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Abstract

Existing approaches to automatic VerbNet-
style verb classification are heavily de-
pendent on feature engineering and there-
fore limited to languages with mature NLP
pipelines. In this work, we propose a novel
cross-lingual transfer method for inducing
VerbNets for multiple languages. To the
best of our knowledge, this is the first study
which demonstrates how the architectures
for learning word embeddings can be ap-
plied to this challenging syntactic-semantic
task. Our method uses cross-lingual trans-
lation pairs to tie each of the six target lan-
guages into a bilingual vector space with
English, jointly specialising the representa-
tions to encode the relational information
from English VerbNet. A standard cluster-
ing algorithm is then run on top of the
VerbNet-specialised representations, using
vector dimensions as features for learning
verb classes. Our results show that the pro-
posed cross-lingual transfer approach sets
new state-of-the-art verb classification per-
formance across all six target languages
explored in this work.

1 Introduction

Playing a key role in conveying the meaning of a
sentence, verbs are famously complex. They dis-
play a wide range of syntactic-semantic behaviour,
expressing the semantics of an event as well as rela-
tional information among its participants (Jackend-
off, 1972; Gruber, 1976; Levin, 1993, inter alia).

Lexical resources which capture the variabil-
ity of verbs are instrumental for many Natural
Language Processing (NLP) applications. One of
the richest verb resources currently available for
English is VerbNet (Kipper et al., 2000; Kipper,

2005).1 Based on the work of Levin (1993), this
largely hand-crafted taxonomy organises verbs
into classes on the basis of their shared syntactic-
semantic behaviour. Providing a useful level of gen-
eralisation for many NLP tasks, VerbNet has been
used to support semantic role labelling (Swier and
Stevenson, 2004; Giuglea and Moschitti, 2006), se-
mantic parsing (Shi and Mihalcea, 2005), word
sense disambiguation (Brown et al., 2011), dis-
course parsing (Subba and Di Eugenio, 2009), in-
formation extraction (Mausam et al., 2012), text
mining applications (Lippincott et al., 2013; Rimell
et al., 2013), research into human language acqui-
sition (Korhonen, 2010), and other tasks.

This benefit for English NLP has motivated the
development of VerbNets for languages such as
Spanish and Catalan (Aparicio et al., 2008), Czech
(Pala and Horák, 2008), and Mandarin (Liu and
Chiang, 2008). However, end-to-end manual re-
source development using Levin’s methodology is
extremely time consuming, even when supported
by translations of English VerbNet classes to other
languages (Sun et al., 2010; Scarton et al., 2014).
Approaches which aim to learn verb classes au-
tomatically offer an attractive alternative. How-
ever, existing methods rely on carefully engi-
neered features that are extracted using sophisti-
cated language-specific resources (Joanis et al.,
2008; Sun et al., 2010; Falk et al., 2012, i.a.), rang-
ing from accurate parsers to pre-compiled subcate-
gorisation frames (Schulte im Walde, 2006; Li and
Brew, 2008; Messiant, 2008). Such methods are
limited to a small set of resource-rich languages.

It has been argued that VerbNet-style classifica-
tion has a strong cross-lingual element (Jackendoff,
1992; Levin, 1993). In support of this argument,
Majewska et al. (2017) have shown that English
VerbNet has high translatability across different,

1http://verbs.colorado.edu/∼mpalmer/projects/verbnet.html
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even typologically diverse languages. Based on this
finding, we propose an automatic approach which
exploits readily available annotations for English
to facilitate efficient, large-scale development of
VerbNets for a wide set of target languages.

Recently, unsupervised methods for inducing dis-
tributed word vector space representations or word
embeddings (Mikolov et al., 2013a) have been suc-
cessfully applied to a plethora of NLP tasks (Turian
et al., 2010; Collobert et al., 2011; Baroni et al.,
2014, i.a.). These methods offer an elegant way
to learn directly from large corpora, bypassing the
feature engineering step and the dependence on ma-
ture NLP pipelines (e.g., POS taggers, parsers, ex-
traction of subcategorisation frames). In this work,
we demonstrate how these models can be used to
support automatic verb class induction. Moreover,
we show that these models offer the means to ex-
ploit inherent cross-lingual links in VerbNet-style
classification in order to guide the development of
new classifications for resource-lean languages. To
the best of our knowledge, this proposition has not
been investigated in previous work.

