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Abstract

Hand-crafted rules and reinforcement
learning (RL) are two popular choices to
obtain dialogue policy. The rule-based
policy is often reliable within predefined
scope but not self-adaptable, whereas RL
is evolvable with data but often suffers
from a bad initial performance. We em-
ploy a companion learning framework to
integrate the two approaches for on-line
dialogue policy learning, in which a pre-
defined rule-based policy acts as a teacher
and guides a data-driven RL system by
giving example actions as well as ad-
ditional rewards. A novel agent-aware
dropout Deep Q-Network (AAD-DQN) is
proposed to address the problem of when
to consult the teacher and how to learn
from the teacher’s experiences. AAD-
DQN, as a data-driven student policy, pro-
vides (1) two separate experience memo-
ries for student and teacher, (2) an uncer-
tainty estimated by dropout to control the
timing of consultation and learning. Sim-
ulation experiments showed that the pro-
posed approach can significantly improve
both safety and efficiency of on-line pol-
icy optimization compared to other com-
panion learning approaches as well as su-
pervised pre-training using static dialogue
corpus.

1 Introduction

A task-oriented spoken dialogue system (SDS) is
a system that can continuously interact with a
human to accomplish a predefined task through
speech. Dialogue manager, which maintains the
dialogue state and decides how to respond, is the

core of an SDS. In this paper, we focus on the dia-
logue policy.

At the early research, the spoken dialogue sys-
tems assume observable dialogue states. Dialogue
policy is simply a set of hand-crafted mapping
rules from state to machine action. This is referred
to as rule-based policy, which often has acceptable
performance but has no ability of self-adaption.
Nowadays rule-based policy is popular in com-
mercial dialogue systems.

However, in real world scenarios, unpredictable
user behavior, inevitable automatic speech recog-
nition, and spoken language understanding errors
make it difficult to maintain the true dialogue state
and make the decision. Hence, in recent years,
there is a research trend towards statistical dia-
logue management. A well-founded theory for
this is the partially observable Markov decision
process (POMDP) (Kaelbling et al., 1998), which
can provide robustness to errors from the input
module and automatic policy optimization by re-
inforcement learning. Most POMDP based policy
learning research is usually carried out using ei-
ther user simulator or employed users (Williams
and Young, 2007; Young et al., 2010). The trained
policy is not guaranteed to work well in real world
scenarios. Therefore, on-line policy training has
been of great interest (Gašić et al., 2011). Re-
cently, Chen et al. (2017) proposed two qualita-
tive metrics 1 to measure on-line policy learning:
safety and efficiency. Safety reflects whether the
initial policy can satisfy the quality-of-service re-
quirement in real-world scenarios during the on-
line policy learning period. Efficiency reflects how
long it takes for the on-line policy training algo-
rithm to reach a satisfactory performance level.

Most traditional RL-based policy training suf-

1The quantitative evaluation metrics of safety and effi-
ciency are proposed in section 4.
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fers poor initial performance, i.e. causes the safety
problem. In light of above, Chen et al. (2017) pro-
posed a safe and efficient on-line policy optimiza-
tion framework, i.e. companion teaching (CT),
in which a human teacher is added in the classic
POMDP. The teacher has two missions: one is to
show example actions, another is to act as a critic
to give the student extra reward which can make
the learning of policy more efficient. The example
actions not only make the learning safer but also
can be directly used by the training of the student
policy. However, there are costs to the teaching of
a human teacher.

Based on CT, companion learning (CL) frame-
work is proposed to integrate rule-based policy
and RL-based policy, resulting in safe and efficient
on-line policy learning. Here, the rule-based pol-
icy acts as a virtual teacher which replaces the hu-
man teacher in CT. There are a few differences be-
tween these two kinds of teachers. First, because
it has no marginal cost when it’s deployed, the rule
teacher can be consulted at any time if needed.
On the other hand, the rule policy is not as good
as the human teacher, therefore it’s important to
determine when and how much the student pol-
icy depends on the rule teacher. Here, we propose
an agent-aware dropout Deep Q-Network (AAD-
DQN) as the student statistical policy, which pro-
vides (1) two separate experience replay pools for
student and teacher, (2) an uncertainty estimated
by dropout which can be used to control the tim-
ing of consultation and learning.

