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Abstract

We propose a novel deep learning model
for joint document-level entity disam-
biguation, which leverages learned neural
representations. Key components are en-
tity embeddings, a neural attention mech-
anism over local context windows, and a
differentiable joint inference stage for dis-
ambiguation. Our approach thereby com-
bines benefits of deep learning with more
traditional approaches such as graphical
models and probabilistic mention-entity
maps. Extensive experiments show that
we are able to obtain competitive or state-
of-the-art accuracy at moderate computa-
tional costs.

1 Introduction

Entity disambiguation (ED) is an important stage
in text understanding which automatically re-
solves references to entities in a given knowledge
base (KB). This task is challenging due to the in-
herent ambiguity between surface form mentions
such as names and the entities they refer to. This
many-to-many ambiguity can often be captured
partially by name-entity co-occurrence counts ex-
tracted from entity-linked corpora.

ED research has largely focused on two types
of contextual information for disambiguation: lo-
cal information based on words that occur in a
context window around an entity mention, and,
global information, exploiting document-level co-
herence of the referenced entities. Many state-
of-the-art methods aim to combine the benefits of
both, which is also the philosophy we follow in
this paper. What is specific to our approach is that
we use embeddings of entities as a common repre-
sentation to assess local as well as global evidence.

In recent years, many text and language under-
standing tasks have been advanced by neural net-
work architectures. However, despite recent work,
competitive ED systems still largely employ man-
ually designed features. Such features often rely
on domain knowledge and may fail to capture all
relevant statistical dependencies and interactions.
The explicit goal of our work is to use deep learn-
ing in order to learn basic features and their com-
binations from scratch. To the best of our knowl-
edge, our approach is the first to carry out this pro-
gram with full rigor.

2 Contributions and Related Work

There is a vast prior research on entity disam-
biguation, highlighted by (Ji, 2016). We will focus
here on a discussion of our main contributions in
relation to prior work.

Entity Embeddings. We have developed a sim-
ple, yet effective method to embed entities and
words in a common vector space. This fol-
lows the popular line of work on word embed-
dings, e.g. (Mikolov et al., 2013; Pennington et al.,
2014), which was recently extended to entities and
ED by (Yamada et al., 2016; Fang et al., 2016;
Zwicklbauer et al., 2016; Huang et al., 2015).
In contrast to the above methods that require
data about entity-entity co-occurrences which of-
ten suffers from sparsity, we rather bootstrap en-
tity embeddings from their canonical entity pages
and local context of their hyperlink annotations.
This allows for more efficient training and alle-
viates the need to compile co-linking statistics.
These vector representations are a key component
to avoid hand-engineered features, multiple dis-
ambiguation steps, or the need for additional ad
hoc heuristics when solving the ED task.

Context Attention. We present a novel atten-
tion mechanism for local ED. Inspired by mem-
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ory networks of (Sukhbaatar et al., 2015) and in-
sights of (Lazic et al., 2015), our model deploys
attention to select words that are informative for
the disambiguation decision. A learned combi-
nation of the resulting context-based entity scores
and a mention—entity prior yields the final local
scores. Our local model achieves better accu-
racy than the local probabilistic model of (Ganea
et al., 2016), as well as the feature-engineered lo-
cal model of (Globerson et al., 2016). As an added
benefit, our model has a smaller memory footprint
and it’s very fast for both training and testing.

There have been other deep learning approaches
to define local context models for ED. For in-
stance (Francis-Landau et al., 2016; He et al.,
2013) use convolutional neural networks (CNNs)
and stacked denoising auto-encoders, respectively,
to learn representations of textual documents and
canonical entity pages. Entities for each mention
are locally scored based on cosine similarity with
the respective document embedding. In a similar
local setting, (Sun et al., 2015) embed mentions,
their immediate contexts and their candidate en-
tities using word embeddings and CNNs. How-
ever, their entity representations are restrictively
built from entity titles and entity categories only.
Unfortunately, the above models are rather "black-
box’ (as opposed to ours which reveals the atten-
tion focus) and were never extended to perform
joint document disambiguation.

