, . . .}
c is fresh

A : [
#–

C ] : T
B : [

#–

C ] : F

×
×

A v B

no A B : T
A : c : T

B : c : F
NOn

T

every A B : T

A : c : F B : c : T
∀T

c is old

no A B : T

A : c : F B : c : F
NOT

c is old

Figure 3: The inference rules employed in the
tableau proof of Figure 2. An entity term is old
(fresh) wrt a branch iff it is (not) in the branch.

LLFgen
CCG
Tree

CCG
Term

Corrected
CCG Term LLFs

FOL

DRTRemoving
directionality

Correcting
analyses

Type-raising
quantified NPs

Figure 4: The LLF generator produces a list of
LLFs from a single CCG derivation tree.

der to facilitate reading tableau proofs, type infor-
mation is omitted, the entries are enumerated and
arcs are labeled with tableau rule applications. For
example, 4 and 5 are obtained by applying ∃T to
1 : if it is true that several pugs bark, then there is
some entity c which is a pug and which barks.

3 LLF Generator

A Natural Tableau-based theorem prover for nat-
ural language requires automatic generation of
LLFs from raw text. To do so, we implement
a module, called LLFgen, that generates LLFs
from syntactic derivations of Combinatory Cate-
gorial Grammar (CCG, Steedman 2000). Given
a CCG derivation, LLFgen returns several LLFs
that model different orders of quantifier scopes
(see Figure 4).4 Figure 5 displays a CCG deriva-
tion where VP i abbreviates Si\NP .

LLFs are obtained from a CCG tree in three
major steps (Figure 4): (i) removing directionality
from CCG trees, (ii) correcting semantically inad-
equate analyses, and (iii) type-raising quantified
NPs (QNPs). Below we briefly describe each of
these steps and give corresponding examples.

Directionality information encoded in CCG cat-
egories and combinatory rules is redundant from
a semantic perspective, therefore we discard it in

4See Abzianidze (2016a, Ch. 3) for a detailed description.
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ba[Sdcl]

fa[VP dcl]

fa[VPng]

fa[PP ]

lx[NP,N ]

water
N

water
NN

with
PP/NP

with
IN

fa[VPng/PP ]

fa[NP ]

steak
N

steak
NN

a
NP/N

a
DT

rinsing
(VPng/PP )/NP

rinse
VBG

is
VP dcl/VPng

be
VBZ

nobody
NP

nobody
DT

Figure 5: The CCG tree by C&C for nobody is
rinsing a steak with water (SICK-1379).

the first step: CCG categories are converted into
types (Y \X and Y/X  (x, y)), and argument
constituents are placed after function ones in bi-
nary combinatory rules. Resulted structures are
called CCG terms (Figure 6).

Obtained CCG terms are often semantically in-
adequate. One of the reasons for this is lexical
(i.e. type-changing) rules (e.g., N 7→NP in Fig-
ure 5) of the CCG parsers which still remain in
CCG terms (e.g., [watern]np in Figure 6). These
rules are destructive from a compositional point of
view. We designed 13 schematic rewriting rules of
general type that correct CCG terms—make them
semantically more adequate and transparent. The
rules make use of types, part-of-speech (POS) and
named entity (NE) tags to match semantically in-
adequate analyses:5

• Certain non-compositional multiword expres-
sions are treated as constant terms: a lot of, in
front of, a few, because of, next to, etc.

• Type-changing rules are explained by changing
lexical types, decomposing terms or inserting
new terms. This step carries out conversions
like [europen]np  europenp, [nobodyn]np  
non,nppersonn, and [watern]np  an,npwatern (see
Figure 7). Inserted an,np merely plays a role of
an existential quantifier.