In summary, our main contributions are three-
folds: (1) Companion learning (CL) framework
was proposed to integrate rule-based policy and
RL-based policy. (2) An agent-aware dropout
Deep Q-Network (AAD-DQN) was proposed as
the statistical student policy. (3) Compared with
other companion teaching approaches (Chen et al.,
2017) as well as supervised pre-training using
static dialogue corpus (Fatemi et al., 2016), CL
with AAD-DQN can achieve better performance.

2 Related Work

Most previous studies of on-line policy learn-
ing have been focused on the efficiency issue,
such as Gaussian Process Reinforcement Learning
(GPRL) (Gašić et al., 2010). In GPRL, the kernel
function defines prior correlations of the objective
function given different belief states, which can
significantly speed up the policy learning (Gašić

and Young, 2014). Alternative methods include
Kalman temporal difference reinforcement learn-
ing (Pietquin et al., 2011).

More recently, deep reinforcement learning
(DRL) (Mnih et al., 2015) is applied in dialogue
policy optimization, including deep Q-Network
(DQN) (Cuayáhuitl et al., 2015; Fatemi et al.,
2016; Zhao and Eskenazi, 2016; Lipton et al.,
2016) and policy gradient (PG) methods, e.g. RE-
INFORCE (Williams and Zweig, 2016; Su et al.,
2016; Williams et al., 2017), Advantage Actor-
Critic (A2C) (Fatemi et al., 2016). In order
to speed up the learning of DQN, Lipton et al.
(2016) proposed an efficient exploration technique
based on Thompson sample from a Bayesian neu-
ral network. Furthermore, they showed that using
a few successful dialogues generated by a rule-
based policy to pre-fill the replay buffer can ben-
efit the learning at the beginning. To improve
the efficiency of PG methods, policy network is
initialized with supervised learning (SL) before
RL training (Williams and Zweig, 2016; Williams
et al., 2017; Su et al., 2016, 2017; Fatemi et al.,
2016), which is similar to the idea in (Silver et al.,
2016). However, combining RL with SL for dia-
logue policy optimization is not new. Henderson
et al. (2008) were among the first to prove the ben-
efits of combining supervised and reinforcement
learning. In the experiments, we will compare CL
with these pre-training methods.

Although the improvement of efficiency can
benefit the safety of learning process, no matter
how efficient the algorithm is, an unsafe on-line
learned policy can lead to bad user experience at
the beginning of learning period and consequently
fail to attract sufficient real users to continuously
improve the policy. Therefore, it is important to
address the safety issue. There are few works
about the safety issue of on-line dialogue policy
optimization. Williams (2008) proposed a method
for integrating business rules and POMDPs. The
rules act as the action mask, i.e. the rules nomi-
nate a set of one or more actions, and the POMDP
chooses the optimal action.

3 Proposed Framework

3.1 Companion Learning for On-line Policy
Optimization

In the CL framework, there are two agents: one
is the student policy, another is the teacher pol-
icy. Here, teacher policy is the extra part com-
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Figure 1: (a) RL-based Companion Learning(CL) Framework with Logic Rules in an SDS. (b) Agent-
Aware Dropout DQN (AAD-DQN) for CL.

pared with the classic statistical dialogue manager
architecture (Young et al., 2013). The goal of on-
line policy training is to optimize the student pol-
icy from data via interaction with users in real sce-
narios. The teacher guides the policy learning at
each turn as a companion of the dialogue policy,
hence, referred to as companion learning 2. The
CL framework is described in Figure 1(a).

At each turn, the input module (ASR and SLU)
receives an acoustic input signal from the human
user and the dialogue state tracker keeps the di-
alogue state up-to-date. The dialogue state is
then transmitted to both the student policy and the
teacher policy. The student policy first generates a
candidate action astu

t and when it needs help from
the teacher policy, it sends astu

t with some auxil-
iary information which will be transmitted to the
teacher. The teacher policy can then help the stu-
dent policy with one of the following ways or both:

• Example Action (EA): The teacher gener-
ates an action atea

t instead of astu
t according

to its policy. It corresponds to the left switch
in Figure 1(a).