Collective Disambiguation. Last, a novel deep
learning architecture for global ED is proposed.
Mentions in a document are resolved jointly, us-
ing a conditional random field (Lafferty et al.,
2001) with parametrized potentials. We suggest to
learn the latter by casting loopy belief propagation
(LBP) (Murphy et al., 1999) as a rolled-out deep
network. This is inspired by similar approaches in
computer vision, e.g. (Domke, 2013), and allows
us to backpropagate through the (truncated) mes-
sage passing, thereby optimizing the CRF poten-
tials to work well in conjunction with the inference
scheme. Our model is thus trained end-to-end with
the exception of the pre-trained word and entity
embeddings. Previous work has investigated dif-
ferent approximation techniques, including: ran-
dom graph walks (Guo and Barbosa, 2016), per-
sonalized PageRank (Pershina et al., 2015), inter-
mention voting (Ferragina and Scaiella, 2010),
graph pruning (Hoffart et al., 2011), integer linear
programming (Cheng and Roth, 2013), or ranking

SVMs (Ratinov et al., 2011). Mostly connected to
our approach is (Ganea et al., 2016) where LBP
is used for inference (but not learning) in a prob-
abilistic graphical model and (Globerson et al.,
2016) where a single round of message passing
with attention is performed. To our knowledge,
we are one of the first to investigate differentiable
message passing for NLP problems.

3 Learning Entity Embeddings

In a first step, we propose to train entity vectors
that can be used for the ED task (and potentially
for other tasks). These embeddings compress the
semantic meaning of entities and drastically re-
duce the need for manually designed features or
co-occurrence statistics.

Entity embeddings are bootstrapped from word
embeddings and are trained independently for
each entity. A few arguments motivate this deci-
sion: (i) there is no need for entity co-occurrence
statistics that suffer from sparsity issues and/or
large memory footprints; (ii) vectors of entities in
a subset domain of interest can be trained sepa-
rately, obtaining potentially significant speed-ups
and memory savings that would otherwise be pro-
hibitive for large entity KBs;! (iii) entities can be
easily added in an incremental manner, which is
important in practice; (iv) the approach extends
well into the tail of rare entities with few linked
occurrences; (v) empirically, we achieve better
quality compared to methods that use entity co-
occurrence statistics.

Our model embeds words and entities in the
same low-dimensional vector space in order to ex-
ploit geometric similarity between them. We start
with a pre-trained word embedding map x : W —
R? that is known to encode semantic meaning of
words w € W; specifically we use word2vec pre-
trained vectors (Mikolov et al., 2013). We extend
this map to entities &, i.e. x : £ — RY, as de-
scribed below.

We assume a generative model in which words
that co-occur with an entity e are sampled from
a conditional distribution p(w|e) when they are
generated. Empirically, we collect word-entity co-
occurrence counts #(w, e) from two sources: (i)
the canonical KB description page of the entity
(e.g. entity’s Wikipedia page in our case), and (ii)
the windows of fixed size surrounding mentions of
the entity in an annotated corpus (e.g. Wikipedia

'Notably useful with (limited memory) GPU hardware.
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hyperlinks in our case). These counts define a
practical approximation of the above word-entity
conditional distribution, i.e. p(wl|e) o< #(w,e).
We call this the “positive” distribution of words
related to the entity. Next, let ¢(w) be a generic
word probability distribution which we use for
sampling “negative” words unrelated to a specific
entity. As in (Mikolov et al., 2013), we choose a
smoothed unigram distribution ¢(w) = p(w)® for
some « € (0,1). The desired outcome is that vec-
tors of positive words are closer (in terms of dot
product) to the embedding of entity e compared to
vectors of random words. Let w™ ~ p(wl|e) and
w~ ~ ¢(w). Then, we use a max-margin objec-
tive to infer the optimal embedding for entity e:

J(z;€) := By (e By [h(z;0",w7)]

h(z;w,v) = [y — (z,%Xy — xv)]Jr (D
X, 1= argmin J(z;e)
z:z]=1

where v > 0 is a margin parameter and [-] is
the ReLU function. The above loss is optimized
using stochastic gradient descent with projection
over sampled pairs (w™,w™). Note that the en-
tity vector is directly optimized on the unit sphere
which is important in order to obtain qualitative
embeddings.