• Several CCG analyses are altered in order
to reflect formal semantics, e.g., attributive
modifiers are pushed under a relative clause:
big (which run mouse)  which run (big mouse);
and PPs are attached to nouns rather than NPs:
in (a box)(every pug) every (in (a box) pug).
5 To handcraft the rules, we used a development set of

1.7K CCG derivations obtained by parsing the sentences
from FraCaS (Cooper et al., 1996) and the trial portion of
SICK (Marelli et al., 2014) with CCG-based parsers: C&C
(Clark and Curran, 2007) and EasyCCG (Lewis and Steed-
man, 2014).

sdcl

nobody
np

nobody
DT

vpdcl

vpng

pp

np

water
n

water
NN

with
np, pp
with
IN

pp, vpng

np

steak
n

steak
NN

a
n, np

a
DT

rinsing
np, pp, vpng

rinse
VBG

is
vpng, vpdcl

be
VBZ

Figure 6: The CCG term obtained from the CCG
tree of Figure 5. NB: the lexical rule remains.
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Figure 7: The corrected version of the CCG term
of Figure 6, with inserted and decomposed terms.

LLFs are obtained from corrected CCG terms
by type-raising QNPs from np to the type (vp, s)
of generalized quantifiers. Hence, several LLFs
are produced from a single CCG tree due to quan-
tifier scope ambiguity, e.g., (3–5) are some of the
LLFs obtained from the CCG term of Figure 7.6

N
(

be
(
λz. S

(
λx.W

(
λy. rinsex (with y)z

))))
(3)

N
(

be
(
λz.W

(
λy. S

(
λx. rinsex (with y)z

))))
(4)

W
(
λy. S

(
λx.N(be

(
rinse x (with y))

)))
(5)

Since LLFs encode instructions for semantic
composition, they can be used to composition-
ally derive semantics in other meaning represen-
tations (Figure 4), e.g., first-order logic (FOL) or
Discourse Representation Theory (DRT). For this
application, LLFgen can be used as an independent
tool. Given a CCG derivation in the Prolog format
(supported by both C&C and EasyCCG), LLFgen
can return LLFs in XML, HTML or LATEXformats.
For a CCG tree, it is also possible to get either only
the first LLF, e.g., (3), often reflecting the natural
order of quantifiers, or a list of LLFs with various
quantifier scope orders (possibly including seman-
tically equivalent LLFs, like (3) and (4)).

6The LLFs use the following abbreviations: S = aq steakn,
W = aq watern, and N = noq personn, where q = (n, vp, s).
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4 Natural Logic Theorem Prover

The tableau theorem prover for natural logic
(NLogPro) represents a core part of LangPro (Fig-
ure 1). It is responsible for checking a set of lin-
guistic expressions on (in)consistency. NLogPro
consists of four components: the Proof Engine
builds tableau proofs by applying the rules from
the inventory of Rules; the rule applications are
validated by the properties of lexical terms (en-
coded in the Signature) and the lexical knowledge
(available from the Knowledge Base). We used the
same development data for LLFgen and NLogPro.

4.1 Signature

The signature (SG) lists lexical terms that have
algebraic properties relevant for inference, e.g.,
monotonicity, intersectivity, and implicativity.
The lexical items in the SG come with an argument
structure where each argument position is associ-
ated with a set of algebraic properties. For exam-
ple, every is characterized in the SG as [dw,up],
meaning that in its first argument every is down-
ward monotone while being upward monotone in
the second one. Currently, the SG lists about
20 lexical items, mostly generalized quantifiers
(GQs), that were found in the development data.

4.2 The Inventory of Rules

The inventory of rules (IR) contains all inference
rules used by the prover. Currently there are ca. 80
rules in the IR (some in Figure 3). Around a quar-
ter of the rules are from Muskens (2010) and the
rest are manually collected while exploring the de-
velopment data. The rules cover a plethora of phe-
nomena. Some of them are of a formal nature like
Boolean connectives and monotonicity and others
of linguistic nature: adjectives, prepositions, defi-
nite NPs, expletives, open compound nouns, light
verbs, copula, passives and attitude verbs.

The IR involves around 25 derivable rules—the
rules that represent shortcuts of several rule ap-
plications. One such rule is (NOn

T) in Figure 3,
which is a specific version of (NOT). Use of deriv-
able rules yields shorter tableau proofs but raises
a problem of performing the same rule application
several times. NLogPro avoids this by maintain-
ing a subsumption relation between the rules and
keeping track of rule applications per branch.