• Critic Advice (CA): The teacher will not ex-
plicitly show an action. Instead, it gives an
extra reward rint

t to the student policy. It cor-
responds to the right switch in Figure 1(a).

The action from control module is then transmitted
to the output module, which generates the nature
text and audio. At each turn, an extrinsic reward
signal rext

t will be given to the student policy by

2The name companion learning has another potential
meaning that the agents can learn from each other, i.e. the
rules guide the RL training, and the optimised RL policy can
provide some intuition for the revision of rules. We will give
some preliminary discussions about this point in section 5.3.

the environment, i.e. the user. The extrinsic re-
ward rext

t with the extra intrinsic reward rint
t will

be used to update the policy parameters θ using
reinforcement learning algorithms.

In the CL framework, there are two things that
matter: one is when to consult the teacher, another
is how to use the teacher’s experiences. In this pa-
per, an agent-aware dropout DQN (AAD-DQN) is
proposed. As shown in Figure 1(b), the certainty
information during the interaction is used to define
a companion function, which controls how often to
sample the teacher’s experiences for updating pa-
rameters during the training phase (left), and when
to use EA or CA teaching method during decision
phase (right).

The rest of this section is organized as fol-
lows. The next subsection introduces the agent-
aware experience replay in DQN. The definition
of certainty in DQN and the companion function
are presented in subsection 3.3. The rule-based
teacher policy is described in subsection 3.4.

3.2 Agent-Aware Experience Replay in DQN

A Deep Q-Network (DQN) is a multi-layer neu-
ral network which maps a belief state bt to the
Q values of the possible actions at at that state,
Q(bt, at; θ), where θ is the weight vector of the
neural network. Neural networks for the approxi-
mation of value functions have long been investi-
gated (Lin, 1993). However, these methods were
previously quite unstable (Mnih et al., 2013). In
DQN, Mnih et al. (2013, 2015) proposed two tech-
niques to overcome this instability, namely expe-
rience replay and the use of a target network.

At every turn, the transition including the pre-
vious belief state bt, previous action at, corre-
sponding reward rt and current belief state bt+1

is put in a finite pool (Lin, 1993). In this pa-
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per, two pools Dstu and Dtea are used to store
the student’s experiences and the teacher’s experi-
ences respectively as shown in Figure 1(b). When
the teaching method EA is used in the t-th turn,
at = atea

t and the transition is put in Dtea, other-
wise at = astu

t and the transition is put in Dstu

. When CA is used, rt = rext
t + rint

t , otherwise
rt = rext

t . Once any of the pool has reached its
predefined maximum size, adding a new transition
results in deleting the oldest transition in the pool.
During training, a pool is first selected from Dtea

andDstu. The probability of selectingDtea is ptea,
i.e. D ∼ Ber(Dtea,Dstu; ptea) 3.Then a mini-
batch of transitions is uniformly sampled from the
selected pool, i.e. (bt, at, rt,bt+1) ∼ U(D). We
call this agent-aware experience replay.

Except for the experience replay, a target net-
work with weight vector θ− is used. This target
network is similar to the Q-network except that its
weights are only copied every K steps from the
Q-network, and remain fixed during all the other
steps. The loss function for the Q-network at each
iteration takes the following form:

L(θ) = ED∼Ber(Dtea,Dstu;ptea), (bt,at,rt,bt+1)∼U(D)[(
rt + γmax

at+1

Q(bt+1, at+1; θ−)−Q(bt, at; θ)
)2
]

(1)
where γ ∈ [0, 1] is the discount factor.

The probability ptea controls how often the stu-
dent learns from the teacher’s experiences. As
the learning goes on, the probability will decrease.
More details will be described in the next section.

3.3 Companion Strategy

It’s important for the student to estimate an appro-
priate point to end the reliance on the teacher. If
the reliance is ended too early, the student itself
may not reach an acceptable performance, result-
ing in the sharp drop of performance, which is the
safety problem. However, if the student always re-
lies on the teacher, it’s hard to improve its perfor-
mance to surpass the teacher’s performance, which
is the efficiency problem.

