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Abstract

Recent work in NLP has attempted to deal
with low-resource languages but still as-
sumed a resource level that is not present
for most languages, e.g., the availabil-
ity of Wikipedia in the target language.
We propose a simple method for cross-
lingual named entity recognition (NER)
that works well in settings with very min-
imal resources. Our approach makes use
of a lexicon to “translate” annotated data
available in one or several high resource
language(s) into the target language, and
learns a standard monolingual NER model
there. Further, when Wikipedia is avail-
able in the target language, our method can
enhance Wikipedia based methods to yield
state-of-the-art NER results; we evaluate
on 7 diverse languages, improving the
state-of-the-art by an average of 5.5% F1
points. With the minimal resources re-
quired, this is an extremely portable cross-
lingual NER approach, as illustrated using
a truly low-resource language, Uyghur.

1 Introduction

In recent years, interest in the natural language
processing (NLP) community has expanded to in-
clude multilingual applications. Although this
uptick of interest has produced diverse annotated
corpora, most languages are still classified as low-
resource. In order to build NLP tools for low-
resource languages, we either need to annotate
data (a costly exercise, especially for languages
with few native speakers), or find a way to use an-
notated data in other languages in service to the
cause. We refer to the latter techniques as cross-
lingual techniques.

In this paper, we address cross-lingual named

German Spanish Dutch Avg

Baseline 22.61 45.77 43.10 37.27
Previous SOA 48.12 60.55 61.56 56.74
Cheap Translation 57.53 65.18 66.50 62.65

Table 1: We show dramatic improvement on 3 Eu-
ropean languages in a low-resource setting. More
detailed results in Table 2 show that this improve-
ment continues to a wide variety of languages. The
baseline is a simple direct transfer model. The pre-
vious state-of-the-art (SOA) is Tsai et al. (2016)

entity recognition (NER). Prior methods (de-
scribed in detail in Section 2) depend heavily on
limited and expensive resources such as Wikipedia
or large parallel text. Concretely, there are about
3800 written languages in the world.1 Wikipedia
exists in about 280 languages, but most versions
are too sparse to be useful. Parallel text may be
found on an ad-hoc basis for some languages, but
it is hardly a general solution. Religious texts,
such as the Bible and the Koran, exist in many lan-
guages, but the unique domain makes them hard
to use. This leaves the vast majority of the world’s
languages with no general method for NER.

We propose a simple solution that requires only
minimal resources. We translate annotated data in
a high-resource language into a low-resource lan-
guage, using just a lexicon.2 We refer to this as
cheap translation, because in general, lexicons are
much cheaper and easier to find than parallel text
(Mausam et al., 2010).

One of the biggest efforts at gathering lexicons
is Panlex (Kamholz et al., 2014), which has lex-
icons for 10,000 language varieties available to
download today. The quality and size of these dic-

1https://www.ethnologue.com/enterprise-faq/how-many-
languages-world-are-unwritten-0

2We use the terms ‘lexicon’ and ‘dictionary’ interchange-
ably.
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tionaries may vary, but in Section 5.3 we showed
that even small dictionaries can give improve-
ments. If there is no dictionary, or if the quality is
poor, then the Uyghur case study outlined in Sec-
tion 6 suggests that effort is best spent in develop-
ing a high-quality dictionary, rather than gathering
questionable-quality parallel text.

We show that our approach gives non-trivial
scores across several languages, and when com-
bined with orthogonal features from Wikipedia,
improves on state-of-the-art scores. Table 1 com-
pares a simple direct transfer baseline, the previ-
ous state-of-the-art in cross-lingual NER, and our
proposed algorithm. For these languages, we beat
the baseline by 25.4 points, and the state-of-the-art
by 5.9 points. In addition, we found that translat-
ing from a language related to the target language
gives a further boost. We conclude with a case
study of a truly low-resource language, Uyghur,
and show a good score, despite having almost no
target language resources.

2 Related Work

There are two main branches of work in cross-
lingual NLP: projection across parallel data, and
language independent methods.

2.1 Projection

Projection methods take a parallel corpus between
source and target languages, annotate the source
side, and push annotations across learned align-
ment edges. Assuming that source side annota-
tions are of high quality, success depends largely
on the quality of the alignments, which depends,
in turn, on the size of the parallel data.