There has been little work on assessing the suit-
ability of embeddings for capturing rich syntactic-
semantic phenomena. One challenge is their re-
liance on the distributional hypothesis (Harris,
1954), which coalesces fine-grained syntactic-
semantic relations between words into a broad rela-
tion of semantic relatedness (e.g., coffee:cup) (Hill
et al., 2015; Kiela et al., 2015). This property has
an adverse effect when word embeddings are used
in downstream tasks such as spoken language un-
derstanding (Kim et al., 2016a,b) or dialogue state
tracking (Mrkšić et al., 2016, 2017a). It could have
a similar effect on verb classification, which relies
on the similarity in syntactic-semantic properties
of verbs within a class. In summary, we explore
three important questions in this paper:

(Q1) Given their fundamental dependence on
the distributional hypothesis, to what extent can
unsupervised methods for inducing vector spaces
facilitate the automatic induction of VerbNet-style
verb classes across different languages?

(Q2) Can one boost verb classification for lower-
resource languages by exploiting general-purpose
cross-lingual resources such as BabelNet (Navigli
and Ponzetto, 2012; Ehrmann et al., 2014) or bilin-
gual dictionaries such as PanLex (Kamholz et al.,
2014) to construct better word vector spaces for
these languages?

(Q3) Based on the stipulated cross-linguistic va-
lidity of VerbNet-style classification, can one ex-
ploit rich sets of readily available annotations in
one language (e.g., the full English VerbNet) to
automatically bootstrap the creation of VerbNets
for other languages? In other words, is it possi-
ble to exploit a cross-lingual vector space to trans-
fer VerbNet knowledge from a resource-rich to a
resource-lean language?

To investigate Q1, we induce standard distribu-
tional vector spaces (Mikolov et al., 2013b; Levy
and Goldberg, 2014) from large monolingual cor-
pora in English and six target languages. As ex-
pected, the results obtained with this straightfor-
ward approach show positive trends, but at the same
time reveal its limitations for all the languages in-
volved. Therefore, the focus of our work shifts
to Q2 and Q3. The problem of inducing VerbNet-
oriented embeddings is framed as vector space spe-
cialisation using the available external resources:
BabelNet or PanLex, and (English) VerbNet. For-
malised as an instance of post-processing seman-
tic specialisation approaches (Faruqui et al., 2015;
Mrkšić et al., 2016), our procedure is steered by
two sets of linguistic constraints: 1) cross-lingual
(translation) links between languages extracted
from BabelNet (targeting Q2); and 2) the available
VerbNet annotations for a resource-rich language.
The two sets of constraints jointly target Q3.

The main goal of vector space specialisation is
to pull examples standing in desirable relations,
as described by the constraints, closer together in
the transformed vector space. The specialisation
process can capitalise on the knowledge of Verb-
Net relations in the source language (English) by
using translation pairs to transfer that knowledge
to each of the target languages. By constructing
shared bilingual vector spaces, our method facili-
tates the transfer of semantic relations derived from
VerbNet to the vector spaces of resource-lean target
languages. This idea is illustrated by Fig. 1.

Our results indicate that cross-lingual connec-
tions yield improved verb classes across all six
target languages (thus answering Q2). Moreover,
a consistent and significant boost in verb classi-
fication performance is achieved by propagating
the VerbNet-style information from the source lan-
guage (English) to any other target language (e.g.,
Italian, Croatian, Polish, Finnish) for which no
VerbNet-style information is available during the
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Figure 1: Transferring VerbNet information from a resource-rich to a resource-lean language through a
word vector space: an English→ French toy example. Representations of words described by two types
of ATTRACT constraints are pulled closer together in the joint vector space. (1) Monolingual pairwise
constraints in English (e.g., (en_ruin, en_shatter), (en_destroy, en_undo)) reflect the EN VerbNet structure
and are generated from the readily available verb classification in English (solid lines). They are used to
specialise the distributional EN vector subspace for the VerbNet relation. (2) Cross-lingual English-French
pairwise constraints (extracted from BabelNet) describe cross-lingual synonyms (i.e., translation links)
such as (en_ruin, fr_ruiner) or (en_shatter, fr_fracasser) (dashed lines). The post-processing fine-tuning
specialisation procedure based on (1) and (2) effectively transforms the initial distributional French vector
subspace to also emphasise the VerbNet-style structure, facilitating the induction of verb classes in French.

fine-tuning process (thus answering Q3).2 We re-
port state-of-the-art verb classification performance
for all six languages in our experiments. For in-
stance, we improve the state-of-the-art F-1 score
from prior work from 0.55 to 0.79 for French, and
from 0.43 to 0.74 for Brazilian Portuguese.

