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Abstract

Leveraging zero-shot learning to learn
mapping functions between vector spaces
of different languages is a promising ap-
proach to bilingual dictionary induction.
However, methods using this approach
have not yet achieved high accuracy on the
task. In this paper, we propose a bridg-
ing approach, where our main contribution
is a knowledge distillation training objec-
tive. As teachers, rich resource transla-
tion paths are exploited in this role. And
as learners, translation paths involving low
resource languages learn from the teach-
ers. Our training objective allows seam-
less addition of teacher translation paths
for any given low resource pair. Since our
approach relies on the quality of monolin-
gual word embeddings, we also propose to
enhance vector representations of both the
source and target language with linguistic
information. Our experiments on various
languages show large performance gains
from our distillation training objective, ob-
taining as high as 17% accuracy improve-
ments.

1 Introduction

In traditional supervised learning, a classifier is
trained on a labeled dataset of the form (X,Y).
Each x; € X is a feature vector representing a
single training instance and y; € Y is the label as-
sociated with x;. In zero-shot learning (Mitchell
et al., 2008), at test time we can encounter a test
instance x; whose corresponding label was not
seen at training time. This setting occurs in do-
mains where Y can take on many values, and ob-
taining labeled examples for all possible Y values
is expensive. Computer vision is one such do-

main, where there are thousands of objects a sys-
tem needs to recognize yet at training time we may
only see examples of some of the objects. In zero-
shot learning, instead of learning parameters as-
sociated with each possible label in Y, the learn-
ing task is cast as a problem of learning a single
mapping function from the vector space of input
instances to the vector space of the output labels.
The resulting induced function can then be applied
to test instances x; whose labels may not have
been seen at training time, producing a projected
vector, 7;, in the label space. The nearest neigh-
bor of the mapped vector in the label space is then
considered to be the label of z;.

In this paper, we study zero-shot learning in the
context of bilingual dictionary induction, which
is the problem of mapping words from a source
language to equivalent words in a target language.
The label space is the full vocabulary of the target
language which can be on the order of millions
of tokens. First, word embeddings are learned
separately for each language, and second, using
a given seed dictionary, we train a mapping func-
tion to connect the two monolingual vector spaces,
thereby facilitating bilingual dictionary induction.
The advantage of zero-shot learning is that it can
help reduce the amount of labeled data for applica-
tions with many possible labels, such as the appli-
cation we study in this paper, bilingual dictionary
induction. However, the state-of-the-art accuracy
on zero-shot bilingual dictionary induction is still
low. On the task of English to Italian (en — it),
top-1 and top-10 accuracies are around 40% and
60%, respectively (Lazaridou et al., 2015; Dinu
et al., 2014).

An important aspect of zero-shot learning for
bilingual dictionary induction is that, it relies on
availability of a large seed dictionary'. Such large

'5000 seed pairs for the (en — it) dataset.
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Figure 1: Trilingual paths for Portuguese(pt) to
English(en) via Spanish (es), Afrikaans(af) to
(en) via Dutch (nl), and Danish(da) to (en) via
Swedish(sv).

training dictionaries might not be available for
all languages. However, for a given language
with only a small seed dictionary, there could
be a highly related language with a much larger
seed dictionary. For example, we might have a
small seed dictionary for translating Portuguese
to English (pt — en), but a large seed dictio-
nary for translating Spanish to English language
(es — en). At training time, we can train
the (pt — en) mapping function not only
using the small seed dictionary, but also make
use of the trilingual path going through Spanish,
(pt — es — en). Since pt and es are highly re-
lated, a small amount of data may be sufficient to
learn the projection (pt — es). This is the idea of
using a bridge or pivot language in machine trans-
lation (Utiyama and Isahara, 2007). Our contri-
bution is a knowledge distillation training objec-
tive function that encourages the mapping func-
tion ( pt — en) to predict the true English target
words as well as to match the predictions of the
trilingual path ( pt — es — en) within a margin.
This is approach allows seamless Example trilin-
gual paths are shown in Figure 1.

By setting up our objective function in this way,
we are distilling knowledge (Bucilu et al., 2006;
Hinton et al., 2015) from the trilingual paths to
train a single mapping function for ( pt — en). In
our experiments, we show performance gains for
several language pairs, 17% for top-10 precision
for (pt — en). We also show that, for a given lan-
guage pair, our objective seamlessly allows us to
distill from several related languages. Moreover,
we learn weights for each of the distillation paths,
thereby automatically learning indicative weights
of how useful each distillation path is. Finally, we
show that even when we only use unlabeled data
to distill knowledge from trilingual paths, we still
obtain performance gains over a model trained on
a small seed dictionary.