There is work on projection for POS tagging
(Yarowsky et al., 2001; Das and Petrov, 2011;
Duong et al., 2014), NER (Wang and Manning,
2014; Kim et al., 2012; Ehrmann et al., 2011; Ni
and Florian, 2016), mention detection (Zitouni and
Florian, 2008), and parsing (Hwa et al., 2005; Mc-
Donald et al., 2011).

For NER, the received wisdom is that paral-
lel projection methods work very well, although
there is no consensus on the necessary size of
the parallel corpus. Most approaches require mil-
lions of sentences, with a few exceptions which
require thousands. Accordingly, the drawback to
this approach is the difficulty of finding any paral-
lel data, let alone millions of sentences. Religious
texts (such as the Bible and the Koran) exist in a

large number of languages, but the domain is too
far removed from typical target domains (such as
newswire) to be useful. As a simple example, the
Bible contains almost no entities tagged as ‘orga-
nization’. We approach the problem with the as-
sumption that little to no parallel data is available.

2.2 Language Independent

The second common tool for cross-lingual NLP is
to use language independent features. This is of-
ten called direct transfer, in the sense that a model
is trained on one language and then applied with-
out modification on a dataset in a different lan-
guage. Lexical or lexical-derived features are typ-
ically not used unless there is significant vocabu-
lary overlap between languages.

Täckström et al. (2012) experiments with di-
rect transfer of dependency parsing and NER, and
showed that using word cluster features can help,
especially if the clusters are forced to conform
across languages. The cross-lingual word clusters
were induced using large parallel corpora.

Building on this work, Täckström (2012) fo-
cuses solely on NER, and includes experiments on
self-training and multi-source transfer for NER.

Tsai and Roth (2016) link words and phrases
to entries in Wikipedia and use page categories
as features. They showed that these wikifier fea-
tures are strong language independent features.
We build on this work, and use these features in
our experiments.

Bharadwaj et al. (2016) build a transfer model
using phonetic features instead of lexical fea-
tures. These features are not strictly language-
independent, but can work well when languages
share vocabulary but with spelling variations, as
in the case of Turkish, Uzbek, and Uyghur.

2.3 Others

In a technique similar to ours, Carreras et al.
(2003) use Spanish resources for Catalan NER.
They translate the features in the weight vector,
which has the flavor of a language independent
model with the lexical features of a projection
model. Our work is a natural extension of this pa-
per, but explores these techniques on many more
languages, showing that with some modifications,
it has a broad applicability. Further, we experi-
ment with orthogonal features, and with combin-
ing multiple source languages to get state of the art
results on standard datasets.
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Irvine and Callison-Burch (2016) build a ma-
chine translation system for low-resource lan-
guages by inducing bilingual dictionaries from
monolingual texts.

Koehn and Knight (2001) experiment with vary-
ing knowledge levels on the task of translating
German nouns in a small parallel German-English
corpus. A lexicon along with monolingual text can
correctly translate 79% of the nouns in the evalua-
tion set. They reach a score of 89% when a parallel
corpus is available along with a lexicon, but also
comment on the scarcity of parallel corpora.

The main takeaways from the viewpoint of our
work are a) word level translation can be effec-
tive, at least for nouns, and b) obtaining the correct
word pair is more difficult than choosing between
a set of options.

3 Our method: Cheap Translation

We create target language training data by trans-
lating source data into the target language. It is ef-
fectively the same as standard phrase-based statis-
tical machine translation systems (such as MOSES
(Koehn et al., 2007)), except that the translation
table is not induced from expensive parallel text,
but is built from a lexicon, hence the name cheap
translation.

The entries in our lexicon contain word-to-word
translations, as well as word-to-phrase, phrase-
to-word, and phrase-to-phrase translations. En-
tries typically do not have any further information,
such as part of speech or sense disambiguation.
The standard problems related to ambiguity in lan-
guage apply: a source language word may have
several translations, and several source language
words may have the same translation.