A user can introduce new rules in the IR as Pro-
log rules (Code 1): the head of the rule encodes
antecedent nodes ===> consequent nodes, and the

body is a list of Prolog goals specifying the condi-
tions the rule has to meet.

r(Name, Feats, ConstIndx, KeyWrd, KB,
br([nd(Mod1, LLF1, Arg1, Sign1),...

nd(ModN, LLFN, ArgN, SignN)],
Signature) ===>

[br([nd(Mod3, LLF3, Arg3, Sign3),...],
Signature3),

br([nd(Mod4, LLF4, Arg4, Sign4),...],
Signature4)]

:- Goal1, ..., GoalN. %conditions

Code 1: The Prolog format of tableau rules.
Feats denotes efficiency features, ConstIndx
and KB are the KB and indexing of constants re-
spectively (fixed for every rule), and KeyWrd de-
notes fixed lexical terms occurring in the rule.
Each branch maintains its own signature of enti-
ties introduced during the proof.

4.3 Knowledge Base
The knowledge base (BS) is based on the Pro-
log version of WordNet 3.0 (Fellbaum, 1998). At
this moment only the hyponymy/hypernymy, sim-
ilarity and antonymy relations are included in the
KB. For simplicity, LangPro does not do any word
sense disambiguation (WSD) but allows multi-
ple word senses for a lexical term. For example,
A v B iff SynSetA is a hyponym of SynSetB ,
or there are similar SenseA and SenseB , where
SenseA ∈ SynSetA and SenseB ∈ SynSetB .
In the prover, a user can restrict the number of
word senses per word by specifying a cutoff N ,
i.e. the N most frequent senses per word.

In addition to the WN relations, a user can in-
troduce new lexical relations in the KB as Prolog
facts, e.g., is_(crowd, group).

4.4 The Proof Engine
The proof engine (PE) is the component that builds
proof trees. While applying rules it takes into ac-
count computational efficiency of each rule where
the efficiency depends on the following categories:

• Branching: a rule is either branching (e.g., ∀T)
or non-branching (e.g., AUX).

• Semantic equivalence: this depends whether the
antecedents of a rule is semantically equivalent
to its consequents. For example, (∧F ) encodes
the semantic equivalence while (NOT) does not.

• Producing: depending on whether a rule pro-
duces a fresh entity, it is a producer or a non-
producer. (∃T) is a producer while (∀T) is not.
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• Consuming: a rule is a consumer iff it employs
an old entity from the branch during application.
The consumer rules are (∀T) and (NOT) but (∃T).

The most efficient combination of these features
is non-branching, semantic equivalence, non-
producing and non-consuming. Depending on a
priority order between these categories, called an
efficiency criterion, one can define a partial effi-
ciency order over the rules. In particular, (6) is one
of the best efficiency criteria on SICK (Abzian-
idze, 2016a, Ch. 6). According to (6), (∧F) is more
efficient than (NOn

T) since the equivalence is the
most prominent category in (6), and (∧F) is equiv-
alence in contrast to (NOn

T)

[equi, nonBr, nonProd, nonCons] (6)

A user can change the default criterion (6) by pass-
ing a criterion via the Prolog predicate effCr/1.

The PE builds two structures: a tree (see Fig-
ure 2) and a list. The latter represents a list of
the tree branches. The list structure is the main
data structure that guides the computation process
while the tree structure is optional (activated with
the predicate prooftree/0) and is used for dis-
playing proofs in a compact way. A few of the
predicates that control the proof procedure are:

• ral/1 sets a rule application limit to n, which
means that after n rules are applied the proof is
terminated. n = 400 by default.

• thE/0 always permits existential import from
definite NPs: it makes (∃T) applicable to the en-
try then,vp,s dogn barkvp : F.

• allInt/0 allows to treat lexical modifiers of
the form c

VB.|JJ|NN
n,n as intersective by default un-

less stated differently in the SG. This permits to
infer babyn : c : T and kangaroon : c : T from
babyn,nkangaroo : c : T, for better or worse.

• the/0, a2the/0, and s2the/0 are used as flags
and treat bare, indefinite, and plural NPs as def-
inite NPs, respectively.