Since our approach relies on the quality of
monolingual word embeddings, we also propose

to enhance vector representations of both the
source and target language with linguistic infor-
mation. In particular, we augment word vec-
tors with additional dimensions capturing corpus
statistics of part-of-speech tags of words. Second,
we model sub-word information in the vector rep-
resentations of words.

2 Related Work

Cross Vector Space Mapping with Seed Dictio-
naries. Our work is most related to models that do
zero-shot learning for bilingual dictionary induc-
tion, using maps between vector spaces with seed
dictionaries as training data. Examples include the
models of (Mikolov et al., 2013; Dinu et al., 2014;
Lazaridou et al., 2015; Vulic and Korhonen, 2016).
Like these approaches, we first learn word embed-
dings for each language, then use a seed dictionary
to train a mapping function between the two vec-
tor spaces. In a departure from these prior meth-
ods, we propose to distill knowledge from trilin-
gual paths of nearby languages for languages with
small seed dictionaries using a distillation train-
ing objective. Additionally, we model linguistic
information in the vector space of the source and
target languages. Another line of research in this
vein is the work of (Vulic and Korhonen, 2016),
who analyze how properties of the seed dictio-
nary affect bilingual dictionary induction across
different dimensions (i.e., lexicon source, lexicon
size, translation method, translation pair reliabil-
ity). However, methodologically, their approach is
based on prior work (Mikolov et al., 2013; Dinu
etal., 2014).

Bilingual word embeddings. There is a rich
body of work on bilingual embeddings. Bilin-
gual word embedding learning methods produce
a shared bilingual word embedding space where
words from two languages are represented in the
new space so that similar words, which may be in
different languages, have similar representations.
Such bilingual word embeddings have been used
in a number of tasks including semantic word sim-
ilarity (Faruqui and Dyer, 2014; Ammar et al.,
2016) learning bilingual word lexicons (Mikolov
et al., 2013; Gouws et al., 2015; Vulic and Korho-
nen, 2016), parsing (Guo et al., 2015; Tackstrom
et al., 2012), information retrieval (Vulic and
Moens, 2015), and cross-lingual document clas-
sification (Klementiev et al., 2012; Kocisky et al.,
2014).
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Some bilingual word embedding methods such
as (Blunsom and Hermann, 2014; Gouws et al.,
2015) require sentence or word aligned data,
which our approach does not require. We com-
pare our approach to the bilingual embeddings
produced by the recent method of (Ammar et al.,
2016). Like our approach, this work does not re-
quire availability of parallel corpora but only a
seed dictionary.

On the aspect of enriching word embeddings
with linguistic knowledge for the purpose of ma-
chine translation, Sennrich and Barry (Sennrich
and Haddow, 2016) introduce linguistic features in
sequence to sequence neural machine translation.
Like our work, they also represent such features
in the embedding layer. In addition to part-of-
speech tags and morphological features, they also
use syntactic dependency labels which are not ap-
plicable to our model since we work at the word
level while their model is at the sentence level.

Knowledge Distillation. Knowledge distilla-
tion was introduced for model compression to
learn small models from larger models (Bucilu
et al., 2006; Hinton et al.,, 2015). For exam-
ple, from a large neural network model a smaller
model can be distilled such that it generalizes in
the same way as the large model (Romero et al.,
2014). Knowledge distillation was also used by
(Hu et al., 2016) to distill knowledge from logical
rules in the tasks of named entity recognition and
sentiment analysis, thereby enforcing constraints
on the trained model. Our approach is different
from this prior work on knowledge distillation in
that we distill knowledge from mapping functions
of related languages into mapping functions of
languages with only small seed dictionaries.

Domain adaptation, for which there is a long
history, is also related to our work (Ben-David
et al., 2007; Daumé III, 2007; Pan et al., 2010;
Long and Wang, 2015). (Daumé III, 2007) pro-
posed feature augmentation, suggesting that a
model should have features that are general across
domains, as well as features that are domain-
specific. Thus the model learns from all do-
mains while preserving domain-specific informa-
tion. These kinds of models have to be retrained
when a new domain is added. Our work however
only has to train mapping functions that involve a
new language, all others can be distilled without
retraining them.