We are mostly concerned with the problem of
multiple translations of a source language word.
For example, in the English-Spanish lexicon, the
English word woman translates into about 50 dif-
ferent words, with meanings ranging from woman,
to female golfer, to youth. Although all candidates
might be technically correct, we are interested in
the most prominent translation. To estimate this,
we gathered cooccurrence counts of each source-
target word pair in the lexicon. For Spanish, in the
case of woman, the most probable translation is
mujer, because it shows up in other contexts in the
dictionary, such as farm woman or young woman,
whereas translations such as joven cooccur infre-
quently with woman. We normalize these cooc-

Algorithm 1 Our translation algorithm
Input

DE : Annotated data in E
L: Lexicon between E–F

Returns
DF : Annotated data in F

1: for ∀wi ∈ DE do
2: p = wiwi+1...wi+j . Window of size j
3: while p not in L and j ≥ 0 do
4: Decrement j
5: p = wiwi+1...wi+j

6: end while
7: if p in L then
8: if |L[p]| > 1 then
9: resolve with LM and prominence

10: end if
11: DF add (L[p], labels of p)
12: else
13: DF add (wi, label of wi)
14: end if
15: Increment i by length of p
16: end for

currence counts in each candidate set, and call this
the prominence score.

With these probabilities in hand, we have effec-
tively constructed a phrase translation table. We
use a simple greedy decoding method (as shown
in Algorithm 1) where options from the lexicon
are resolved by a language model multiplied by the
prominence score of each option. We use SRILM
(Stolcke et al., 2002) trained on Wikipedia (al-
though any large monolingual corpus will do).

During decoding, once we have chosen a candi-
date, we copy all labels from the source phrase to
the target phrase. Since the translation is phrase-
to-phrase, we can copy gold labels directly,3 with-
out worrying about getting good alignments. The
result is annotated data in the target language.

Notice that the algorithm allows for no reorder-
ing beyond what exists in the phrase-to-phrase
entries of the lexicon. Compared to phrase-
tables learned from massive parallel corpora, our
lexicon-based phrase tables are not large enough
or expressive enough for robust reordering. We
leave explorations of reordering to future work.

See Figure 1 for a representative example of
translation from English to Turkish, with a hu-
man translation as reference. There are sin-

3We use a standard BIO labeling scheme.
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Nicaraguan President Violeta Chamorro Unitedtheto fly todue Stateswas

Nikaragualı Cumhurbaşkanı Violeta Chamorro ABDiçiniki taşın arasındayüklenebılırwas bir

Correct: Nikaragua Cumhurbaşkanı Violeta Chamorro ABD'ye uçacaktı

Figure 1: Demonstration of word translation. The top is English, the bottom is Turkish. Lines represent
dictionary translations (e.g. the translates to bir). Correct is the correct translation. This illustrates
congruence in named entity patterns between languages, as well as some errors we are prone to make.

gle words translated into phrases, named entities
copied over verbatim, and phrases translated into
single words. Some words are translated correctly
(President into Cumhurbaşkanı) and some incor-
rectly (fly into iki taşın arasında, which loosely
translates to ‘between two stones’). We see ig-
norance of morphology (seen in translation of
United States), and confused word order. But
in spite of all these mistakes, the context around
the entities, which is what matters for NER, is
reasonably well-preserved. Notably, the word
President/Cumhurbaşkanı is a strong context fea-
ture for both LOC (Nicaragua) and PER (Violeta
Chamorro) in both languages.

4 Experimental Setup

Before we describe our experiments, we describe
some of the tools we used.

4.1 Lexicons
We use lexicons provided by (Rolston and Kirch-
hoff, 2016), which are harvested from PanLex,
Wiktionary, and various other sources. There are
103 lexicons, each mapping between English and
a target language. These vary in size from 56K en-
tries to 1.36M entries, as shown in the second row
of Table 2. There are also noisy translations. Some
entries consist of a single English letter, some are
morphological endings, others are misspellings,
others are obscure translations of metaphors, and
still others are just wrong.

4.2 Datasets
We use data from CoNLL2002/2003 shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). The 4 languages represented
are English, German, Spanish, and Dutch. All
training is on the train set, and testing is on the
test set (TestB). The evaluation metric for all ex-
periments is phrase level F1, as explained in Tjong
Kim Sang (2002).

In order to experiment on a broader range
of languages, we also use data from the RE-
FLEX (Simpson et al., 2008), and LORELEI
projects. From LORELEI, we use Turkish and
Hausa 4 From REFLEX, we use Bengali, Tamil,
and Yoruba.5 We use the same set of test docu-
ments as used in Tsai et al. (2016).

