
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2664–2669
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Leveraging Linguistic Structures for Named Entity Recognition with
Bidirectional Recursive Neural Networks

Peng-Hsuan Li
National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei 10617, Taiwan
jacobvsdanniel@gmail.com

Ruo-Ping Dong
National Tsing Hua University
No. 101, Sec. 2, Kuang-Fu Rd.

Hsinchu 30013, Taiwan
dongruoping@gmail.com

Yu-Siang Wang
National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei 10617, Taiwan
b03202047@ntu.edu.tw

Ju-Chieh Chou
National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei 10617, Taiwan
jjery2243542@gmail.com

Wei-Yun Ma
Academia Sinica

No. 128, Sec. 2, Academia Rd.
Taipei 11529, Taiwan

ma@iis.sinica.edu.tw

Abstract

In this paper, we utilize the linguistic
structures of texts to improve named en-
tity recognition by BRNN-CNN, a spe-
cial bidirectional recursive network at-
tached with a convolutional network. Mo-
tivated by the observation that named en-
tities are highly related to linguistic con-
stituents, we propose a constituent-based
BRNN-CNN for named entity recogni-
tion. In contrast to classical sequential la-
beling methods, the system first identifies
which text chunks are possible named en-
tities by whether they are linguistic con-
stituents. Then it classifies these chunks
with a constituency tree structure by recur-
sively propagating syntactic and semantic
information to each constituent node. This
method surpasses current state-of-the-art
on OntoNotes 5.0 with automatically gen-
erated parses.

1 Introduction

Named Entity Recognition (NER) can be seen as
a combined task of locating named entity chunks
of texts and classifying which named entity cat-
egory a chunk falls into. Traditional approaches
label each token in texts as a part of a named en-
tity chunk, e.g. “person begin”, and achieve high

performances in several benchmark datasets (Rati-
nov and Roth, 2009; Passos et al., 2014; Chiu and
Nichols, 2016).

Being formulated as a sequential labeling prob-
lem, NER systems could be naturally imple-
mented by recurrent neural networks. These net-
works process a token at a time, taking, for each
token, the hidden features of its previous token
as well as its raw features to compute its own
hidden features. Then they classify each token
by these hidden features. With both forward and
backward directions, networks learn how to prop-
agate the information of a token sequence to each
token. Chiu and Nichols (2016) utilize a varia-
tion of recurrent networks, bidirectional LSTM,
attached with a CNN, which learns character-level
features instead of handcrafting. They accom-
plish state-of-the-art results on both CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Hovy et al., 2006; Pradhan et al.,
2013) datasets.

Classical sequential labeling approaches take
little information about phrase structures of sen-
tences. However, according to our analysis, most
named entity chunks are actually linguistic con-
stituents, e.g. noun phrases. This motivates us
to focus on a constituent-based approach for NER
where the NER problem is transformed into a
named entity classification task on every node of a

2664



Algorithm 1 Binarization
1: function BINARIZE(node)
2: n← node.children.length
3: if n > 2 then
4: if HEAD-FINDER(node) 6= node.children[n] then
5: newChild← GROUP(node.children[1..n-1])
6: node.children← [newChild, node.children[n]]
7: else
8: newChild← GROUP(node.children[2..n])
9: node.children← [node.children[1], newChild]

10: newChild.pos← node.pos

11: for child in node.children do
12: BINARIZE(child)

Figure 1: Applying Algorithm 1 to the parse of senator Edward Kennedy.

constituency structure.
To classify constituents and take into account

their structures, we propose BRNN-CNN, a spe-
cial bidirectional recursive neural network at-
tached with a convolutional network. For each
sentence, a constituency parse where every node
represents a meaningful chunk of the sentence, i.e.
a constituent, is first generated. Then BRNN-CNN
recursively computes hidden state features of ev-
ery node and classifies each node by these hidden
features. To capture structural linguistic informa-
tion, bidirectional passes are applied so that each
constituent sees what it is composed of as well as
what is containing it, both in a near-to-far fashion.