2 Methodology: Specialising for VerbNet

Motivation: Verb Classes and VerbNet Verb-
Net is a hierarchical, domain-independent, broad-
coverage verb lexicon based on Levin’s classifica-
tion and taxonomy of English (EN) verbs (Levin,
1993; Kipper, 2005). Verbs are grouped into classes
(e.g. the class PUT-9.1 for verbs such as place, po-
sition, insert, and arrange) based on their shared
meaning components and syntactic behaviour, de-
fined in terms of their participation in diathesis
alternations, i.e., alternating verb frames that are
related with the same or similar meaning. Verb-
Net extends and refines Levin’s classification, pro-
viding more fine-grained syntactic and semantic
information for individual classes. Each VerbNet
class is characterised by its member verbs, syntac-
tic frames, semantic predicates and typical verb

2On a high level, we demonstrate that a constraints-driven
fine-tuning framework can specialise word embeddings to
reflect VerbNet-style relations which rely not only on verb
sense similarity, but also on similarity in syntax, selectional
preferences, and diathesis alternations.

arguments.3 The current version of VerbNet (v3.2)
contains 8,537 distinct English verbs grouped into
273 VerbNet main classes.

The inter-relatedness of syntactic behaviour and
meaning of verbs is not limited to English (Levin,
1993). The basic meaning components underlying
verb classes are said to be cross-linguistically valid
(Jackendoff, 1992; Merlo et al., 2002)4 and there-
fore the classification has a strong cross-lingual di-
mension. A recent investigation of Majewska et al.
(2017) show that it is possible to manually translate
VerbNet classes and class members to different, ty-
pologically diverse languages with high accuracy.

The practical usefulness of VerbNet style clas-
sification both within and across languages has
been limited by the fact that few languages boast
resources similar to the English VerbNet. Some
VerbNets have been developed completely manu-
ally from scratch, aiming to capture properties spe-
cific to the language in question, e.g., the resources
for Spanish and Catalan (Aparicio et al., 2008),

3The usefulness of VerbNet is further accentuated by avail-
able mappings (Loper et al., 2007) to a number of other verb re-
sources such as WordNet (Fellbaum, 1998), FrameNet (Baker
et al., 1998), and PropBank (Palmer et al., 2005).

4For example, Levin (1993) notes that verbs in Warlpiri
manifest analogous behavior to English with respect to the
conative alternation. In another example, Polish verbs have the
same patterns as EN verbs in terms of the middle construction.
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Czech (Pala and Horák, 2008), and Mandarin (Liu
and Chiang, 2008). Other VerbNets were created
semi-automatically, with the help of other lexical
resources, e.g., for French (Pradet et al., 2014) and
Brazilian Portuguese (Scarton and Aluısio, 2012).
These approaches involved substantial amounts of
specialised linguistic and translation work. Finally,
automatic methods have been developed, e.g., for
French (Sun et al., 2010; Falk et al., 2012) and
Brazilian Portuguese (Scarton et al., 2014), with in-
sufficient accuracy (as emphasised in Sect. 4). Until
now, work in this area has been limited to a small
number of languages, due to the large requirements
in terms of human input and/or the availability of
mature NLP pipelines which exist only for a few
resource-rich languages (e.g., English, German).

In this work, we propose a novel, fully auto-
mated approach for inducing VerbNets for multiple
languages - one based on cross-lingual transfer.
Unlike earlier approaches, our method does not
require any parsed data or manual annotations for
the target language. It encodes the cross-linguistic
validity of Levin-style verb classifications into the
vector-space specialisation framework (Sect. 2.1)
driven by linguistic constraints. A standard cluster-
ing algorithm is then run on top of the VerbNet-
specialised representations using vector dimen-
sions as features to learn verb clusters (Sect. 2.2).
Our approach attains state-of-the-art verb classifi-
cation performance across all six target languages.

2.1 Vector Space Specialisation
Specialisation Model Our departure point is a
state-of-the-art specialisation model for fine-tuning
vector spaces termed PARAGRAM (Wieting et al.,
2015).5 The PARAGRAM procedure injects simi-
larity constraints between word pairs in order to
make their vector space representations more sim-
ilar; we term these the ATTRACT constraints. Let
V = Vs t Vt be the vocabulary consisting of the
source language and target language vocabularies
Vs and Vt, respectively. Let C be the set of word
pairs standing in desirable lexical relations; these
include: 1) verb pairs from the same VerbNet class
(e.g. (en_transport, en_transfer) from verb class
SEND-11.1); and 2) the cross-lingual synonymy

5The original PARAGRAM model as well as other fine-
tuning models from prior work inject pairwise linguistic con-
straints into existing vector spaces in order to improve their
ability to capture semantic similarity/paraphrasability. In this
work, we demonstrate that the same generic specialisation
framework can be used to transform vector spaces to capture
other types of lexical relations such as VerbNet relations.