5 LangPro: Natural Language Prover

The tableau-based theorem prover for natural lan-
guage is obtained by chaining a CCG parser,
LLFgen and NLogPro. In order to detect a se-
mantic relation between a set of premises {pi}ni=1

and a hypothesis h, first the corresponding LLFs
{Pi}ni=1 and H are obtained via a CCG parser and
LLFgen (i.e. for simplicity, a single LLF per sen-
tence). Then based on the lexical terms of the

LLFs, relevant sets of relations K and rules R are
collected from the KB and the IR, respectively. To
refute both entailment and contradiction relations
NLogPro builds two proof trees using K and R.
One starts with the counterexample (7) for entail-
ment and another with the counterexample (8) for
contradiction. The semantic relation which could
not be refuted (i.e. its tableau for the counterexam-
ple was closed) is said to be proved. The relation
is considered to be neutral iff both tableaux have
the same closure status: open or closed.

{P1 : T, . . . , Pn : T, H : F} (7)

{P1 : T, . . . , Pn : T, H : T} (8)
Entailment relations often do not depend on

semantics of phrases shared by premises and
hypotheses. To bypass analyzing the common
phrases, LangPro can use an optional CCG term
aligner in LLFgen (Figure 1), which identifies the
common CCG sub-terms and treats them as con-
stants. The sub-terms that are downward mono-
tone or indefinite NPs are excluded from align-
ments as they do not behave semantically as
constants. After aligning CCG terms, aligned
LLFs are obtained from them via the type-raising.
Tableau proofs with aligned LLFs are shorter.
Thus, first, a tableau with aligned LLFs is built,
and if the tableau did not close, then non-aligned
LLFs are used since alignment might prevent the
tableau from closing. On SICK, the aligner boosts
the accuracy by 1%. If stronger alignment is used
(i.e. aligning indefinite NPs), the accuracy on
SICK is increased by 2%. Both weak and strong
alignment options can be chosen in LangPro.

The parser component of LangPro can be filled
by C&C or EasyCCG. This results in two versions
of LangPro, ccLangPro and easyLangPro respec-
tively. Both versions achieve similar results on
FraCaS and SICK, and a simple aggregation of
their judgments (coLangPro) improves the accu-
racy on the unseen portion of SICK by 1%.

With respect to its rule-based nature, LangPro
is fast. Given ready CCG derivations, on average
100 SICK problems are classified in 3.5 seconds.7

Details about speed and impact of parameters on
the performance are given in Abzianidze (2016a).

In addition to an entailment judgment, LangPro
can output the actual tableau proof trees (similar

7This is measured on 8 × 2.4 GHz CPU machine, when
proving problems in parallel (via the paralle/0 predicate)
with the strong aligner option and the rule application limit
50—the configuration that achieves high performance both
in terms of speed and accuracy.
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to Figure 2) in three formats: a drawing of a proof
tree via the XPCE GUI, a LATEX source code, an
XML output, or an HTML file.

6 Related work

Theorem proving techniques (Bos and Markert,
2005) or ideas from Natural Logic (MacCartney,
2009) were already used in recognizing textual
entailment (RTE). But the combination of these
two is a novel approach to RTE. The underlying
higher-order logic of LangPro guarantees sound
reasoning over several premises, including some
complex semantic phenomena. This is in con-
trast to the RTE systems that cannot reason over
several premises or cannot account for Booleans
and quantifiers, including the ones (MacCartney,
2009) inspired by Natural Logic, and in contrast
to those ones that use FOL representations and
cannot cover higher-order phenomena like gener-
alized quantifiers or subsective adjectives.

LangPro achieves state-of-the-art semantic
competence (with accuracy of 87%) on the
FraCaS sections commonly used for evaluation
(Abzianidze, 2016b,a). On SICK, the prover
obtains 82.1% of accuracy (Abzianidze, 2015a,
2016a) while state-of-the-art systems score in
the range of 81-87% and average performance of
human on the dataset is around 84%. Detailed
comparison of LangPro to the related RTE systems
is discussed in (Abzianidze, 2015a, 2016b,a).