Our main contribution is the introduction of a
novel constituent-based BRNN-CNN for named
entity recognition, which successfully utilizes the
linguistic structures of texts by recursive neural
networks. We show that it achieves better scores
than current state-of-the-art on OntoNotes 5.0,
where good parses can be automatically gener-
ated. Additionally, we analyze the effects of only
considering constituents and the effects of con-
stituency parses.

2 Related Work

Collobert et al. (2011) achieved near state-of-
the-art performance on CoNLL-2003 NER with
an end-to-end neural network which had minimal
feature engineering and external data. Chiu and
Nichols (2016) achieved the current state-of-the-
art on both CoNLL-2003 and OntoNotes 5.0 NER
with a sequential bidirectional LSTM-CNN. They
also did extensive studies of additional features
such as character type, capitalization, and Senna
and DBpedia lexicons.

Finkel and Manning (2009) explored training a
parser for an NER-suffixed grammar, jointly tack-
ling parsing and NER. They achieved competitive
results on OntoNotes with a CRF-CFG parser.

Recursive neural networks have been success-
fully applied for parsing and sentiment analysis
on Stanford sentiment treebank (Socher et al.,
2010, 2013a,b; Tai et al., 2015). Their recur-
sive networks, such as RNTN and Tree-LSTM, do
sentiment combinations on phrase structures in a
bottom-up fashion, showing the potential of such
models in computing semantic compositions.

2665



Figure 2: The bottom-up and top-down hidden layers applied to the binarized tree in Figure 1.

3 Method

For each input sentence, our constituent-based
BRNN-CNN first extracts features from its con-
stituency parse, then recursively classifies each
constituent, and finally resolves conflicting predic-
tions.

3.1 Preparing Constituency Structures

For a sentence and its associated constituency
parse, our system first sets three features for each
node: a POS, a word, and a head. While con-
stituency tags and words should come readily, se-
mantic head words are determined by a rule-based
head finder (Collins, 1999). Additionally, a fourth
feature vector is added to each node to utilize lex-
icon knowledge. The 3-bit vector records if the
constituent of a node matches some phrases in
each of the three SENNA (Collobert et al., 2011)
lexicons of persons, organizations, and locations.

The system then tries to generate more plausible
constituents while preserving linguistic structures
by applying a binarization process which groups
excessive child nodes around the head children.
The heuristic is that a head constituent is usually
modified by its siblings in a near to far fashion.
Algorithm 1 shows the recursive procedure called
for the root node of a parse. Figure 1 shows the
application of the algorithm to the parse of senator
Edward Kennedy. With the heuristic that Edward
modifies the head node Kennedy before senator.
The binarization process successfully adds a new
node Edward Kennedy that corresponds to a per-
son name.

3.2 Computing Word Embeddings

For each word, our network retrieves one embed-
ding from a trainable lookup table initialized by
GloVe (Pennington et al., 2014). However, to cap-
ture the morphology information of a word and
help dealing with unseen words, the network com-
putes another character-level embedding. Inspired
by Kim et al. (2016), the network passes one-
hot character vectors through a series of convolu-
tional and highway layers to generate the embed-
ding. These two embeddings are concatenated as
the final embedding of a word.

3.3 Computing Hidden Features

Given a constituency parse tree, where every node
represents a constituent, our network recursively
computes two hidden state features for every node.

First, for each node iwith left sibling l and right
sibling r, the raw feature vector Ii is formed by
concatenating the one-hot POS vectors of i, l, r,
the head embeddings of i, l, r, the word embed-
ding of i, the lexicon vector of i, and the mean of
word embeddings in the sentence. Then, with the
the set of child nodes C and the parent node p, the
hidden feature vectors Hbot,i and Htop,i are com-
puted by 2 hidden layers:

Hbot,i = ReLU((Ii‖
∑
c∈C

Hbot,c)Wbot+bbot) (1)