We empirically assess the quality of our entity
embeddings on entity similarity and ED tasks as
detailed in Section 7 and Appendix A. The tech-
nique described in this section can also be applied,
in principle, for computing embeddings of general
text documents, but a comparison with such meth-
ods is left as future work.

4 Local Model with Neural Attention

We now explain our local ED approach that uses
word and entity embeddings to steer a neural atten-
tion mechanism. We build on the insight that only
a few context words are informative for resolving
an ambiguous mention, something that has been
exploited before in (Lazic et al., 2015). Focusing
only on those words helps reducing noise and im-
proves disambiguation. (Yamada et al., 2016) ob-
serve the same problem and adopt the restrictive
strategy of removing all non-nouns. Here, we as-
sume that a context word may be relevant, if it is
strongly related to at least one of the entity candi-
dates of a given mention.

Context Scores.

Let us assume that we have computed a
mention—entity prior p(e|m) (procedure detailed
in Section 6). In addition, for each mention m,
a pruned candidate set I'(m) of at most S entities
has been identified. Our model, depicted in Fig-
ure 1, computes a score for each e € I'(m) based
on the K-word local context ¢ = {wy,...,wx}
surrounding m, as well as on the prior. It is a
composition of differentiable functions, thus it is
smooth from input to output, allowing us to easily
compute gradients and backpropagate through it.

Each word w € c and entity e € I'(m) is
mapped to its embedding via the pre-trained map
x (cf. Section 3). We then compute an unnormal-
ized support score for each word in the context as
follows:

u(w) = max x; Ax, (2)
ecI'(m)

where A is a parameterized diagonal matrix. The
weight is high if the word is strongly related to
at least one candidate entity. We often observe
that uninformative words (e.g. similar to stop
words) receive non-negligible scores which add
undesired noise to our local context model. As a
consequence, we (hard) prune to the top R < K
words with the highest scores? and apply a soft-
max function on these weights. Define the reduced
context:

¢ ={w € clu(w) € topR(u)} 3)
Then, the final attention weights are explicitly

explu(w)] ifwee

ﬁ(w) — {Zvecexp[U(v)] ’ (4)

0 otherwise.

Finally, we define a (-weighted context-based
entity-mention score via

U(e,c) = Zﬂ(w) XIB X 5)

wee

where B is another trainable diagonal matrix. We
will later use the same architecture for the unary
scores of our global ED model.
Local Score Combination.

We integrate these context scores with the
context-independent scores encoded in p(e|m).

2We implement this in a differentiable way by setting the
lowest K-R attention weights in u to —oo and applying a
vanila softmax on top of them. We used the layers Threshold
and TemporalDynamicKMaxPooling from Torch nn package,
which allow subgradient computation.
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Figure 1: Local model with neural attention. Inputs: context word vectors, candidate entity priors and
embeddings. Outputs: entity scores. All parts are differentiable and trainable with backpropagation.

Our final (unnormalized) local model is a combi-
nation of both ¥ (e, ¢) and log p(e|m):

\Il(e7m7c) = f(\I!(e,c),logﬁ(e]m)) (6)

We find a flexible choice for f to be important and
superior to a naive weighted average combination
model. We therefore use a neural network with
two fully connected layers of 100 hidden units and
ReLU non-linearities, which we regularize as sug-
gested in (Denton et al., 2015) by constraining the
sum of squares of all weights in the linear layer.
We use standard projected SGD for training. The
same network is also used in Section 5.

Prediction is done independently for each
mention m; and context ¢; by maximizing the
U(e, mj, c;) score.

Learning the Local Model.