We get some inspirations from the studying pro-
cess of a call center service agent. Consider how
a new call center service agent gets started. At
first, an experienced call center agent tells him
some basic rules and the new agent works by of-
ten consulting these rules. His confidence about

3Ber is short for Bernoulli.

how to make decisions gradually increases during
the continuous practice. Eventually, he is so con-
fident about his own decisions that he no longer
needs any consultation to these rules and even ex-
plores some better response ways through inter-
action with users which are not initially included
in the rules. Similarly, we can use the uncer-
tainty/certainty of the Q-network to determine the
teaching time.

There are several methods to estimate the un-
certainty/certainty in deep neural networks, e.g.
Bayesian neural networks (Blundell et al., 2015),
dropout (Gal and Ghahramani, 2016), bootstrap
(Osband et al., 2016) . Here we use the dropout
to estimate the certainty of Q-Network. We call
this Q-network DropoutQNetwork. Dropout is a
technique used to avoid over-fitting in neural net-
works. It was introduced several years ago by
(Hinton et al., 2012) and studied more extensively
in (Srivastava et al., 2014). When dropout is used
in training, the elements of the output of each hid-
den layer h is randomly set to zero with probabil-
ity p, i.e. h′ = h � z 4 where z is binary vector
and each element zi ∼ Ber(1−p). h′ is scaled by

1
1−p and then fed to the next layer. At test time the
dropout is disabled, i.e. the output of each hidden
layer h is directly fed to the next layer. Although
dropout was suggested as an ad-hoc technique, re-
cently it was theoretically proven that the dropout
training in deep neural networks is an approximate
Bayesian inference in deep Gaussian processes
(Gal and Ghahramani, 2016). Therefore, a direct
result of this theory gives us tools to model un-
certainty with dropout neural networks. To obtain
the uncertainty, similar with that at train phrase the
dropout is enabled at test phrase. For each input
instance (i.e. dialogue belief state) bt, performing
N stochastic forward passes through the network
and averaging the output qi , [qi1, · · · , qiM ] to
get the mean and the variance. Generally, the vari-
ance can be utilized to measure the uncertainty of
output. However, it’s not a normalized criteria,
and it’s hard to set a threshold below which we
should be confident with the output.

Instead, we proposed a novel method to mea-
sure the certainty of the decision of student policy
at t-th turn. For each stochastic forward passes,
the action ati = arg maxj qij is regarded as a
vote. After N passes 5, there is a committee

4Here � is the element-wise product.
5The N forward passes can be done in parallel, e.g. the
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{at1, · · · , atN} consisting of N votes. The ac-
tion astu

t that should be taken in the belief state
bt is the one with the largest percentage of the
votes, and the corresponding percentage is defined
as certainty ct. The process is described in Algo-
rithm 1.

Algorithm 1 The Decision Procedure of Student
Policy πstu(bt, N)
Require:

The repeat times N and the belief state bt

1: Initial the probability vector p =
[p1, · · · , pM ] with zero vector, where M
is the number of actions.

2: for i = 1, N do
3: qi← DropoutQNetwork(bt)
4: ati ← arg maxj qij
5: p[ati]← p[ati] + 1/N
6: end for
7: ct ← maxj pj

8: astu
t ← arg maxj pj

9: return astu
t , ct

At the end of e-th dialogue, the average cer-
tainty of all turns is computed, i.e. Ce =
1
Te

∑Te
t=0 ct, where Te is the number of turns in

e-th dialogue. Generally, the variance of Ce be-
tween successive dialogues is high. In order to the
smooth the estimation, here we use the moving av-
erage of Ce in previous W dialogues to represent
the certainty of student at current dialogue, i.e.

Ce =
1
W

e−1∑
i=e−W

Ci. (2)

As the training goes on, Ce grows until it con-
verges. If Ce in all successive W dialogues are
greater then a threshold Cth as shown in Figure
2, it’s assumed that the student reaches a point
where it is confident enough with its own decision
steadily. Therefore, the teaching, both EA and CA,
should be ended from now on.

Before the end of the teaching, CA is done in
all turns. However, if EA is always done, the dis-
appearance of the teacher may cause a dramatic
change in the hybrid decision policy, which re-
sults in a sharp drop of performance. To deal
with this issue, a monotonically increasing func-
tion of the relative certainty Ptea(∆Ce) is pro-
posed to control the frequency of EA teaching.

dialogue state can be repeated N times to form a mini-batch,
then one forward is executed to get N outputs simultaneously.