Htop,i = ReLU((Ii‖Htop,p)Wtop + btop) (2)

whereW s are weight matrices, bs are bias vectors,
and ReLU(x) = max(0, x). In cases when some
needed neighboring nodes do not exist, or when i
is a nonterminal and does not have a word, zero

2666



Validation Test
Model Parser Precision Recall F1 Precision Recall F1
BRNN-CNN gold 86.6 87.0 86.77 88.9 88.9 88.92
BRNN gold 87.5 86.7 87.11 89.5 88.3 88.91
BRNN-CNN auto 85.5 84.7 85.08 88.0 86.5 87.21
BRNN auto 86.0 84.7 85.34 88.0 86.2 87.10
Bidirectional Tree-LSTM auto 85.2 84.5 84.84 87.3 86.2 86.74
Sequential Recurrent NN - 83.1 83.7 83.38 84.5 84.4 84.40
Finkel and Manning (2009) gold - - - 84.04 80.86 82.42
Durrett and Klein (2014) - - - - 85.22 82.89 84.04
Chiu and Nichols (2016) - - - - - - 86.41

Table 1: Experiment results on whole dataset. BRNN is BRNN-CNN deprived of character-level em-
beddings. Human-labeled parses and automatically generated parses are indicated by gold and auto
respectively. Finkel and Manning used gold parses in training a joint model for parsing and NER.

Model BC BN MZ NW TC WB
Test set size (# tokens) 32488 23209 17875 49235 10976 18945
Test set size (# entities) 1697 2184 1163 4696 380 1137
Finkel and Manning (2009) 78.66 87.29 82.45 85.50 67.27 72.56
Durrett and Klein (2014) 78.88 87.39 82.46 87.60 72.68 76.17
Chiu and Nichols (2016) 85.23 89.93 84.45 88.39 72.39 78.38
BRNN-CNN-auto 85.98 90.96 84.93 89.18 73.18 80.39

Table 2: F1 scores on different data sources. From left to right: broadcast conversation, broadcast news,
magazine, newswire, telephone conversation, and blogs & newsgroups.

vectors are used as the missing parts of raw or hid-
den features.

Figure 2 shows the applications of the equations
to the binarized tree in Figure 1. The computa-
tions are done recursively in two directions. The
bottom-up direction computes the semantic com-
position of the subtree of each node, and the top-
down counterpart propagates to that node the lin-
guistic structures which contain the subtree. To-
gether, hidden features of a constituent capture its
structural linguistic information.

In addition, each hidden layer can be extended
to a deep hidden network. For example, a 2-layer
top-down hidden network is given by

Htα,i = ReLU((Ii‖Htα,p)Wtα + btα)

Htβ,i = ReLU((Htα,i‖Htβ,p)Wtβ + btβ)

where tα represents the first top-down hidden
layer and tβ represents the second. Our best
model is tuned to have 3 layers for both directions.

3.4 Forming Consistent Predictions
Given hidden features for every node, our network
computes a probability distribution of named en-

tity classes plus a special non-entity class by an
output layer. For each node i with left sibling l
and right sibling r, the probability distribution Oi
is computed by an output layer:

Oi = σ((Hi‖Hl‖Hr)Wout + bout) (3)

where Hx = Hbot,x + Htop,x, x ∈ {i, l, r}, and
σ(x) = (1 + e−x)−1. If a sibling does not exist,
zero vectors are used as its hidden states. Should
deep hidden layers be deployed, the last hidden
layer is used.

Finally, the system makes predictions for a sen-
tence by collecting the constituents whose most
probable classes are named entity classes. How-
ever, nodes whose ancestors are already predicted
as named entities are ignored to prevent predicting
overlapping named entities.

4 Evaluation

We evaluate our system on OntoNotes 5.0 NER
(Hovy et al., 2006; Pradhan et al., 2013) and ana-
lyze it with several ablation studies. The project
sources are publicly available on https://
github.com/jacobvsdanniel/tf_rnn.

2667



Split Token NE Constituent
Train 1,088,503 81,828 93.3→ 97.3

Validate 147,724 11,066 92.8→ 97.0
Test 152,728 11,257 92.9→ 97.2

Table 3: Dataset statistics for OntoNotes 5.0.