Entity and word embeddings are pre-trained as
discussed in Section 3. Thus, the only learnable
parameters are the diagonal matrices A and B,
plus the parameters of f. Having few parameters
helps to avoid overfitting and to be able to train
with little annotated data. We assume that a set of
known mention-entity pairs {(m,e*)} with their
respective context windows have been extracted
from a corpus. For model fitting, we then utilize
a max-margin loss that ranks ground truth entities
higher than other candidate entities. This leads us

to the objective:

0 :arg;ninz Z Z g(e,m), @)

DeD meD ecT'(m)
g(ea m) = [ry - ‘1}(6*’ m, C) + \IJ(G, m, C)LF

where v > 0 is a margin parameter and D is a
training set of entity annotated documents. We
aim to find a ¥ (i.e. parameterized by ) such
that the score of the correct entity e* referenced
by m is at least a margin  higher than that of
any other candidate entity e. Whenever this is not
the case, the margin violation becomes the experi-
enced loss.

5 Document-Level Deep Model

Next, we address global ED assuming document
coherence among entities. We therefore intro-
duce the notion of a document as consisting of
a set of mentions m = my, ..., m,, along with
their context windows ¢ = c¢y,...c,. Our goal
is to define a joint probability distribution over
I'(m1) x ... x I'(my) > e. Each such e selects
one candidate entity for each mention in the docu-
ment. Obviously, the state space of e grows expo-
nentially in the number of mentions n.
CRF Model.

Our model is a fully-connected pairwise condi-
tional random field, defined on the log scale as

g(e,m,c) :Z U;(e;) +Z D(ej,e5)  (8)
i=1

1<j
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Figure 2: Global model: unrolled LBP deep network that is end-to-end differentiable and trainable.

The unary factors are the local scores ¥;(e;) =
U (e;, ¢;) described in Eq. (5). The pairwise factors
are bilinear forms of the entity embeddings

2
n—1
where C is a diagonal matrix. Similar to (Ganea
et al., 2016), the above normalization helps bal-
ancing the unary and pairwise terms across docu-
ments with different numbers of mentions.

The function value g(e,m,c) is supposedly
high for semantically related sets of entities that
also have local support. The goal of a global
ED prediction method is to perform maximum-a-
posteriori on this CRF to find the set of entities e
that maximize g(e, m, c).

Differentiable Inference.

Training and prediction in binary CRF models
as the one above is NP-hard. Therefore, in learn-
ing one usually maximizes a likelihood approxi-
mation and during operations (i.e. in prediction)
one may use an approximate inference procedure,
often based on message-passing. Among many
challenges of these approaches, it is worth point-
ing out that weaknesses of the approximate infer-
ence procedure are generally not captured during
learning. Inspired by (Domke, 2011, 2013), we
use truncated fitting of loopy belief propagation
(LBP) to a fixed number of message passing iter-
ations. Our model directly optimizes the marginal
likelihoods, using the same networks for learn-
ing and prediction. As noted by (Domke, 2013),
this method is robust to model mis-specification,
avoids inherent difficulties of partition functions
and is faster compared to double-loop likelihood
training (where, for each stochastic update, infer-
ence is run until convergence is achieved).

Our architecture is shown in Figure 2. A neural
network with 7' layers encodes 1" message pass-
ing iterations of synchronous max-product LBP3

D(e,e) = x, Cxer, 9)

3Sum-product and mean-field performed worse in our ex-
periments.

which is designed to find the most likely (MAP)
entity assignments that maximize g(e, m,c). We
also use message damping, which is known to
speed-up and stabilize convergence of message
passing. Formally, in iteration ¢, mention m; votes
for entity candidate e € I'(m;) of mention m;

using the normalized log-message mf_U( e) com-
puted as:
1oy — Wy ( P
mlj(e) = max {Ti(e') + (e, €)
+Y mp_i(e)}. (10)

k#j

Herein the first part just reflects the CRF poten-
tials, whereas the second part is defined as

Lj(e)) (11)
+ (1 —9) - exp(mf;lj(e))]

where 0 € (0,1] is a damping factor. Note that,
without loss of generality, we simplify the LBP
procedure by dropping the factor nodes. The mes-
sages at first iteration (layer) are set to zero.