We also use Hindi and Malayalam data from
FIRE 2013,6 pre-processed to contain only PER,
ORG, and LOC tags.

While several of these languages are decidedly
high-resource, we limit the resources used in or-
der to show that our techniques will work in truly
low-resource settings. In practice, this means gen-
erating training data where high-quality manually
annotated data is already available, and using dic-
tionaries where translation is available.

4.3 NER Model
In all of our work we use the Illinois NER system
(Ratinov and Roth, 2009) with standard features
(forms, capitalization, affixes, word prior, word af-
ter, etc.) as our base model. We train Brown clus-
ters on the entire Wikipedia dump for any given
language (again, any monolingual corpus will do),
and include the multilingual gazetteers and wiki-
fier features proposed in Tsai et al. (2016).

5 Experiments

We performed two different sets of experiments:
first translating only from English, then translating
from additional languages selected to be similar to
the target language.

5.1 Translation from English
We start by translating from the highest resourced
language in the world, English. We first show that

4LDC2014E115,LDC2015E70
5LDC2015E13,LDC2015E90,LDC2015E83,

LDC2015E91
6http://au-kbc.org/nlp/NER-FIRE2013/
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our technique gives large improvement over a sim-
ple baseline, then combine with orthogonal fea-
tures, then compare against a ceiling obtained with
Google Translate.

Baseline Improvement
To get the baseline, we trained a model on English
CoNLL data (train set), and applied the model
directly to the target language, mismatching lex-
ical features notwithstanding. We did not use
gazetteers in this approach. For the non-Latin
script languages, Tamil and Bengali, we transliter-
ated the entire English corpus into the target script.
These results are in Table 2, row “Baseline”.

In our approach (“Cheap Translation”), for each
test language, we translated the English CoNLL
data (train set) into that language. The first row
of Table 2 shows the coverage of each dictionary.
For example, in the case of Spanish, 90.94% of the
words were translated into Spanish. This gives an
average of 14.6 points F1 improvement over the
baseline. This shows that simple translation is sur-
prisingly effective across the board. The improve-
ment is most noticeable for Bengali and Tamil,
which are languages with non-Latin script. This
mostly shows that the trivial baseline doesn’t work
across scripts, even with transliteration. Spanish
shows the least improvement over the baseline,
which may be because English and Spanish are so
similar that the baseline is already high.

We found that we needed to normalize the
Yoruba text (that is, remove all pronunciation sym-
bols on vowels) in order to make the data less
sparse. Since the training data for Bengali and
Tamil never shares a script with the test data, we
omit using the word surface form as a feature. This
is indicated by the † in Table 2. Brown clusters,
which implicitly use the word form, are still used.

Wikifier Features
Now we show that our approach is also orthogo-
nal to other approaches, and can be combined with
great effect. Wikifier features (Tsai et al., 2016)
are obtained by grounding words and phrases to
English Wikipedia pages, and using the categories
of the linked page as NER features for the surface
text. Our approach can be naturally combined with
wikifier features. We show results in Table 2, in
the row marked ‘Cheap Translation+Wiki’.

Using wikifier features improves scores for all 7
languages. Further, for all languages we beat Tsai
et al. (2016), with an average of 3.92 points F1

improvement. For the three European languages
(Dutch, German, and Spanish), we have an aver-
age improvement of 4.8 points F1 over Tsai et al.
(2016). This may reflect the fact that English is
more closely related to European languages than
Indian or African languages, in terms of lexical
similarities, word order, and spellings and distri-
bution of named entities. This suggests that it is
advantageous to select a source language similar
to the target language (by some definition of simi-
lar). We explore this hypothesis in Section 5.2.

Google Translate
Since we are performing translation, we compared
against a high-quality translation system to get a
ceiling. We used Google Translate to translate
the English CoNLL training data into the target
language, sentence by sentence. We aligned the
source-target data using fast align (Dyer et al.,
2013), and projected labels across alignments.7

Since this is high-quality translation, we treat it
as an upper bound on our technique, but with the
caveat that the alignments can be noisy given the
relatively small amount of text. This introduces a
source of noise that is not present in our technique,
but the loss from this noise is small compared to
the gain from the high-quality translation. As with
the other approaches, we found that Brown cluster
features were an important signal.