pairs (e.g. (en_peace, fi_rauha)). Given the initial
distributional space and collections of such AT-
TRACT pairs C, the model gradually modifies the
space to bring the designated word vectors closer
together, working in mini-batches of size k. The
method’s cost function can be expressed as:

O(BC) = OC(BC) +R(BC) (1)

The first term of the method’s cost function (i.e.,
OC) pulls the ATTRACT examples (xl, xr) ∈ C
closer together (see Fig. 1 for an illustration). BC

refers to the current mini-batch of ATTRACT con-
straints. This term is expressed as follows:

OC(BC) =
∑

(xl,xr)∈BC

[
τ (δatt + xltl − xlxr)

+τ (δatt + xrtr − xlxr)
]

(2)

τ(x) = max(0, x) is the standard rectified linear
unit or the hinge loss function (Tsochantaridis et al.,
2004; Nair and Hinton, 2010). δatt is the “attract”
margin: it determines how much vectors of words
from ATTRACT constraints should be closer to each
other than to their negative examples. The negative
example ti for each word xi in any ATTRACT pair
is always the vector closest to xi taken from the
pairs in the current mini-batch, distinct from the
other word paired with xi, and xi itself.6

The second R(BC) term is the regularisation
which aims to retain the semantic information en-
coded in the initial distributional space as long as
this information does not contradict the used AT-
TRACT constraints. Let xinit

i refer to the initial dis-
tributional vector of the word xi and let V(BC)
be the set of all word vectors present in the given
mini-batch. If λreg denotes the L2 regularisation
constant, this term can be expressed as:

R(BC) =
∑

xi∈V(BC)

λreg

∥∥∥xinit
i − xi

∥∥∥
2

(3)

Linguistic Constraints: Transferring VerbNet-
Style Knowledge The fine-tuning procedure ef-
fectively blends the knowledge from external re-
sources (i.e., the input ATTRACT set of constraints)
with distributional information extracted directly
from large corpora. We show how to propagate
annotations from a knowledge source such as Verb-
Net from source to target by combining two types
of constraints within the specialisation framework:

6Effectively, this term forces word pairs from the in-batch
ATTRACT constraints to be closer to one another than to any
other word in the current mini-batch.
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LEARN-14 BREAK-45.1 ACCEPT-77
(learn, study) (break, dissolve) (accept, understand)
(learn, relearn) (crash, crush) (accept, reject)
(read, study) (shatter, split) (repent, rue)
(cram, relearn) (break, rip) (reject, discourage)
(read, assimilate) (crack, smash) (encourage, discourage)
(learn, assimilate) (shred, splinter) (reject, discourage)
(read, relearn) (snap, tear) (disprefer, understand)

Table 1: Example pairwise ATTRACT constraints
extracted from three VerbNet classes in English.

a) cross-lingual (translation) links between lan-
guages, and b) available VerbNet annotations in
a resource-rich language transformed into pair-
wise constraints. Cross-lingual constraints such
as (pl_wojna, it_guerra) are extracted from Ba-
belNet (Navigli and Ponzetto, 2012), a large-scale
resource which groups words into cross-lingual
BABEL synsets (and is currently available for 271
languages). The wide and steadily growing cover-
age of languages in BabelNet means that our pro-
posed framework promises to support the transfer
of VerbNet-style information to numerous target
languages (with increasingly high accuracy).

To establish that the proposed transfer approach
is in fact independent of the chosen cross-lingual
information source, we also experiment with an-
other cross-lingual dictionary: PanLex (Kamholz
et al., 2014), which was used in prior work on cross-
lingual word vector spaces (Duong et al., 2016;
Adams et al., 2017). This dictionary currently cov-
ers around 1,300 language varieties with over 12
million expressions, thus offering support also for
low-resource transfer settings.7

VerbNet constraints are extracted from the En-
glish VerbNet class structure in a straightforward
manner. For each class V N i from the 273 Verb-
Net classes, we simply take the set of all ni verbs
CLi = {v1,i, v2,i, . . . , vni,i} associated with that
class, including its subclasses, and generate all
unique pairs (vk, vl) so that vk, vl ∈ CLi and
vk 6= vl. Example VerbNet pairwise constraints
are shown in Tab. 1. Note that VerbNet classes in
practice contain verb instances standing in a variety
of lexical relations, including synonyms, antonyms,
troponyms, hypernyms, and the class membership
is determined on the basis of connections between
the syntactic patterns and the underlying semantic
relations (Kipper et al., 2006, 2008).

7Similar to BabelNet, the translations in PanLex were de-
rived from various sources such as glossaries, dictionaries,
and automatic inference from other languages. This results in
a high-coverage lexicon containing a certain amount of noise.