After T iterations (network layers), the beliefs
(marginals) are computed as:

me_.(e)

1—]

= log[0 - softmax(m

il Ym0 ()
k#i
e'el’(m;) exp[:u'i(e )}

Similar to the local case, we obtain accuracy
improvement when combining the mention-entity
prior p(e|m) with marginal 1;(e) using the same
non-linear combination function f from Equa-
tion 6 as follows:

pi(e) := f(p;(e), logplemi))

The learned function f for global ED is non-
trivial (see Figure 3), showing that the influence
of the prior tends to weaken for larger pu(e),

(14)
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Figure 3: Non-linear scoring function of the belief
and mention prior learned with a neural network.
Achieves a 1.7% improvement on AIDA-B dataset
compared to a weighted average scheme.

whereas it has a dominating influence whenever
the document-level evidence is weak. We also ex-
perimented with the prior integrated directly in-
side the unary factors W;(e;), but results were
worse because, in some cases, the global entity
interaction is not able to recover from strong in-
correct priors (e.g. country names have a strong
prior towards the respective countries as opposed
to national sports teams).

Parameters of our global model are the diago-
nal matrices A, B, C and the weights of the f net-
work. As before, we find a margin based objective
to be the most effective and we suggest to fit pa-
rameters by minimizing a ranking loss* defined as:

LO)=Y" > > himie) (15
DED m,€D ecT(my)
h(mi,e) = [y — pi(e;) + pile)] . (16)

Computing this objective is trivial by running
T times the steps described by Egs. (10), (11),
followed in the end by the step in Eq. (13).
Each step is differentiable and the gradient of the
model parameters can be computed on the result-
ing marginals and back-propagated over messages
using chain rule.

At test time, marginals p;(e) are computed
jointly per document using this network, but pre-
diction is done independently for each mention m;
by maximizing its respective marginal score.

6 Candidate Selection

We use a mention-entity prior p(e|m) both as a
feature and for entity candidate selection. It is

*Optimizing a marginal log-likelihood loss function per-
formed worse.

Metric

Method NDCG@1 | NDCG@5 |[NDCG@10| MAP

WikiLinkMeasure (WLM) | 0.54 | 0.52 | 0.55 |0.48
(Yamada et al., 2016)

d =500 0.59 | 0.56 | 0.59 |0.52

our (canonical pages)

0.624 | 0.589 | 0.615 |0.549

our (canonical&hyperlinks)
d =300

0.632 | 0.609 | 0.641 |0.578

Table 1: Entity relatedness results on the test set
of (Ceccarelli et al., 2013). WLM is a well-known
similarity method of (Milne and Witten, 2008).

Number | Number | Mentions | | Gold
Dataset .

mentions | docs per doc | | recall

AIDA-train 18448 946 19.5 -
AIDA-A (valid) | 4791 216 22.1 96.9%
AIDA-B (test) 4485 231 19.4 98.2%
MSNBC 656 20 32.8 98.5%
AQUAINT 727 50 14.5 94.2%
ACE2004 257 36 7.1 90.6%
WNED-CWEB | 11154 320 34.8 91.1%
WNED-WIKI 6821 320 21.3 92%

Table 2: Statistics of ED datasets. Gold recall is
the percentage of mentions for which the entity
candidate set contains the ground truth entity. We
only train on mentions with at least one candidate.

computed by averaging probabilities from two in-
dexes build from mention entity hyperlink count
statistics from Wikipedia and a large Web cor-
pus (Spitkovsky and Chang, 2012). Moreover, we
add the YAGO dictionary of (Hoffart et al., 2011),
where each candidate receives a uniform prior.

Candidate selection, i.e. construction of I'(e), is
done for each input mention as follows: first, the
top 30 candidates are selected based on the prior
p(e|m). Then, in order to optimize for memory
and run time (LBP has complexity quadratic in
S), we keep only 7 of these entities based on the
following heuristic: (i) the top 4 entities based on
p(e|lm) are selected, (ii) the top 3 entities based on
the local context-entity similarity measured using
the function from Eq. 5 are selected.”. We refrain
from annotating mentions without any candidate
entity, implying that precision and recall can be
different in our case.