Surprisingly, Google Translate beats our basic
approach with a margin of only 4.3 points. De-
spite the naı̈vete of our approach, we are relatively
close to the ceiling. Further, Google Translate is
limited to 103 languages, whereas our approach
is limited only by available dictionaries. In low-
resource settings, such as the one presented in Sec-
tion 6, Google Translate is not available, but dic-
tionaries are available, although perhaps only by
pivoting through a high-resource language.

5.2 Translation from Similar Languages
Observing that English as a source works well
for European languages, but not as well for non-
European languages, we form a key hypothe-
sis: cheap translation between similar languages
should be better than between different languages.
There are several reasons for this. First, sim-
ilar languages should have similar word order-
ings. Since we do no reordering in translation,
this means the target text has a better chance of a

7Google Translate does not output alignments. If we had
an in-house translation system, we could avoid this step.
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Method Dutch German Spanish Turkish Bengali Tamil Yoruba Avg

Lexicon Coverage 88.01 89.97 90.94 83.80 83.34 73.84 74.60 –
E-L Dict size 961K 1.36M 1.25M 578K 217K 182K 334K –

Baseline 43.10 22.61 45.77 34.63 6.40 4.60 37.70 27.83
Google Translate ceiling 65.71 56.65 53.65 45.63 37.84 29.11 39.18 46.82
Wiki (Tsai et al., 2016) 61.56 48.12 60.55 47.12 43.27 29.64 36.65 46.70

Cheap Translation 53.94 50.96 51.82 46.37 30.47† 25.91† 37.58 42.43
Cheap Translation+Wiki 63.37 57.23 64.10 51.79 46.28† 33.10† 38.52 50.62

Best Combination 64.48 57.53 65.95 48.50 31.70† 27.63† 39.12 47.84
Best Combination+Wiki 66.50 59.11 65.43 53.44 45.70† 34.90† 40.88 52.28

Table 2: Baseline is naive direct transfer, with no gazetteers. ‘Cheap Translation’ translates from English
into the target. Google Translate translates whole sentences, and does not use gazetteers. ‘Cheap Trans-
lation+Wiki’ incorporates wikifier features. ‘Best Combination’ uses language combinations from Table
3 for source training data. † denotes that this run does not use word features.

Target Train lang

Dutch English, German
German English, Dutch
Spanish English, Dutch
Turkish English, Uzbek
Bengali English, Hindi
Tamil English, Malayalam
Yoruba English, Hausa

Table 3: This shows the language selection results.
In each row, we see the target language, and the
languages used for training. For example, when
testing on Dutch, we train on German and English.
These scores came from WALS.

coherent ordering. Second, in case of dictionary
misses, vocabulary common between languages
will be correct in the target language.

This requires two new resources: annotated data
in a similar language S, and a lexicon that maps
from S to T , the target language.

Data in other languages

For most target languages, English is not the clos-
est language, and it is likely that there exists an
annotated dataset in a closer language. There are
annotated datasets available in many languages
with a diversity of script and family. We have
datasets annotated in about 10 different languages,
although more exist.

One caveat is that the source dataset must have a
matching tagset with the target dataset. At present,
we accept this as a limitation, with the understand-
ing that there is a common set of coarse-grained
tags that is widely used (PER, ORG, LOC). We
leave further exploration to future work.

Pivoting Lexicons
Although we cannot expect to find lexicons be-
tween all pairs of languages, we can usually expect
that a language will have at least one lexicon with
a high-resource language. Often that language is
English. We can use this high-resource language
as a pivot to transitively create an S–T dictionary,
although perhaps with some loss of precision.

Assume we want a Turkish-Bengali lexicon
and we have only English-Bengali and English-
Turkish lexicons. We collect all English words
that appear in both dictionaries. Each such En-
glish word has two sets of candidate translations,
one set in Turkish, the other in Bengali. To cre-
ate transitive pairs, we take the Cartesian product
of these two sets of candidate translations. This
will create too many entries, some of which will
be incorrect, but usually the correct entry is there.

Notice also that the resulting dictionary con-
tains only those English words that appear in both
original dictionaries. If either of the original dic-
tionaries is small, the result will be smaller still.