2.2 Clustering Algorithm
Given the initial distributional or specialised collec-
tion of target language vectors Vt, we apply an off-
the-shelf clustering algorithm on top of these vec-
tors in order to group verbs into classes. Following
prior work (Brew and Schulte im Walde, 2002; Sun
and Korhonen, 2009; Sun et al., 2010), we employ
the MNCut spectral clustering algorithm (Meila
and Shi, 2001), which has wide applicability in
similar NLP tasks which involve high-dimensional
feature spaces (Chen et al., 2006; von Luxburg,
2007; Scarton et al., 2014, i.a.). Again, following
prior work (Sun et al., 2010, 2013), we estimate
the number of clusters KClust using the self-tuning
method of Zelnik-Manor and Perona (2004). This
algorithm finds the optimal number by minimising
a cost function based on the eigenvector structure
of the word similarity matrix. We refer the reader
to the relevant literature for further details.

3 Experimental Setup

Languages We experiment with six target lan-
guages: French (FR), Brazilian Portuguese (PT),
Italian (IT), Polish (PL), Croatian (HR), and Finnish
(FI). All statistics regarding the source and size of
training and test data, and linguistic constraints for
each target language are summarised in Tab. 2.

Automatic approaches to verb class induction
have been tried out in prior work for FR and PT. To
the best of our knowledge, our cross-lingual study
is the first aiming to generalise an automatic induc-
tion method to more languages using an underlying
methodology which is language-pair independent.

Initial Vector Space: Training Data and Setup
All target language vectors were trained on large
monolingual running text using the same setup:
300-dimensional word vectors, the frequency cut-
off set to 100, bag-of-words (BOW) contexts, and
the window size of 2 (Levy and Goldberg, 2014;
Schwartz et al., 2016). All tokens were lowercased,
and all numbers were converted to a placeholder
symbol <NUM>.8 FR and IT word vectors were
trained on the standard frWaC and itWaC corpora
(Baroni et al., 2009), and vectors for other target
languages were trained on the corpora of simi-
lar style and size: HR vectors were trained on the
hrWaC corpus (Ljubešić and Klubička, 2014), PT

8Other SGNS parameters were also set to standard values
(Baroni et al., 2014; Vulić and Korhonen, 2016): 15 epochs, 15
negative samples, global learning rate: .025, subsampling rate:
1e− 4. Similar trends in results persist with d = 100, 500.
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French:FR Portuguese:PT Italian:IT Polish:PL Croatian:HR Finnish:FI
Training
Corpus frWaC brWaC itWaC Araneum hrWaC fiWaC
Corpus size (in tokens) 1.6B 2.7B 2B 1.2B 1.4B 1.7B
Vocabulary size 242,611 257,310 178,965 373,882 396,103 448,863

Constraints
# monolingual VerbNet-EN 220,052 220,052 220,052 220,052 220,052 220,052
# mono TARGET (MONO-SYN) 428,329 292,937 362,452 423,711 209,626 377,548
# cross-ling EN-TARGET (BNet) 310,410 245,354 258,102 219,614 160,963 284,167
# cross-ling EN-TARGET (PLex) 225,819 187,386 216,574 154,159 201,329 257,106

Test
# Verbs (# Classes) 169 (16) 660 (17) 177 (17) 258 (17) 277 (17) 201 (17)
Coverage of test instances 94.1% 95.5% 96.6% 93.4% 98.2% 84.6%

Table 2: Statistics of the experimental setup for each target language: training/test data and constraints.
Coverage refers to the percentage of test verbs represented in the target language vocabularies.

vectors on ptWaC (Wagner Filho et al., 2016), FI

vectors on fiWaC (Ljubešić et al., 2016), and PL

vectors on the Araneum Polonicum Maius Web cor-
pus (Benko, 2014). Note that we do not utilise any
VerbNet-specific knowledge in the target language
to induce and further specialise these word vectors.

Source EN vectors were taken directly from the
work of Levy and Goldberg (2014): they are trained
with SGNS on the cleaned and tokenised Polyglot
Wikipedia (Al-Rfou et al., 2013) containing ∼75M
sentences, ∼1.7B word tokens and a vocabulary
of ∼180k words after lowercasing and frequency
cut-off. To measure the importance of the starting
source language space as well as to test if syntactic
knowledge on the source side may be propagated
to the target space, we test two variant EN vector
spaces: SGNS with (a) BOW contexts and the win-
dow size 2 (SGNS-BOW2); and (b) dependency-
based contexts (SGNS-DEPS) (Padó and Lapata,
2007; Levy and Goldberg, 2014).