7 Conclusion

The presented natural language prover involves a
unique combination of natural logic, higher-order
logic and a tableau method. Its natural logic
side simplifies generation of the logical forms and
makes the prover to be relatively easily scaled
up. Due to its higher-order virtue, the prover
easily accounts for complex semantic phenomena
untameable in FOL. Because of its high reliabil-
ity (less than 3% of its entailment and contradic-
tion judgments are incorrect), the judgments of the
prover can be successfully borrowed by other RTE
systems. Further scaling-up for longer sentences
(e.g., newswire text) and automated knowledge ac-
quisition present future challenges to the prover.
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Abstract

While neural machine translation (NMT)
provides high-quality translation, it is still
hard to interpret and analyze its behav-
ior. We present an interactive interface for
visualizing and intervening behavior of
NMT, specifically concentrating on the be-
havior of beam search mechanism and at-
tention component. The tool (1) visualizes
search tree and attention and (2) provides
interface to adjust search tree and atten-
tion weight (manually or automatically) at
real-time. We show the tool help users un-
derstand NMT in various ways.

1 Introduction

Recent advances in neural machine translation
(NMT) (Sutskever et al., 2014) have changed the
direction of machine translation community. Com-
pared to traditional phrase-based statistical ma-
chine translation (SMT) (Koehn, 2010), NMT pro-
vides more accurate and fluent translation results.
Companies also have started to adopt NMT for
their machine translation service.

However, it is still challenging to analyze trans-
lation behavior of NMT. While SMT provides in-
terpretable features (like phrase table), NMT di-
rectly learns complex features which are obscure
to human. This is especially problematic in the
case of wrong translation, since it is even hard to
understand why the system generated such sen-
tences.

To help the analysis, we propose a tool for vi-
sualizing and intervening NMT behavior, concen-
trated on beam search decoder and attention. The
features can be grouped by two categories:

• Visualizing decoder result, including how
decoder assigns probability to each token

Figure 1: Beam search tree interface. Beam search
result is shown as a tree (section 3.1). By hovering
mouse over node, its corresponding output candi-
dates can be seen. User may click the candidate
to expand node which are discarded during search
(section 3.3).

(word, sub-word, etc.), how beam search
maintains and discards intermediate hypothe-
ses, and how attention layer assigns attention
weight. This enables detailed observation of
decoder behavior.

• Intervening in decoder behavior, including
manually expanding hypothesis discarded
during search and adjusting attention weight.
This helps understanding how the compo-
nents affect translation quality.

We show the mechanism of visualization (Sec-
tion 3.1 and 3.2) and manipulation (Section 3.3
and 3.4) and its usefulness with examples.

2 Related Work

There have been various methods proposed for vi-
sualizing and intervening neural models for NLP.
(Li et al., 2015) provides a concise literature re-
view.

Visualization and manipulation of NMT could
be grouped into three parts: RNN (of encoder and
decoder), attention (of decoder), and beam search
(of decoder).
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Figure 2: Beam search tree of de-en NMT.

Figure 3: Beam search tree of en-ko NMT. Input sentence is: “As a bass player, he is known for his highly
distinctive tone and phrasing.”

RNN plays a central role in recognizing source
sentences and generating target sentences. Al-
though we here treat RNN as a black-box, there
exists various methods to understand RNNs, e.g.
by observing intermediate values (Strobelt et al.,
2016; Karpathy et al., 2015; Li et al., 2015) or by
removing some parts of them (Goh, 2016; Li et al.,
2016).

Attention (Bahdanau et al., 2014; Luong et al.,
2015) is an important component for improving
NMT quality. Since the component behaves like
alignment in traditional SMT, it has been proposed
to utilize attention during training (Cheng et al.,
2015; Tu et al., 2016b) or during decoding (Wu
et al., 2016). In this work, we propose a way to
manipulate attention and to understand the behav-
ior.

Beam search is known to improve quality of
NMT translation output. However, it is also known
that larger beam size does not always helps but
rather hurts the quality (Tu et al., 2016a). There-
fore it is important to understand how beam search
affects quality. (Wu et al., 2016; Freitag and Al-
Onaizan, 2017) proposed several penalty functions
and pruning methods for beam search. We directly
visualize beam search result as a tree and manually
explore hypotheses discarded by decoder.

Figure 4: Diagram of NMT decoder step. Search
tree visualization (Figure 2) shows input and out-
put tokens as a tree.