Source Selection and Combination
To choose a related source language, we used
syntactic features of languages retrieved from
the World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013). Each language is
represented as a binary vector with each index in-
dicating presence or absence of a syntactic feature
in that language. We used the feature set called
syntax knn, which includes 103 syntactic features,
such as subject before verb, and possessive suffix,
and uses k-Nearest Neighbors to predict missing
values. We measure similarity as cosine distance
between language vectors.
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In the absence of criteria for a similarity cut-
off, we chose to include only the top most similar
language as source for that target language. The
results of this similarity calculation are shown in
Table 3. For example, when the target language
is Dutch, German is the closest. We also included
English in the training, as the highest resource lan-
guage, and with the highest quality dictionaries.

Results
Our results are in Table 2, in the row named ‘Best
Combination’. The average over all languages sur-
passes the English-source average by 5.4 points,
and also beats (Tsai et al., 2016). We also add wik-
ifier features, and report results in row ‘Best Com-
bination+Wiki.’ This shows improvement on all
but Spanish, with an average improvement of 5.58
points F1 over Tsai et al. (2016). To the best of
our knowledge, these are the best cross-language
settings scores for all these datasets.

While these scores are lower than those seen
on typical NER tasks (70-90% F1), we emphasize
first that cross-lingual scores will necessarily be
much lower than monolingual scores, and second
that these are the best available given the setup.

5.3 Dictionary Ablation

The most expensive resource we require is a lex-
icon. In this section, we briefly explore what ef-
fect the size of the lexicon has on the end result.
Using Turkish, we vary the size of the dictionary
by randomly removing entries. The sizes vary
from no entries to full dictionary (rows ‘Baseline’
and ‘Cheap Translation’ in Table 2, respectively),
with several gradations in the middle. With each
reduced dictionary, we translate from English to
generate Turkish training data as in Section 5.1.
As before, we train an NER model on the gener-
ated data, and test on the Turkish test data. Results
are shown in Figure 2.

Interestingly, we see improvement over the
baseline even with only 500 entries. This improve-
ment continues until 125K entries. It is important
to note that only a small number of dictionary en-
tries – words that typically show up in the contexts
of named entities, such as president, university or
town – are likely to be useful. The larger the dic-
tionary, the more likely these valuable entries are
present. Further, our random removal process may
unfairly prioritize less common words, compared
to a manually compiled dictionary which would
prioritize common words. It is likely that a small
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Figure 2: Effect of dictionary size on F1 score for
Turkish. Each column is an experiment with a ran-
domly reduced dictionary. The orange bars repre-
sent how much of the corpus is translated.

but carefully constructed manual dictionary could
have a large impact.

6 Case study: Uyghur

We have shown in the previous sections that our
method is effective across a variety of languages.
However, all of the tested languages have some re-
sources, most notably, Google Translate and rea-
sonably sized Wikipedias. In this section, we show
that our methods hold up on a truly low-resource
language, Uyhgur.

Uyghur is a language native to northwest China,
with about 25 million speakers.8 It is a Turkic lan-
guage, and is related most closely to Uzbek, al-
though it uses an Arabic writing system. Uyghur
is not supported by Google Translate, and the
Uyghur Wikipedia has less than 3,000 articles. In
contrast, the smallest Wikipedia size language in
our test set is Yoruba, with 30K articles. Because
of the small Wikipedia size, we do not use any
wikifier features.

We did this work as part of the NIST LoReHLT
evaluation in the summer of 2016. The official
evaluation scores were calculated over a set of
4500 Uyghur documents. Each team was given the
unannotated version of those documents, with the
task being to submit annotations on that set. Our
official scores are reported in Table 4, and com-
pared with Bharadwaj et al. (2016).

After the evaluation, NIST released 199 of the
annotated evaluation documents, called the unse-

8https://en.wikipedia.org/wiki/Uyghur_
language, accessed July 21, 2017
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Method All Unseq.

Bharadwaj et al. (2016) 51.2 –
Ours 55.6 51.32

Table 4: F1 scores of official submissions in
LoReHLT16. The numbers in the “All” column
are the scores on the entire evaluation data re-
ported from NIST. We evaluate our submissions
on the unsequestered data in order to compare with
the results in Table 5.