3 Embedding Linguistic Information

Since our approach relies on the quality of mono-
lingual word embeddings, we would like to work
with high quality word embeddings. We therefore,
first seek to enhance the vector representations of
words in the source and target languages so that
they can capture useful linguistic information. The
intuition is that such information can help narrow
down the words in the target language that are con-
sidered valid translations for a given source lan-
guage word. To that end, we model both part of
speech (POS) tag distributions of words and sub-
word information in the vector representations.

3.1 Part of Speech Distributions

The idea behind modeling POS tags is that words
should have the same part of speech tag in dif-
ferent languages. For example, if we are trans-
lating the noun Katze from German to English, in
English we expect the singular noun cat and not
the plural cats. While this information may be
monolithically represented in word vectors gen-
erated by embedding methods such as Skip-gram
and CBOW, here we seek to explicitly model POS
tags. Since each word can have multiple POS tags,
we model a word’s part of speech information as
a distribution over all the possible POS tags that it
can take on. We learn POS tag statistics by first
tagging a large corpus of each language, we then
use tag counts to generate distributions. For exam-
ple, if the English word, bark appears tagged as a
verb 30 times in our corpus, and tagged as a noun
10 times, we generate a vector which puts 2/3 in
the verb direction, and 1/3 in the noun direction,
and 0 in the directions of all other POS tags. While
these statistics can be noisy, we hope they can still
provide useful signals. We use the universal POS
tags, there are 12 tags in the universal POS tags
(Petrov et al., 2011).

For a given word w, we compute a vector rep-
resentation w; € R? using a word embedding
method. For now, let’s assume we use the Skip-
gram model. In the next section, we describe an
enhanced word embedding method. We compute
a POS corpus statistics vector v; € R!? for the
word using the 12 universal POS tags. With this
new information, the representation for word ¢ is
given by

z; = (wi, v;) € RIT1Z, (1)
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3.2 Word Internal Structure

Morphology carries information that is useful for
capturing the identity of a word. It represents in-
formation such as tense. When doing cross-lingual
zero-shot projection of a word in a source lan-
guage, we wish to translate to words that have the
same linguistic properties. For example, the Ger-
man word gewinnen should be translated to the
present tense win, not the past tense won which in
German is gewonnen. We approximate morphol-
ogy by incorporating sub-word information into
the vector representations. There are several ways
of doing this, one approach is to work on the level
of characters. We go for the middle-ground, in
which a word is represented as a combination of a
vector for the word itself with vectors of sub-word
units that comprise it. In particular, for a given a
word we learn a vector representation for the word
itself, and also for each n-gram of >= 3 and < 6
in the word (Bojanowski et al., 2017). Each word
is thus represented by the sum of the vector rep-
resentations of its n-grams, including the word it-
self. This representation is then used to replace w;
in equation 1.

4 Training Objective

A common objective function used in prior work
(Mikolov et al., 2013; Dinu et al., 2014) for learn-
ing cross vector space mapping functions is the
regularized least squares error:

W = argmin ||[XW — Y||r + \|[W] (2
WeRsxt

where matrix W is the learned mapping function,
X and Y represent the matrices containing the
vectors for the source language words and vectors
for the target language words, respectively. In-
stead of the least squares loss shown in equation
2, we use a ranking loss, as in (Lazaridou et al.,
2015), which aims to rank correct training data
pairs (z;,;) higher than incorrect pairs (z;,y;)
with a margin of at least v. The margin v is a
hyper-parameter which is application specific, and
the incorrect labels, y; can be selected randomly
such that j # ¢ or in a more application specific
manner”.

2 In our experiments, we explored several application spe-
cific approaches for choosing negative examples, including
one that picks negative examples among words whose part of
speech class is different from the positive example. However,

these approaches did produce significant improvement, and
we resorted back to randomly selected negative examples.

Given a seed dictionary training data of the form
D' = {z;,y;}™,, the margin-based ranking loss
is defined as:

m

k
Jsingle = Z Z max <Oa ’}/"‘d(yi, yi)_d(ij yAz))
i=1 j#i
(3)

where §; = W; is the prediction, k is the number
of incorrect examples per training instance, and
d(z,y) = (z — y)? is the distance measure.