3 Interactive Beam Search

We propose an interactive tool for visualizing and
manipulating NMT decoder behavior. The sys-
tem consists of two parts: back-end NMT server
and front-end web interface. NMT server is re-
sponsible for NMT computation. Web interface is
responsible for requesting computation to NMT
server and showing results at real time.

For back-end implementation, we use two NMT
models. For English-Korean (en-ko), we use a
model used in Naver Papago (Lee et al., 2016) ser-
vice1 ported to TensorFlow. For German-English
(de-en), we adopted Nematus2 and pretrained
models provided by (Sennrich et al., 2016). For
front-end we implemented JavaScript-based web

1https://papago.naver.com/
2https://github.com/rsennrich/nematus
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Figure 5: Attention Table. Weight is represented as number and green color.

Figure 6: Attention Graph Dialog. Weight is represented as red color.

page with d3.js3.

3.1 Search Tree Visualization
To understand how beam search decoder selects
and discards intermediate hypothesis, we first plot
all hypotheses as a tree (Figure 2, 3). For each in-
put token (word or sub-word) and decoder (RNN)
state vector, the decoder computes output prob-
ability of all possible output token, then beam
search routine selects token based on its probabil-
ity value (Figure 4). We plot each input and out-
put token as tree node, and input-output relation
as edge. If a node is mouse-hovered, it shows its
next possible tokens with highest probability, in-
cluding pruned ones (Figure 1). We also visualize
output probability of node using edge thickness;
thicker edge means higher probability.

3.2 Attention Visualization
We show the attention weight of (partially) gen-
erated sentence as table (Figure 5) and as graph
(Figure 6). Table interface provides detailed infor-
mation, and graph interface provides more concise
view therefore better for long sentences.

3.3 Search Tree Manipulation
We implemented an interface to manually expand
nodes which are discarded during beam search.
In search tree visualization (Figure 7) or attention
manipulation dialog (Figure 9), a user can click
one of output candidate (green node) then the sys-
tem computes its next outputs and extends the tree.

3https://d3js.org/

Figure 7: Manual expansion of nodes not explored
at Figure 2. For the partial sentence “the Pal@@
li@@ ative Care is”, new subtree “. . . used when
there . . . ” are created.

This enables exploration of hypotheses not cov-
ered by decoder but worth to analyze.

3.4 Attention Manipulation

We are interested in understanding attention layer
of (Bahdanau et al., 2014; Luong et al., 2015), es-
pecially the role and effect of attention weights.
To achieve it, we modified NMT decoder to ac-
cept arbitrary attention weight instead of what the
decoder computes (Figure 8).

3.4.1 Manual Adjustment of Attention
Weight

For given memory cells (encoder outputs)
(m1, · · · , mn) and decoder internal state h, the
attention layer first computes relevance score of
memory cell si = f(mi, h) and attention weight
wi = softmax(s1, · · · , sn)i. Then memory cells
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Figure 8: Diagram of attention manipulation
mechanism. The dashed components are origi-
nal component of NMT decoder. Here “attention
weight” is replaced by “custom attention weight”
which is given by user or computed to maximize
probability of output token.

Figure 9: Result of attention manipulation for two
output tokens “어조” and “음색”.

are summarized into one fixed vector (m̃) via
weighted sum: m̃ =

∑
i wimi. The summarized

vector is fed to next layer to compute output token
probabilities: p(yj) = g(m̃, h)j .

We modified the decoder to accept custom
weight w′ = (w′

1, · · ·w′
n) instead of original ones

w, when w′ is provided by user. We also im-
plemented front-end interface to adjust custom
weight (Figure 9). If user drags circle on the bar,
the weights are adjusted and the system computes
new output probabilities using the weight. It helps
to understand what is encoded in memory cell and
how decoder utilizes the attended memory m̃. For
example, user may increase or decrease weight of
specific memory cell and observe its effect.

Figure 9 shows an illustrative example that how
adjusting attention weight could change output
probability distribution. When weight of “highly”
and “tone” are high, NMT puts high probability
to “어조” (“tone of voice”). When weight of “dis-
tinctive” is high, NMT recognizes “tone” in cur-
rent context (musical instrument) and puts high
probability to “음색” (“timbre”).