∆Ce represents the distance between Ce and Cth,
i.e. ∆Ce = max(0, Cth − Ce). The effect of
Ptea(∆Ce) is that the closer Ce is to Cth, the
more unlikely EA teaching is executed. Besides
controlling how often the student directly consult
the teacher, another mission of Ptea(∆Ce) is to
control how often the teacher’s experiences are re-
played, i.e. the probability ptea described in sec-
tion 3.2. Implementation details of Ptea(∆Ce) are
described in Appendix C.

Figure 2: Illustration of average certainty Ce and
the probability ptea.

The full procedure of companion learning with
logic rules is described in Algorithm 2.

3.4 Teacher Policy: Logic Rules
Rule-based policy is popular in commercial dia-
logue systems (Williams, 2008). The policy, i.e.
the dialogue plan/flow, is designed by a domain
expert. His knowledge of task domain and busi-
ness rules is encoded in the rules. There are
many methods to represent the decision rules, e.g.
propositional logic, first-order logic, decision tree.
Here, we use the ordered propositional logic rules,
which can be easily translated into IF-THEN rules.
When making the decision, these rules are exe-
cuted in pre-defined order. If the conditions of any
rule are satisfied, the decision process will be ter-
minated and the output is the corresponding ac-
tion. In this paper, three hand-crafted logic rules,
R1, R2, and R3 , were used as the teacher:

• R1: confirm the most likely value in slots
where the most likely value has probability
between 0.1 and 0.66;

• R2: offer a restaurant if there is at least one
slot in which the belief of most likely value is
more than the belief of special value “none”;

6This threshold is the best one we have tried.
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Algorithm 2 Companion Learning with Logic
Rules
Require:

The number of stochastic forward pass N , the
maximal extra reward δ > 0.

1: Initialize the parameters θ of student policy
2: Initialize replay pools Dtea and Dstu with {},

certainty memory C with {}, teaching with
True.

3: for e = 1, E do
4: Update the dialogue belief state b0

5: Initialize the average certainty Ce ← 0
6: if teaching is True then
7: teaching, ptea ← Companion(C)
8: end if
9: for t = 0, Te do

10: Set intrinsic reward rint
t ← 0

11: Get system action and the corresponding
certainty, i.e. astu

t , ct ← πstu(bt, N)
12: Ce ← Ce + ct
13: Get action from the rule-based policy, i.e.

atea
t ← πtea(bt)

14: EA ∼ Ber(ptea)
15: if teaching is True and EA is True

then
16: at ← atea

t

17: else
18: at ← astu

t

19: end if
20: if teaching is True then
21: rint

t ← (2× 1{at = atea
t } − 1)δ

22: end if
23: Ce ← 1

Te
Ce, and store Ce in C

24: Give the action at to the environment,
observe the extrinsic reward rext

t and up-
date the dialogue belief state bt+1

25: rt ← rint
t + rext

t

26: if EA is True then
27: Store {bt, at, rt,bt+1} in Dtea

28: else
29: Store {bt, at, rt,bt+1} in Dstu

30: end if
31: Update the parameters θ of

DropoutQNetwork according to the
equation (1).

32: end for
33: end for
34: return θ

Algorithm 3 Companion Function Companion(C)
Require:

The average certainty memory C at e-th dia-
logue and the moving window size W .

1: Initialize teaching with False, ptea with 0
2: for i = 0,W do
3: Compute the moving average certainty

Ce−i in (e-i)-th dialogue with equation (2).

4: if Ce−i < Cth then
5: teaching ← True
6: break
7: end if
8: end for
9: if teaching is True then

10: ∆Ce ← max(0, Cth − Ce)
11: ptea ← Ptea(∆Ce)
12: end if
13: return teaching, ptea

• R3: request values for a slot which is uni-
formly selected from a pre-defined slot list.

The corresponding pseudo-codes are presented in
Appendix B.