For a given correct pair and incorrect pair, sub-
stituting y; = Wx;. The loss is given by:

—y}-)z) A (4)

To evaluate the derivative analytically, we can
write:

max (0, Y+ (yi — i) — (y;

max (0,7 + (yi — 4i)* — 5i)?)
=0 (v+ (yi — 4:)* (yg*yz))x
v+ (i — 6)* = (y; — 6:)° (5)

where () denotes the Heaviside f-function. The
derivative with respect to the elements of the ma-
trix W is then approximated by, after neglecting
a term that would only contribute if the difference

(yj — 6:)* — (yi — ¥i)* were exactly

O (v+ (yi — 93)* — (yj — 9:)%) ¥

OWap
[+ (vi —9:)* — (y; — )%
~20 (v + (yi — 4:)* — (yj — 6:)?) x
Tib (Yja — Yia) (6)

5 Model Distillation

In zero-shot learning for bilingual dictionary in-
duction a large seed dictionary is used to train a
mapping function. Such large training dictionar-
ies might not be available for all languages. How-
ever, for a given language with only a small seed
dictionary, there could be a highly related lan-
guage with a much larger seed dictionary. We
propose a method for leveraging mapping func-
tions of nearby languages to train mapping func-
tions for languages where large seed dictionaries
may not be available. Our method is related to no-
tion of having a bridge or pivot language as done
in sentence level translation (Utiyama and Isahara,
2007). We develop a distillation training objec-
tive that allows us to seamlessly leverage several
bridge languages for word level translation.
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5.1 Trilingual Paths for distillation

Let us consider the problem of translating from a
given source language to English. As a running
example, we use Portuguese(pt) as the source lan-
guage. We wish to learn a mapping function from
word vectors in Portuguese to word vectors in En-
glish. We can set up a learning task, using a train-
ing dataset D = {x;, y; };", and the loss defined in
Equation 3. This gives us the projection function
in the form of a matrix: W®~¢")_ We can thus
translate Portuguese words to English as follows:

yA'(en)<—>(pt) _ W(ptaen)x(pt) )

1 7

If the seed dictionary for Portuguese to English
is small, W(®‘=¢") mioht generalize poorly, pro-
ducing many wrong translations when using Equa-
tion 7. Suppose, a related language, for example,
Spanish has a lot of training data available, and
we have independently trained its mapping func-
tion, which can make predictions from Spanish to
English as follows:

y@(en)<—>(es) _ W(es%en)x(es) (8)

? 7

Since W (¢57¢) ig trained with a lot of data, we
expect it to generalize better and make more accu-
rate predictions than W®*~¢") One insight here
is that since the languages es and pt are highly re-
lated, we need much less data to train an accurate
mapping matrix W P£=¢%) than we to need to learn
an accurate W P*=¢")  Therefore we train a map-
ping function from Portuguese to Spanish, which
makes predictions as follows.

yAi(es)<—>(pt) _ W(ptqes)xl(pt) (9)

We now have a second path that goes from Por-

tuguese to English much like Equation 7 but this
path goes via Spanish as follows:

i (es)—(pt) _ W(pt—>es) xl(pt)

g; (e (es)=(pt) — wy(es—en) g (es) =) (10

Figure 2 illustrates the two paths from Por-
tuguese to English. Our main insight is to
use knowledge distillation, to improve the accu-
racy of the mapping matrix W"*=¢") through
g; (e (es)=(Pt) This distillation is done by mod-
ifying our learning objective.

. (es—en)
en gi(e) WD o (en)
A
1
W(ptﬂes) :
! W (pt—en)
1
t
2Pt

(2

(a)

Zji (es)—=(pt) _ W(ptﬂes) x(pt)

1

g; (e (es)=(pt) — Wy (es—en) . (es)—(pt)

(b)

yAi(en)H(pt) _ W(ptﬂen)xgpt)

Figure 2: Translating with both a trilingual path
(dotted lines, and equation (a)) , and a bilingual
path (solid line, and equation (b))

5.2 Distillation Objective

(pt)

For a given Portuguese word x;", Equation 7

makes the prediction ;") and Equation 10
makes the trilingual prediction ;¢ (€)= (1)
which involves three languages. We would like to
improve predictions made by Equation 7 by im-
proving the mapping matrix W (=Pt There-
fore when training using the Portuguese to English
training data, we want our objective to both min-
imize the loss defined in Equation 3 and simulta-
neously to let WY mimic predictions made
through the path g; (¢ (€)=t a5 “soft targets”
within a margin. The distillation objective is as
follows:

Jq = imax (0,
i=1

where ¢ is the margin. We combine J;y, 41 and Jy
through a weighted average of the two different
objective functions. Notice that J; can be com-
puted without having labeled training data. In our
experiments, we show that even in this case of un-
labeled data, which gets rid of Jg;y, 41 since it re-
quires labeled data, J; outperforms models trained
using only Jy;,,qc When the training data is small.