In a few cases, generic mentions of persons
(e.g. "Peter”) are coreferences of more specific
mentions (e.g. “Peter Such”) from the same docu-
ment. We employ a simple heuristic to address this
issue: for each mention m, if there exist mentions
of persons that contain m as a continuous subse-

>We have used a simpler context vector here computed by
simply averaging all its constituent word vectors.
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Methods AIDA-B

Local models
prior p(e|lm) 71.9
(Lazic et al., 2015) 86.4
(Globerson et al., 2016) 87.9
(Yamada et al., 2016) 87.2
our (local, K=100, R=50) 88.8

Global models
(Huang et al., 2015) 86.6
(Ganea et al., 2016) 87.6
(Chisholm and Hachey, 2015) 88.7
(Guo and Barbosa, 2016) 89.0
(Globerson et al., 2016) 91.0
(Yamada et al., 2016) 91.5

our (global) 92.22 + 0.14

Table 3: In-KB accuracy for AIDA-B test set.
All baselines use KB+YAGO mention-entity in-
dex. For our method we show 95% confidence
intervals obtained over 5 runs.

quence of words, then we consider the merged set
of the candidate sets of these specific mentions as
the candidate set for the mention m. We decide
that a mention refers to a person if its most proba-
ble candidate by p(e|m) is a person.

7 Experiments

7.1 ED Datasets

We validate our ED models on some of the most
popular available datasets used by our predeces-
sors®. We provide statistics in Table 2.

e AIDA-CoNLL dataset (Hoffart et al., 2011)
is one of the biggest manually annotated ED
datasets. It contains training (AIDA-train),
validation (AIDA-A) and test (AIDA-B) sets.

e MSNBC (MSB), AQUAINT (AQ) and
ACE2004 (ACE) datasets cleaned and up-
dated by (Guo and Barbosa, 2016)’

e WNED-WIKI (WW) and WNED-CWEB
(CWEB): are larger, but automatically ex-
tracted, thus less reliable. Are built from the
ClueWeb and Wikipedia corpora by (Guo and
Barbosa, 2016; Gabrilovich et al., 2013).

7.2 Training Details and (Hyper)Parameters

We explain training details of our approach. All
models are implemented in the Torch framework.
Entity Vectors Training & Relatedness Eval-
uation. For entity embeddings only, we use

®TAC-KBP datasets used by (Yamada et al., 2016; Glober-
son et al., 2016; Sun et al., 2015) are no longer available.
7 Available at: bit .1y/2gnSBLg

Global methods ACE |CWEB | WW

prior p(e[m) 803 | 83.2 | 844 | 69.8 | 642

(Fang et al., 2016) 81.2 | 88.8 | 85.3 - -
(Ganea et al., 2016) 91 |89.2 | 88.7 - -
(Milne and Witten, 2008)| 78 85 81 64.1 | 81.7
(Hoffart et al., 2011) 79 | 56 | 80 | 58.6 | 63
(Ratinov et al., 2011) 75 83 82 | 56.2 | 67.2

(Cheng and Roth, 2013) | 90 | 90 | 86 | 67.5 | 734
(Guo and Barbosa, 2016)| 92 87 88 77 | 84.5
93.7 | 88.5|88.5| 77.9 | 77.5

our (global) £0.1|+04]+03] £0.1|x01

Table 4: Micro F1 results for other datasets.

Wikipedia (Feb 2014) corpus for training. En-
tity vectors are initialized randomly from a O-
mean normal distribution with standard deviation
1. We first train each entity vector on the en-
tity’s Wikipedia canonical description page (title
words included) for 400 iterations. Subsequently,
Wikipedia hyperlinks of the respective entities are
used for learning until validation score (described
below) stops improving. In each iteration, 20 pos-
itive words, each with 5 negative words, are sam-
pled and used for optimization as explained in Sec-
tion 3. We use Adagrad (Duchi et al., 2011) with
a learning rate of 0.3. We choose embedding size
d = 300, pre-trained (fixed) Word2Vec word vec-
tors®, a = 0.6, ~ = 0.1 and window size of 20
for the hyperlinks. We remove stop words before
training. Since our method allows to train the em-
bedding of each entity independently of other en-
tities, we decide for efficiency reasons (and with-
out loss of generality) to learn only the vectors of
all entities appearing as mention candidates in all
the test datasets described in Sec. 7.1, a total of
270000 entities. Training of those takes 20 hours
on a single TitanX GPU with 12GB of memory.