3.4.2 Automatic Adjustment of Attention
Weight

We also implemented a method to find attention
weight maximizing output probability of a specific
token. For attention weight w and token y, we see
this problem as a constrained optimization: maxi-
mize log p(y|w, · · ·) s.t. wi ≥ 0,

∑
i wi = 1. Since

the toolkits we use (TensorFlow4 and Theano5)
provide unconstrained gradient descent optimizer,
we cast the original problem to unconstrained op-
timization: instead of weight w, we optimize un-
normalized score s before softmax, initialized as
si = log wi. The method can be used to opti-
mize weight for specific time step (Figure 9) or
for whole sentence (Figure 10).

For English-Korean, this technique is particu-
larly useful because the original attention weight
is sometimes hard to interpret. Due to ordering
differences between two languages, en-ko NMTs
tend to generate diverse sentences and they have
very different orderings among each other. In
Figure 3, input sentence is “As a bass player,
he is . . . ”. NMT puts high probability to output
sentences starting with either “베이스” (“bass”)
or “그” (“he”), since both are valid. Therefore,

4https://www.tensorflow.org/
5http://deeplearning.net/software/

theano/
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Figure 10: Two attention graphs of en-ko NMT. The first one shows attention weights from NMT. The
second one shows attention weights adjusted to maximize target sentence. It reveals clearer and more
interpretable relation than original attention.

corresponding source words have high attention
weights (0.14 for “bass” and 0.07 for “he”). Since
output token is chosen after attention, the atten-
tion weights do not necessarily look like alignment
between source and output sentences, but rather
look like a mixture of alignments of possible out-
put sentences.

Once output token is chosen, we can find new
attention weight which increases probability of
output token, which would be more interpretable
than the original weight. An example of such ad-
justment is shown at Figure 10.

4 Conclusion

We propose a web-based interface for visualiz-
ing, investigating and understanding neural ma-
chine translation (NMT). The tool provides sev-
eral methods to understand beam search and at-
tention mechanism in an interactive way, by visu-
alizing search tree and attention, expanding search
tree manually, and changing attention weight ei-
ther manually or automatically. We show the vi-
sualization and manipulation helps understanding
NMT behavior.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations.

Yong Cheng, Shiqi Shen, Zhongjun He, Wei He,
Hua Wu, Maosong Sun, and Yang Liu. 2015.
Agreement-based joint training for bidirectional
attention-based neural machine translation. CoRR,
abs/1512.04650.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation.
CoRR, abs/1702.01806.

Gabriel Goh. 2016. Decoding the thought vector.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Philipp Koehn. 2010. Statistical Machine Translation,
1st edition. Cambridge University Press, New York,
NY, USA.

Hyoung-Gyu Lee, Jun-Seok Kim, Joong-Hwi Shin,
Jaesong Lee, Ying-Xiu Quan, and Young-Seob
Jeong. 2016. papago: A machine translation service
with word sense disambiguation and currency con-
version. In Proceedings of COLING 2016, the 26th
International Conference on Computational Lin-
guistics: System Demonstrations, pages 185–188,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in nlp. arXiv preprint arXiv:1506.01066.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. CoRR, abs/1612.08220.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. In Proceedings of the First
Conference on Machine Translation, pages 371–
376, Berlin, Germany. Association for Computa-
tional Linguistics.

125



Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber,
Hanspeter Pfister, and Alexander M. Rush. 2016.
Visual analysis of hidden state dynamics in recurrent
neural networks. CoRR, abs/1606.07461.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2016a. Neural machine translation
with reconstruction. CoRR, abs/1611.01874.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016b. Coverage-based neural ma-
chine translation. CoRR, abs/1601.04811.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

126



Author Index

Abujabal, Abdalghani, 61
Abzianidze, Lasha, 115
Adler, Meni, 109
Akbik, Alan, 43
Amsterdamer, Yael, 109
Apidianaki, Marianna, 37

Bar-Ilan, Judit, 109
Batra, Dhruv, 79
Biemann, Chris, 91
Bordes, Antoine, 79
Byrne, Bill, 25

Callison-Burch, Chris, 37
Chen, Hung-Chen, 73
Chen, Yi-Pei, 73
Cocos, Anne, 37
Crutchley, Patrick, 55
Cutler, Hannah, 37