5.3 Multiple Trilingual Paths

We are not restricted to distilling Portuguese
through Spanish only. Our model can, in addition,
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for example distill through German, French, and
other languages. We can modify the distillation
loss as follows:

Jd—multi = Z Z ¢j max (Oa

i=1j=1
(gilem=@t) _ g (em) =) —=(p)2 _ ¢>, (12)

where j labels the distillation language. With the
objective Jg_ 1t combined with Jg;, g0, We are
training a mapping function which mimics the be-
havior of many trilingual paths, as “soft targets”
within a margin ¥. We keep ¢ the same in our
experiments across all trilingual paths. The ;
are weights that reflect how much we penalize our
model if it diverges from the predictions of a par-
ticular trilingual path. Intuitively, if a language is
similar to our source language, (pt) in this case,
its corresponding v value should be high. For ex-
ample, if Spanish is considered more related to
Portuguese than any other language in the trilin-
gual paths in Equation 12, than we expect Vi #
1,%1 > ¢;. This is assuming that the second parts
of the trilingual paths have similar accuracies, ie.
W(es_’e”), W(fr_’en), and W€ have sim-
ilar projection accuracies. The most similar lan-
guage is expected to be the easiest to project into
from Portuguese. For example we might expect
W (Pt=¢9) 1o be more accurate than W (P—d€)if
we have similar amounts of training data for learn-
ing both of these. We next present how we learn
the 1); values for the multiple paths.

5.4 Weighted Trilingual Paths

Going back to the example, we first learn the
weights using the Portuguese to English training
set, D = {z¥ t, ys" 1%, and then input the weights
into the model before training with Jy_,.04; and
Jsingle- Suppose we want to compute ¢y which
corresponds to Spanish in Equation 12. For a
given Portuguese word z¥ " € D, whose English

translation is 7", we can compute:

=g

We also experimented with a bilinear term:

(es)—=(pt) (13)

wll)glinear _ (yZ‘en)THyAi(en)H(es)@(pt) (14)
We found a better performing approach to be:
v = (gl gi(en>~(es>~<pt>)2

euclid

V)

P@1 | P@5 | P@10

Italian (en — it)
THIS 510 | 66.6 | 72.4
THIS w/pos 51.6 | 685 | 734
Ridge 29.7 | 44.2 | 49.1
Lazaridou et. al | 40.2 | 54.2 | 60.4
MultiCluster 240 | 7.30 | 11.0
MultiCCA 0 0.1 0.3

Table 1: Translation accuracy on the English to
Italian dataset of (Dinu et al., 2014).

6 Experimental Evaluation

In this section, we study the following questions:

e What is the effect of modeling linguistic in-
formation in the vector representations of the
source and target languages on accuracy of
bilingual dictionary induction?

e Can our knowledge distillation objective
from trilingual paths involving related lan-
guages improve accuracy of mapping func-
tions of languages with small seed dictionar-
ies?

6.1 Data and Experimental Setup

In most of our experiments, we use the train-
ing data that was used to train the multi-lingual
embeddings in (Ammar et al., 2016). We indi-
cate when this is not the training data used. This
data was obtained automatically by using Google
Translate. For test data, we use manual transla-
tions either from prior work or from searching the
Web, including genealogical word lists 3.

For word vector representations, we use
Wikipedia to train 300 dimensional vectors for all
languages we evaluate on. Based on a validation
set, we set the margin v in Equation 3 through
Equation 6 to be v = 0.4, ¢ in Equations 11, 12,
and 15 to be ¢ = 0.01. We estimate model param-
eters using stochastic gradient descent.