Method F1

Monolingual 69.92

Standard Translation
Train: English 27.20
Train: Turkish 33.02
Train: Uzbek 27.88

Language Specific (stemmed)
Train: English 30.84
Train: Turkish 40.04
Train: Uzbek 40.15
Induced dictionaries 43.46
Manual annotations 42.51

All Lang. Spec. 51.32

Table 5: F1 scores for Uyghur. Monolingual
scores are on the 41 document test set. All other
scores are on the full unsequestered data. We omit
forms or gazetteers but use Brown clusters. ‘Stan-
dard Translation’ uses the same resources as the
scores in Table 2 (e.g. without stemming)

questered set. In this section, we will drill into
the various methods we used to build the transfer
model, and report finer-grained results using the
unsequestered set.

The following are some of the language-specific
techniques we employed.

• Dictionary The dictionary provided for
Uyghur from Rolston and Kirchhoff (2016)
had only 5K entries, so we augmented this
with the dictionary provided in the LORELEI
evaluation, which resulted in 116K entries.

• Name Substitution As with Bengali and
Tamil, very few names were translated. We
found transliteration models were too noisy,
so instead, we gathered a list of gazetteers
from Uyghur Wikipedia, categorized by tag
type (PER, LOC, GPE, ORG). Upon en-
countering an untranslatable NE, we replaced
it with a randomly selected NE from the

gazetteer list corresponding to the tag. This
led to improbable sentences like John Kerry
has joined the Baskin Robbins, but it meant
that NEs were fluent in the target text.

• Stemming We created a very simple stemmer
for Uyghur. This consists of 45 common suf-
fixes sorted longest first. For each Uyghur
word in a corpus, we removed all possible
suffixes (Uyghur words can take multiple suf-
fixes). We stemmed all train and test data.

We report results in Table 5. The first row is
from a monolingual model trained on 158 docu-
ments in the unsequestered set, and tested on the
remaining 41. All other rows test on the com-
plete unsequestered set. The next section, ‘Stan-
dard Translation’, refers to the method described
above. Notably, we do not use stemming for train
or test data here. As with Bengali and Tamil, we
omit form features.

We translate from English, Turkish, and Uzbek,
which are the closest languages predicted by
WALS. Next, we incorporated language specific
methods. The scores we get from training on En-
glish, Turkish and Uzbek all go up because the
stemming makes the features more dense. Next
we generated dictionaries using observations over
Uyghur and Uzbek, and we used non-native speak-
ers to annotate Uyghur data.

6.1 Language Specific Dictionary Induction

We began by romanizing Uyghur text into the
Uyghur Latin alphabet (ULY) so we could read
it. We noticed that Uzbek and Uyghur are very
similar, sharing a sizable amount of vocabulary,
and several morphological rules. However, while
there is a shared vocabulary, the words are usually
spelled slightly differently. For example, the word
for “southern” is “janubiy” in Uzbek and “jenu-
biy” in Uyghur.

We tried several ideas for gathering a mapping
for this shared vocabulary: manual mapping, edit-
distance mapping, and cross-lingual CCA with
word vectors.

Manual mapping: We manually translated about
100 words often found around entities, such as
president, and university

Edit-distance mapping: We gathered (Uyghur,
Uzbek) word pairs with low-edit distance, using a
modified edit-distance algorithm that allowed cer-
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tain substitutions at zero cost. For example, this
discovered such pairs as pokistan-pakistan and
telegraph-télégraf.

Cross-lingual CCA with word vectors: We pro-
jected Uyghur and Uzbek monolingual vectors
into a shared semantic space, using CCA (Faruqui
and Dyer, 2014). We used the list of low edit-
distance word pairs as the dictionary for the pro-
jection. Once all the vectors were in the same
space, we found the closest Uyghur word to each
Uzbek word.

6.2 Results

Scores are in Table 5. Interestingly, the language
specific methods evaluated individually did not
improve much over the generic word translation
methods. But with all language specific methods
combined, ‘All Lang. Spec.’, the score increased
by nearly 10 points, suggesting that the different
training data covers many angles.

To the best of our knowledge, there are no pub-
lished scores on the unsequestered data set. Our
best score is comparable to the score of our evalu-
ation submission on the unsequestered dataset.

7 Conclusion

We have shown a novel cross-lingual method
for generating NER data that gives significant
improvement over state-of-the-art on standard
datasets. The method benefits from annotated data
in many languages, combines well with orthogo-
nal features, and works even when resources are
virtually nil. The simplicity and minimal use of
resources makes this approach more portable than
all previous approaches.
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