Linguistic Constraints We experiment with the
following constraint types: (a) monolingual syn-
onymy constraints in each target language extracted
from BabelNet (Mono-Syn); (b) cross-lingual EN-
TARGET constraints from BabelNet; (c) cross-
lingual EN-TARGET constraints plus EN VerbNet
constraints (see Sect. 2.1 and Fig. 1). Unless stated
otherwise, we use BabelNet as the default source
of cross-lingual constraints for (b) and (c).

Vector Space Specialisation The PARAGRAM

model’s parameters are adopted directly from prior
work (Wieting et al., 2015) without any additional
fine-tuning: δatt = 0.6, λreg = 10−9, k = 50. We
train for 5 epochs without early stopping using Ada-
Grad (Duchi et al., 2011). PARAGRAM is in fact a
special case of the more general ATTRACT-REPEL

specialisation framework (Mrkšić et al., 2017b): we
use this more recent and more efficient TensorFlow
implementation of the model in all experiments.9

Test Data The development of an automatic verb
classification approach requires an initial gold stan-
dard (Sun et al., 2010): these have been devel-
oped for FR (Sun et al., 2010), PT (Scarton et al.,
2014), IT, PL, HR, and FI (Majewska et al., 2017).
They were created using the methodology of Sun
et al. (2010), based on the EN gold standard of Sun
et al. (2008) which contains 17 fine-grained Levin
classes with 12 member verbs each. For instance,
the class PUT-9.1 in French contains verbs such as
accrocher, déposer, mettre, répartir, réintégrer, etc.

Evaluation Measures We use standard evalua-
tion measures from prior work on verb clustering
(Ó Séaghdha and Copestake, 2008; Sun and Ko-
rhonen, 2009; Sun et al., 2010; Falk et al., 2012,
i.a.). The mean precision of induced verb clusters
labelled modified purity (MPUR) is computed as:

MPUR =

∑
C∈Clust,nprev(C)>1 nprev(C)

#test_verbs
(4)

Here, each cluster C from the set of all KClust

induced clusters Clust is associated with its preva-
lent class/cluster from the gold standard, and the
number of verbs in an induced cluster C taking this
prevalent class is labelled nprev(C). All other verbs
not taking the prevalent class are considered er-
rors.10 #test_verbs denotes the total number of test
verb instances. The second measure targeting recall
is weighted class accuracy (WACC), computed as:

WACC =

∑
C∈Gold ndom(C)

#test_verbs
(5)

9https://github.com/nmrksic/attract-repel
10Clusters with nprev(C) = 1 are discarded from the count

to avoid an undesired bias towards singleton clusters (Sun and
Korhonen, 2009; Sun et al., 2010).
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Figure 2: F-1 scores in six target languages using the post-processing specialisation procedure from
Sect. 2.1 and different sets of constraints: Distributional refers to the initial vector space in each target
language; Mono-Syn is the vector space tuned using monolingual synonymy constraints from BabelNet;
XLing uses cross-lingual EN-TARGET constraints from BabelNet (TARGET refers to any of the six target
languages); XLing+VerbNet-EN is a fine-tuned vector space which uses both cross-lingual EN-TARGET

constraints plus EN VerbNet constraints. Results are provided with (a) SGNS-BOW2 and (b) SGNS-DEPS
source vector space in English for the XLing and XLing+VerbNet variants, see Sect. 3.

For each cluster C from the set of gold standard
clusters Gold, we have to find the dominant cluster
from the set of induced clusters: this cluster has the
most verbs in common with the gold cluster C, and
that number is ndom(C). As measures of precision
and recall, MPUR and WACC may be combined into
an F-1 score, computed as the balanced harmonic
mean, which we report in this work.11

4 Results and Discussion

Cross-Lingual Transfer Model F-1 verb classifi-
cation scores for the six target languages with dif-
ferent sets of constraints are summarised in Fig. 2.
We can draw several interesting conclusions. First,
the strongest results on average are obtained with
the model which transfers the VerbNet knowledge
from English (as a resource-rich language) to the
resource-lean target language (providing an an-
swer to question Q3, Sect. 1). These improvements
are visible across all target languages, empirically
demonstrating the cross-lingual nature of VerbNet-
style classifications. Second, using cross-lingual
constraints alone (XLing) yields strong gains over
initial distributional spaces (answering Q1 and Q2).
Fig. 2 also shows that cross-lingual similarity con-
straints are more beneficial than the monolingual
ones, despite a larger total number of the monolin-

11We have also experimented with V-measure (Rosenberg
and Hirschberg, 2007), another standard evaluation measure
which balances between homogeneity (precision) and com-
pleteness (recall); we do not report these scores for brevity as
similar trends in results are observed.

gual constraints in each language (see Tab. 2). This
suggests that such cross-lingual similarity links
are strong implicit indicators of class membership.
Namely, target language words which map to the
same source language word are likely to be syn-
onyms and consequently end up in the same verb
class in the target language. However, the cross-
lingual links are even more useful as means for
transferring the VerbNet knowledge, as evidenced
by additional gains with XLing+VerbNet-EN.