Dagan, Ido, 109
Delli Bovi, Claudio, 103
Dernoncourt, Franck, 97

Eichstaedt, Johannes, 55

Falke, Tobias, 19
Faralli, Stefano, 91
Feng, Will, 79
Fisch, Adam, 79
Fulgoni, Dean, 37

Geiß, Johanna, 85
Gertz, Michael, 85
Giorgi, Salvatore, 55
Gurevych, Iryna, 7, 19

Habernal, Ivan, 7
Hannemann, Raffael, 7
Hasler, Eva, 25
Herrasti, Alvaro, 49
Hopkins, Mark, 49
Huang, Chieh-Yang, 73
Huang, Ting-Hao, 73

Jackson, Bradley, 37

Joshi, Vidur, 49

Kim, Jun-Seok, 121
Klamm, Christopher, 7
Koreeda, Yuta, 31
Ku, Lun-Wei, 73
Kuhn, Jonas, 67
Kurotsuchi, Kenzo, 31

Labetoulle, Tristan, 73
Lee, Jaesong, 121
Lee, Ji Young, 97
Liu, Zheyuan, 37
Lu, Jiasen, 79

Marten, Fide, 91
Mechanic, Ross, 37
Meyers, Benjamin, 13
Miller, Alexander, 79

Niwa, Yoshiki, 31

Ovesdotter Alm, Cecilia, 13

Panchenko, Alexander, 91
Papandrea, Simone, 103
Parikh, Devi, 79
Pauli, Patrick, 7
Petrescu-Prahova, Cristian, 49
Pollak, Christian, 7
Ponzetto, Simone Paolo, 91
Prud’hommeaux, Emily, 13

Raganato, Alessandro, 103
Rajana, Sneha, 37
Richardson, Kyle, 67
Richter, Ludwig, 85
Ronen, Hadar, 109
Ruppert, Eugen, 91

Saha Roy, Rishiraj, 61
Sap, Maarten, 55
Sarnat, Aaron, 49
Sato, Misa, 31
Saunders, Danielle, 25
Schneider, Nathan, 1

127



Schwartz, H. Andrew, 55
Shapira, Ori, 109
Shin, Joong-Hwi, 121
Spitz, Andreas, 85
Srivastava, Vallari, 73
Stahlberg, Felix, 25
Stilson, Brandon, 49
Szolovits, Peter, 97

Ungar, Lyle, 55
Ustalov, Dmitry, 91

Vollgraf, Roland, 43

Weikum, Gerhard, 61
Weston, Jason, 79
Wooters, Chuck, 1

Yahya, Mohamed, 61
Yanai, Kohsuke, 31
Yanase, Toshihiko, 31


	Program
	The NLTK FrameNet API: Designing for Discoverability with a Rich Linguistic Resource
	Argotario: Computational Argumentation Meets Serious Games
	An Analysis and Visualization Tool for Case Study Learning of Linguistic Concepts
	GraphDocExplore: A Framework for the Experimental Comparison of Graph-based Document Exploration Techniques
	SGNMT -- A Flexible NMT Decoding Platform for Quick Prototyping of New Models and Search Strategies
	StruAP: A Tool for Bundling Linguistic Trees through Structure-based Abstract Pattern
	KnowYourNyms? A Game of Semantic Relationships
	The Projector: An Interactive Annotation Projection Visualization Tool
	Interactive Visualization for Linguistic Structure
	DLATK: Differential Language Analysis ToolKit
	QUINT: Interpretable Question Answering over Knowledge Bases
	Function Assistant: A Tool for NL Querying of APIs
	MoodSwipe: A Soft Keyboard that Suggests MessageBased on User-Specified Emotions
	ParlAI: A Dialog Research Software Platform
	HeidelPlace: An Extensible Framework for Geoparsing
	Unsupervised, Knowledge-Free, and Interpretable Word Sense Disambiguation
	NeuroNER: an easy-to-use program for named-entity recognition based on neural networks
	SupWSD: A Flexible Toolkit for Supervised Word Sense Disambiguation
	Interactive Abstractive Summarization for Event News Tweets
	LangPro: Natural Language Theorem Prover
	Interactive Visualization and Manipulation of Attention-based Neural Machine Translation