6.2 Methods Under Comparison
In our experiments, we compare performance of
the following methods.

e The method THIS refers to our model which

uses a max-margin loss function as defined

3For example:
https://familysearch.org/wiki/en/Afrikaans_Word_List
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in Equation 3. It uses sub-word informa-
tion in the vector representations of words.
One variation of our method is, THIS w/pos,
which includes POS tag statistics as addi-
tional dimensions. The distilled variations of
our method explicitly indicate the languages
involved, for example (pt — es — en).

e The method Ridge is used in a number of
prior work (Mikolov et al., 2013; Dinu et al.,
2014; Vulic and Korhonen, 2016). These ap-
proaches use an L2-regularized least-squares
error objective as shown in Equation 2.

e The method Lazaridou et al. was proposed
by (Lazaridou et al., 2015). It uses a max-
margin ranking function and introduces a
way of picking negative examples in comput-
ing the loss.

e The methods MultiCluster and MultiCCA
refer to the multilingual word embeddings
introduced by (Ammar et al., 2016). They
extend canonical correlation analysis (CCA)
based methods (Haghighi et al., 2008;
Faruqui and Dyer, 2014) to a multi-lingual
setting where they treat English as the com-
mon vector space. For these methods, we use
their pre-trained word embeddings.

6.3 Linguistic Information Evaluation

To address the first of our evaluation questions, we
performed experiments on the dataset introduced
by (Dinu et al., 2014), where the state-of-the art
is the work of (Lazaridou et al., 2015). This is
an Italian to English dataset, which consists of 5K
translation pairs as training data, and 1.5K pairs as
test data. In both (Dinu et al., 2014) and (Lazari-
dou et al., 2015), the embeddings were trained on
Wikipedia and additional corpora, we only train
on Wikipedia.

The results for this experiment are shown in Ta-
ble 1. Our method, THIS, performs well above the
previous state of the art (Lazaridou et al., 2015).
For top-1 precision, as can been seen in Table 1,
we obtained an 11% gain. From Table 1, we can
also see that the POS statistics are only marginally
helpful. The word embeddings generated with
MultiCluster and MultiCCA perform poorly, with
MultiCluster doing better than MultiCCA.

We additionally carried out experiments on 8
other language pairs, further showing our method
outperforming prior work. The results are shown

de es fr it nl sv

1 1 1 ! ! !

en en en en en en
Train | 400k* | 400k* | 100k* | 5k 1,392 | 110k*
Test | 1,180 | 1,109 | 810 2,148 | 296 471

Table 2: Training and test sets for various lan-
guage pairs. The training datasets marked with (*)
are from (Ammar et al., 2016) obtained through
Google Translate. Italian to English is from (Dinu
etal., 2014). The Dutch to English training dataset
is introduced in this paper. With the exception of
Italian to English, all test datasets are introduced
in this paper.

de es fr it nl sv

1 1 1 1 1 1

en en en en en en

P@10
THIS 57.8 | 59.5 | 67.4 | 70.0 | 60.8 | 54.6
Ridge 32.8 | 542 | 59.9 | 66.4 | 58.8 | 44.6
MultiCluster | 12.2 | 8.1 | 4.6 |69 |- 9.0
MultiCCA 67 |43 |29 |56 |- 10.1

Table 3: Top-10 precision for eight languages
translated to English. The high accuracy on Ital-
ian can be explained by the fact that, unlike other
language pairs, for Italian we do not use Google
Translate training data, but the data of (Dinu et al.,
2014), as shown in Table 2.

in Table 3, and the corresponding data is shown
in Table 2. For these language pairs, we do not
show results for our method, THIS w/pos, since
POS taggers are not available for some of the lan-
guages. We also do not show (Lazaridou et al.,
2015), as they did not do experiments on these data
sets, and we did not have an implementation of
their approach. Additionally, (Ammar et al., 2016)
did not have trained embeddings for Dutch (nl).

6.4 Trilingual Paths for Distillation

To address our second evaluation question, we car-
ried out experiments with languages for which we
only had small seed dictionaries. The training and
test datasets for this setup are shown in Table 4.
We gathered these datasets by searching for man-
ually created datasets. In the cases were we could
not find any, we used Google Translate, which,
however produces some noisy translations. This is
partly due to the fact that the translations are done
out of context.