The absolute classification scores are the low-
est for the two Slavic languages: PL and HR. This
may be partially explained by the lowest number of
cross-lingual constraints for the two languages cov-
ering only a subset of their entire vocabularies (see
Tab. 2 and compare the total number of constraints
for HR and PL to the numbers for e.g. FI or FR). An-
other reason for weaker performance of these two
languages could be their rich morphology, which
induces data sparsity both in the initial vector space
estimation and in the coverage of constraints.

State-of-the-Art A direct comparison of previ-
ous state-of-the-art classification scores available
for FR (Sun et al., 2010) and PT (Scarton et al.,
2014) on the same test data exemplifies the extent
of improvement achieved by our transfer model.
F-1 scores improve from 0.55 to 0.75 for FR and
from 0.43 to 0.73 for PT. Scarton et al. (2014) ex-
plain the low performance by “the lower quality
NLP tools”. This issue is largely mitigated by our
VerbNet transfer model, which exploits the assump-
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French Italian
Vector space XLing XLing+VN XLing XLing+VN

EN+FR 0.698 0.742 – –
EN+IT – – 0.621 0.795
EN+FR+IT 0.728 0.745 0.650 0.768
EN+FR+PL 0.697 0.717 – –
EN+IT+PL – – 0.658 0.765
EN+FI+FR+IT 0.719 0.751 0.662 0.777
EN+FR+IT+PT 0.710 0.718 0.688 0.760

Table 3: The effect of multilingual vector space
specialisation. Results are reported for FR and IT

using: a) cross-lingual constraints only (XLing);
and b) the VerbNet transfer model (XLing+VN).

tion of cross-linguistic class consistency directly
through a specialised vector space, and also avoids
any reliance on target-language-specific NLP tools.

Starting Source Vector Space Fig. 2a and
Fig. 2b enable a brief analysis of the influence
of the starting EN vector space on the results for
each target language. We observe small but consis-
tent gains with SGNS-DEPS, which utilises syn-
tactic information stemming from a dependency
parser on the source side, over SGNS-BOW for the
XLing variant. The improvements are +2.1 points
on average, visible for 5 out of 6 target languages.
We again see an increase in performance with the
XLing+VerbNet model, but we do not observe any
major difference between the two starting source
spaces now: average slight score difference of 0.3
is in favour of SGNS-BOW2, which outperforms
SGNS-DEPS for 3 out of 6 target languages. This
finding indicates that VerbNet-based linguistic con-
straints are more important for the final classifica-
tion performance, and mitigate the artefacts of the
starting distributional source space.

Bilingual vs. Multilingual The transfer model
can operate with more than two languages, effec-
tively inducing a multilingual vector space. We
analyse such multilingual training based on the re-
sults on FR and IT (Tab. 3). On average, the results
with XLing improve with more languages (see also
the results for EN in Tab. 4), as the model relies
on more constraints for the vector space special-
isation. Yet additional languages do not lead to
clear improvements with XLing+VerbNet: we hy-
pothesise that the specialisation procedure becomes
dominated by cross-lingual constraints which may
diminish the importance of VerbNet-based EN con-
straints. The language configuration in the mul-
tilingual vector space also makes a difference:

VC:XLing Sim:XLing Sim:XLing+VN

EN-Dist 0.484 0.275 –

+FR 0.608 0.556 0.481
+PT 0.633 0.537 0.466
+IT 0.602 0.524 0.476
+PL 0.597 0.469 0.431
+HR 0.582 0.497 0.446
+FI 0.662 0.598 0.491

+FR+IT 0.633 0.571 0.526
+FI+FR+IT 0.641 0.635 0.558
+FR+IT+PT 0.674 0.596 0.515

EN-VN 0.956 – 0.358

Table 4: Comparison of verb classification (VC)
and verb semantic similarity (Sim) for English.
VC is measured on the EN test set of Sun et al.
(2008). Sim is measured on SimVerb-3500 (Gerz
et al., 2016). The scores are Spearman’s ρ corre-
lation scores. EN-Dist is the initial distributional
English vector space: SGNS-BOW2; EN-VN is
the same space transformed using monolingual EN

VerbNet constraints only, an upper bound for the
specialisation-based approach in EN.

e.g., combining PL with the Romance languages
degrades the performance, while FI surprisingly
boosts it slightly. For brevity, we only report the
results for FR and IT. Similar trends are observed
when making the transition from bilingual to multi-
lingual vector spaces for other target languages.