We test and validate our entity embeddings on
the entity relatedness dataset of (Ceccarelli et al.,
2013). It contains 3319 and 3673 queries for the
test and validation sets. Each query consist of one
target entity and up to 100 candidate entities with
gold standard binary labels indicating if the two
entities are related. The associated task requires
ranking of related candidate entities higher than
the others. Following previous work, we use dif-
ferent evaluation metrics: normalized discounted
cumulative gain (NDCG) and mean average pre-
cision (MAP). The validation score used during
learning is then the sum of the four metrics showed
in Table 1. We perform candidate ranking based
on cosine similarity of entity pairs.

8By Word2Vec authors: http://bit.ly/1R9Wsqr
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89.5

Table 5: Effects of two of the hyper-parameters.
Left: Alow T (e.g.5) is already sufficient for accu-
rate approximate marginals. Right: Hard attention
improves accuracy of a local model with K=100.

Local and Global Model Training. Our local and
global ED models are trained on AIDA-train (mul-
tiple epochs), validated on AIDA-A and tested
on AIDA-B and other datasets mentioned in Sec-
tion 7.1. We use Adam (Kingma and Ba, 2014)
with learning rate of 1e-4 until validation accuracy
exceeds 90%, afterwards setting it to le-5. Vari-
able size mini-batches consisting of all mentions
in a document are used during training. We re-
move stop words. Hyper-parameters of the best
validated global model are: v = 0.01,K =
100, R = 25,5 = 7,6 = 0.5,7 = 10. For the
local model, R = 50 was best. Validation accu-
racy is computed after each 5 epochs. To regular-
ize, we use early stopping, i.e. we stop learning if
the validation accuracy does not increase after 500
epochs. Training on a single GPU takes, on aver-
age, 2ms per mention, or 16 hours for 1250 epochs
over AIDA-train.

By using diagonal matrices A, B, C, we keep
the number of parameters very low (approx. 1.2K
parameters). This is necessary to avoid overfit-
ting when learning from a very small training set.
We also experimented with diagonal plus low-rank
matrices, but encountered quality degradation.

7.3 Entity Similarity Results

Results for the entity similarity task are shown in
Table 1. Our method outperforms the well es-
tablished Wikipedia link measure and the method
of (Yamada et al., 2016) using less information
(only word - entity statistics). We note that the
best result on this dataset was reported in the un-
published work of (Huang et al., 2015). Their en-
tity embeddings are trained on many more sources
of information (e.g. KG links, relations, entity
types). However, our focus was to prove that
lightweight trained embeddings useful for the ED
task can also perform decently for the entity sim-

Freq

plelm)

old Number | Solved old Number | Solved
80°C | mentions correctly 80’ mentions | correctly
entity entity
0 5 80.0 % <0.01 36 89.19%
1-10 0 - 0.01-0.03] 249 |88.76%
11-20 4 100.0% || 0.03 - 0.1 306 | 82.03%
21-50 50 90.0% 0.1-0.3 381 86.61%
> 50| 4345 94.2% > 0.3 3431 | 96.53%

Table 6: ED accuracy on AIDA-B for our best sys-
tem splitted by Wikipedia hyperlink frequency and
mention prior of the ground truth entity, in cases
where the gold entity appears in the candidate set.

ilarity task. We emphasize that our global ED
model outperforms Huang’s ED model (Table 3),
likely due to the power of our local and joint neu-
ral network architectures. For example, our at-
tention mechanism clearly benefits from explicitly
embedding words and entities in the same space.

7.4 ED Baselines & Results

We compare with systems that report state-of-the-
art results on the datasets. Some baseline scores
from Table 4 are taken from (Guo and Barbosa,
2016). The best results for the AIDA datasets are
reported by (Yamada et al., 2016) and (Globerson
et al., 2016). We do not compare against (Per-
shina et al., 2015) since, as noted also by (Glober-
son et al., 2016), their mention index artificially
includes the gold entity (guaranteed gold recall),
which is not a realistic setting.