4.1 Training and Tuning

To train the model, we minimize the cross entropy
loss of the softmax class probabilities in Equation
3 by the Adam optimizer (Kingma and Ba, 2014).
Other details such as hyperparameters are docu-
mented in the supplemental materials as well as
the public repository.

4.2 OntoNotes 5.0 NER

OntoNotes 5.0 annotates 18 types of named enti-
ties for diverse sources of texts. Like other pre-
vious work (Durrett and Klein, 2014; Chiu and
Nichols, 2016), we use the format and the train-
validate-test split provided by CoNLL-2012. In
addition, both gold and auto parses are available.

Table 3 shows the dataset statistics. The last
column shows the percentages of named entities
that correspond to constituents of auto parses be-
fore and after binarization.

Table 1 and Table 2 compare our results with
others on the whole dataset and different sources
respectively. The sample mean, standard devia-
tion, and sample count of BRNN-auto and Chiu
and Nichols’ model are 87.10, 0.14, 3 and 86.41,
0.22, 10 respectively. By one-tailed Welch’s T-
test, the former significantly surpasses the latter
with 99% confidence level (0.000489 p-value).

4.3 Analysis of the Approach

The training and validation sets contain 1,236,227
tokens and 92,894 named entities, of which 90,371
correspond to some constituents of binarized auto
parses. This backs our motivation that more than
97% named entities are linguistic constituents, and
52,729 of them are noun phrases.

Essentially, the constituent-based approach fil-
ters out the other 3% named entities that cross
constituent boundaries (Figure 3), i.e. 3% loss
of recall. We dig into this problem by analyzing
a sequential labeling recurrent network (the sixth
model in Table 1). The simple model performs
reasonably well, but its non-constituent predic-
tions are mostly false positive. In fact, it slightly
improves if all non-constituent predictions are re-

Figure 3: Two sample named entities that cross
different branches of syntax parses.

moved in post-processing, i.e., the precision gain
of focusing on constituents is more significant than
the recall loss. This is one advantage of our system
over other sequential models, which try to learn
and predict non-constituent named entities but do
not perform well.

In addition, to analyze the effects of con-
stituency structures, we test our models with dif-
ferent qualities of parses (gold vs. auto in Table 1).
The significant F1 differences suggest that struc-
tural linguistic information is crucial and can be
learned by our model.

5 Conclusion

We have demonstrated a novel constituent-
based BRNN-CNN for named entity recognition
which successfully utilizes constituency struc-
tures and surpasses the current state-of-the-art on
OntoNotes 5.0 NER. Instead of propagating infor-
mation by word orders as normal recurrent net-
works, the model is able to recursively propa-
gate structural linguistic information to every con-
stituent. Experiments show that when a good
parser is available, the approach will be a good
alternative to traditional sequential labeling token-
based NER.

Named entities that cross constituent bound-
aries are analyzed and we find out that a naı̈ve
sequential labeling model has difficulty predict-
ing them without too many false positives. While
avoiding them is one of the strengths of our model,
generating more consistent parses to reduce this
kind of named entities would be one possible di-
rection for future research.

Acknowledgments

This work is supported by the 2016 Summer In-
ternship Program of IIS, Academia Sinica.

2668



References
Jason P.C. Chiu and Eric Nichols. 2016. Named entity

recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking.
Transactions of the Association for Computational
Linguistics, 2:477–490.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 326–334. Association for Computa-
tional Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60.
Association for Computational Linguistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Thirtieth AAAI Conference on Ar-
tificial Intelligence.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980 [cs.LG].

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embeddings
for named entity resolution. In Proceedings of the
Eighteenth Conference on Computational Language
Learning, pages 78–86.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages
1532–1543.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In

Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, CoNLL ’09,
pages 147–155, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013a. Parsing with composi-
tional vector grammars. In Proceedings of the ACL
conference.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1631–1642.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processingg, pages 1556–1566.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

2669