Clustering Algorithm Since vector space spe-
cialisation is detached from the application of
the clustering algorithm, our framework allows
straightforward experimentation with other algo-
rithms. Following prior work (Brew and Schulte im
Walde, 2002; Sun et al., 2010), we also test K-
means clustering. Results for the six languages
using the EN SGNS-BOW2 source space and
Xling+VerbNet-EN are on average 3.8 points lower
than the ones reported in Fig. 2a. K-Means is out-
performed for each target language, confirming
the superiority of spectral clustering established in
prior work, e.g., (Scarton et al., 2014). On the other
hand, we find results with another clustering algo-
rithm, hierarchical agglomerative clustering with
Ward’s linkage (Ward, 1963), on par with spectral
clustering (1.4 points on average in favour of spec-
tral, which is better on 4 out of 6 languages). We
believe that further gains in verb class induction
could be achieved by additional fine-tuning of the
clustering algorithm.

Other Cross-Lingual Sources Replacing Babel-
Net with PanLex as the alternative source of cross-
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Figure 3: F-1 scores when PanLex is used as the
source of cross-lingual ATTRACT constraints (in-
stead of BabelNet). EN Vectors: SGNS-BOW2.

lingual information again leads to large gains with
the cross-lingual transfer model, as is evident from
Fig. 3. This suggests that the proposed approach
does not depend on a particular source of infor-
mation - it can be used with any general-purpose
bilingual dictionary. We mark slight improvements
for 3/6 target languages when comparing the results
with the ones from Fig. 2a. The new state-of-the-art
F-1 scores are 0.79 for FR and 0.74 for PT.

Verb Classification vs. Semantic Similarity
An interesting question originating from prior work
on verb representation learning, e.g., (Baker et al.,
2014) touches upon the correlation between verb
classification and semantic similarity. Due to the
availability of VerbNet constraints and a recent sim-
ilarity evaluation set (SimVerb-3500; it contains hu-
man similarity ratings for 3,500 verb pairs) (Gerz
et al., 2016), we perform the analysis on English:
the results are summarised in Tab. 4. They clearly
indicate that cross-lingual synonymy constraints
are useful for both relationship types (compare the
scores with XLing), with strong gains over the non-
specialised distributional space. However, the inclu-
sion of VerbNet information, while boosting classi-
fication scores for target languages and (trivially)
for EN, deteriorates EN similarity scores across
the board (compare XLing+VN against XLing in
Tab. 4). This suggests that the VerbNet-style class
membership is definitely not equivalent to pure
semantic similarity captured by SimVerb.

4.1 Further Discussion and Future Work
This work has proven the potential of transferring
lexical resources from resource-rich to resource-
poor languages using general-purpose cross-lingual
dictionaries and bilingual vector spaces as means
of transfer within a semantic specialisation frame-

work. However, we believe that the proposed basic
framework may be upgraded and extended across
several research paths in future work.

First, in the current work we have operated with
standard single-sense/single-prototype representa-
tions, thus effectively disregarding the problem
of verb polysemy. While several polysemy-aware
verb classification models for English were de-
veloped recently (Kawahara et al., 2014; Peter-
son et al., 2016), the current lack of polysemy-
aware evaluation sets in other languages impedes
this line of research. Evaluation issues aside, one
idea for future work is to use the ATTRACT-REPEL

specialisation framework for sense-aware cross-
lingual transfer relying on recently developed multi-
sense/prototype word representations (Neelakantan
et al., 2014; Pilehvar and Collier, 2016, inter alia).

Another challenge is to apply the idea from this
work to enable cross-lingual transfer of other struc-
tured lexical resources available in English such as
FrameNet (Baker et al., 1998), PropBank (Palmer
et al., 2005), and VerbKB (Wijaya and Mitchell,
2016). Other potential research avenues include
porting the approach to other typologically diverse
languages and truly low-resource settings (e.g.,
with only limited amounts of parallel data), as well
as experiments with other distributional spaces, e.g.
(Melamud et al., 2016). Further refinements of the
specialisation and clustering algorithms may also
result in improved verb class induction.

5 Conclusion

We have presented a novel cross-lingual transfer
model which enables the automatic induction of
VerbNet-style verb classifications across multiple
languages. The transfer is based on a word vector
space specialisation framework, utilised to directly
model the assumption of cross-linguistic validity of
VerbNet-style classifications. Our results indicate
strong improvements in verb classification accu-
racy across all six target languages explored. All
automatically induced VerbNets are available at:
github.com/cambridgeltl/verbnets.
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