For a fair comparison with prior work, we use
in-KB accuracy and micro F1 (averaged per men-
tion) metrics to evaluate our approach. Results are
shown in Tables 3 and 4. We run our system 5
times, each time we pick the best model on the
validation set, and report results on the test set for
these models. We obtain state of the art accuracy
on AIDA which is the largest and hardest (by the
accuracy of the p(e|m) baseline) manually created
ED dataset . We are also competitive on the other
datasets. It should be noted that all the other meth-
ods use, at least partially, engineered features. The
merit of our proposed method is to show that, with
the exception of the p(e|lm) feature, a neural net-
work is able to learn the best features for ED with-
out requiring expert input.

To gain further insight, we analyzed the accu-
racy on the AIDA-B dataset for situations where
gold entities have low frequency or mention prior.
Table 6 shows that our method performs well in
these harder cases.
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Blem)
Mention Gold entity of gold Attended contextual words
entity
S . England Rugby team squad Murrayfield Twickenham national play Cup
cotland national . . .
. 0.034 Saturday World game George following Italy week Friday selection
rugby union team d
ropped row month
matches League Oxford Hull league Charlton Oldham Cambridge
Wolverhampton 0103 Sunderland Blackburn Sheffield Southampton Huddersfield Leeds
Wanderers F.C. ’ Middlesbrough Reading Coventry Darlington Bradford Birmingham
Enfield Barnsley
League team Hockey Toronto Ottawa games Anaheim Edmonton Rangers
Montreal Canadiens | 0.021 | Philadelphia Caps Buffalo Pittsburgh Chicago Louis National home Friday
York Dallas Washington Ice
Santander Group | 0.192 Carlos Telmex Mexico Mexican group firm market week Ponce debt
’ shares buying Televisa earlier pesos share stepped Friday analysts ended
FIS Alpine 0.063 Alpine ski national slalom World Skiing Whistler downhill Cup events
Ski World Cup ’ race consecutive weekend Mountain Canadian racing

Table 7: Examples of context words selected by our local attention mechanism. Distinct words are sorted
decreasingly by attention weights and only words with non-zero weights are shown.

7.5 Hyperparameter Studies

In Table 5, we analyze the effect of two hyper-
parameters. First, we see that hard attention (i.e.
R < K) helps reducing the noise from uninfor-
mative context words (as opposed to keeping all
words when R = K).

Second, we see that a small number of LBP it-
erations (hard-coded in our network) is enough to
obtain good accuracy. This speeds up training and
testing compared to traditional methods that run
LBP until convergence. An explanation is that a
truncated version of LBP can perform well enough
if used at both training and test time.

7.6 Qualitative Analysis of Local Model

In Table 7 we show some examples of context
words attended by our local model for correctly
solved hard cases (where the mention prior of the
correct entity is low). One can notice that words
relevant for at least one entity candidate are chosen
by our model in most of the cases.

7.7 Error Analysis

We analyse some of the errors made by our model
on the AIDA-B dataset. We mostly observe three
situations: i) annotation errors, ii) gold entities
that do not appear in mentions’ candidate sets, or
iii) gold entities with very low p(e|m) prior whose
mentions have an incorrect entity candidate with
high prior. For example, the mention “Italians”
refers in some specific context to the entity “Italy
national football team” rather than the entity rep-
resenting the country. The contextual information
is not strong enough in this case to avoid an in-
correct prediction. On the other hand, there are

situations where the context can be misleading,
e.g. a document heavily discussing about cricket
will favor resolving the mention ”Australia” to the
entity ”Australia national cricket team” instead of
the gold entity ”Australia” (naming a location of
cricket games in the given context).

8 Conclusion

We have proposed a novel deep learning architec-
ture for entity disambiguation that combines entity
embeddings, a contextual attention mechanism, an
adaptive local score combination, as well as un-
rolled differentiable message passing for global in-
ference. Compared to many other methods, we do
not rely on hand-engineered features, nor on an ex-
tensive corpus for entity co-occurrences or related-
ness. Our system is fully differentiable, although
we chose to pre-train word and entity embeddings.
Extensive experiments show the competitiveness
of our approach across a wide range of corpora. In
the future, we would like to extend this system to
perform nil detection, coreference resolution and
mention detection.

Our code and data are publicly available:
http://github.com/dalab/deep-ed
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