We begin with thorough experiments on the
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pt | pt | pt pt da da af af
! ! ! ! ! 1 ! !

en |es | fr de | en s en nl
Train | 573 | 701 | 1,808 | 465 | 3,000 | 1,980 | 3,744 | 2,000
Test | 296 | O 0 0 262 |0 459 |0

Table 4: Training and test datasets used in the
trilingual path distillation experiments. We evalu-
ated sub-parts of trilingual paths such as pt — es,
and pt — fr using cross validation hence the test
sets for those languages are zero.

P@10
Portuguese (pt — en)

1 | THIS (pt — en) 65.2

(pt — en) +(pt — es — en) [unlabeled data] 74.0

3| (pt — en) + (pt — es — en) 82.1
de

4| (pt —en)+ (pt — | es | — en) [Weighted] 81.8
fr
de

5| (pt — en)+ (pt — | es | — en)[Unweighted] | 78.4
fr

6 | Ridge 60.8

Table 5: Trilingual path distillation results for Por-
tuguese to English.

Portuguese-English language pair. The results are
shown in Table 5. First, we see that if we distill
through the Spanish trilingual path (pt — es —
en), without using any labeled data from pt — en,
we already obtain a 9% gain in accuracy, line 2 in
Table 5. If, in addition to distilling through Span-
ish, we use the available training data pt — en,
573 translation pairs, line 3 in Table 5, we ob-
tain a 17% gain in accuracy. We see however that
adding the distillation paths via French, and Ger-
man did not improve performance, line 4 in Ta-
ble 5. This can be attributed to the fact that with
multiple distillation paths, the model has to opti-
mize a more difficult function. On the other hand,
we see that our trilingual weighting mechanism
is effective. Without path weights, top-10 accu-
racy is 78.4% vs 81.8% with weights, lines 4 and
5 in Table 5. The learned weights for the three
languages involved in the trilingual paths for Por-
tuguese are shown in Figure 3. Spanish is the high-
est weighted, followed by French, and German
has the lowest weight. By definition, the learned
weights add up to 1. In Figure 4, we show accu-
racy while varying the size of the seed dictionary.
We can see that, given the small size of the training
data, distillation provides a strong advantage.

0.4

0.363

0.325

Trilingual Path weight

0.288

DE FR ES

Distillation Language near Portuguese

Figure 3: Learned weights for languages involved
in trilingual paths for translating Portuguese to En-
glish. Spanish is the highest weighted and German
is the lowest.

L1 No distillation
© Distill with unlabeled data

100 & Distill + labeled data

85

70

N /D///u/’u
25

50 100 200 300 400 573

Precision at top-10

Seed dictionary size

Figure 4: Varying the size of the seed dictionary
for (pt — en).

Finally, we applied our distillation method to
Afrikaans and Danish. Afrikaans distills from
Dutch, and Danish distills from Swedish. As
shown in Table 6, in both cases, we obtained per-
formance gains. However, in both of these cases,
performance gains are modest. Unlike Portuguese
to English, the seed dictionaries involved in train-
ing these language pairs were obtained automat-
ically using Google Translate and contain noisy
translations.

7 Conclusion

We have presented a knowledge distillation train-
ing objective that leverages trilingual paths of re-
lated languages to improve mapping functions of
languages with small seed dictionaries. The model
produces substantial gains in accuracy for several
language pairs.

There are several future directions. First, due
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P@10
Afrikaans (af — en)
THIS (af — en) 46.4
(af — en)+ (af — nl — en) [unlabeled data] | 49.9
(af — en)+(af — nl — en) 51.0
Ridge 38.6
Danish (da — en)
THIS (da — en) 44.4
(da — en) + (da — sv — en) [unlabeled data] | 45.2
(da — en) + (da — sv — en) 472
Ridge 37.1

Table 6: Trilingual path distillation results for
Afrikaans and Danish.

to advances in methods for extracting general pur-
pose knowledge (Mitchell et al., 2015; Nakashole
et al., 2013; Wijaya et al., 2014), the use of se-
mantic knowledge has been explored for several
natural language tasks (Nakashole and Mitchell,
2015; Yang and Mitchell, 2017). However, for
bilingual dictionary induction, and more generally,
machine translation, the role of semantic knowl-
edge has not been fully explored. We consider this
to be a promising line of future work. Second,
although we focus on bilingual dictionary induc-
tion, our knowledge distillation training objective
that enables seamless use of paths of rich resource
languages as teachers of low resource languages
is general and can be applied to problems such as
multilingual tagging and parsing.
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