4 Evaluation Metrics of On-line Policy
Optimization

Most previous work on the evaluation of RL-based
dialogue policy optimization focuses on the final
performance (FP) when the system converges to
a steady level. However, for on-line policy op-
timization, it’s important to measure the learning
process. Except for FP, we proposed two quantita-
tive metrics: safety loss and efficiency loss.

4.1 Safety Loss
In the on-line training process, unless the perfor-
mance of the system reaches the acceptable perfor-
mance Sa, the interaction between users and the
system will be unsafe and causes trouble to con-
tinuing training. So the safety of the system is de-
fined to be the system’s ability to maintain perfor-
mance above the acceptable performance Sa.

We quantify the safety loss of the system by
summing up the performance gap between the
acceptable performance and the system perfor-
mance Se in every episode during the on-line
learning. Suppose there are E dialogues, then

L1 =
E∑

e=1
max(0, Sa − Se). The safety loss has an
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intuitive interpretation as the area of the region be-
low the threshold and above training curve. This
metric is similar to the integral of absolute error
(IAE) (Shinners, 1998) metric commonly adopted
in the evaluation of control systems (Gaing, 2004;
Jesus and Tenreiro MacHado, 2008).

4.2 Efficiency Loss

Another important issue of on-line learning is effi-
ciency. The efficiency indicates the speed at which
the system reaches a specific performance level. In
reality, we can tolerate a system to make mistakes
at the beginning but it should improve at a signif-
icant speed until reaching the ideal performance
Si. Therefore, later failures should weight more
than early failures to evaluate efficiency. Sim-
ilar to the integral of time multiplied by abso-
lute error (ITAE) (Shinners, 1998) metric, we pro-
pose a metric efficiency loss. We multiply the
performance gap between ideal performance and
current performance with the episode index, thus
giving later failure greater penalty. Specifically,

L2 =
E∑

e=1
max(0, Si − Se)e.

More illustrations about safety loss and effi-
ciency loss are given in Appendix D.

5 Experiments

Our experiments have three objectives: (1) Com-
paring our proposed dropout DQN in Algorithm 1
with some baselines when there is no teacher. (2)
Comparing CL with other two baselines when the
teacher gets involved, and investigating the ben-
efits of our proposed agent-aware experience re-
play. (3) Visually analyzing the differences in be-
haviors between the rule-based teacher policy and
the optimized student policy.

An agenda-based user simulator (Schatzmann
et al., 2007a) with error model (Schatzmann et al.,
2007b) was implemented to emulate the behav-
ior of the human user, and a rule-based policy
with 0.695 success rate described in section 3.2
was used as the teacher in our experiments. The
purpose of the user’s interacting with SDS is to
find restaurant information in the Cambridge (UK)
area (Henderson and Thomson, 2014). This do-
main has 7 slots of which 4 can be used by the
system to constrain the database search. The sum-
mary action space consists of 16 summary actions.
More details are described in Appendix A.

For reward, at each turn, an extrinsic reward of

−0.05 is given to the student policy. At the end of
the dialogue, a reward of +1 is given for dialogue
success. The maximal extra reward δ is 0.05.

For each set-up, 10000 dialogues are used
for training, the moving dialogue success rate is
recorded with a window size of 1000. The final
results are the average of 40 runs.

5.1 Policy Learning without Teaching
In this section, four policies without teaching are
compared:

• DQN: A vanilla deep Q-Network (Mnih et al.,
2015) which has two hidden layers, each with
128 nodes.

• A2C: An advantage actor-critic policy which
consists of an actor network and a critic net-
work (Fatemi et al., 2016).

• Dropout DQN 1 and Dropout DQN 32:
They both have a dropout layer after each
hidden layer. The dropout rate is 0.2. Their
difference is that the number of stochas-
tic forward pass N of Dropout DQN 32
in Algorithm 1 is 32, while that of
Dropout DQN 1 is 1. Dropout DQN 1
makes decision according to one output of
Q-network similar to that of vanilla DQN.
Dropout DQN 1 was first proposed in (Gal
and Ghahramani, 2016), and was confirmed
that Dropout DQN 1 can obtain more effi-
cient exploration.

Figure 3: Comparison of four policies without
teaching.

The learning curves are described in Figure 3
and the evaluation results are described in Table
1. Comparing Dropout DQN 1 with DQN in fig-
ure 3, the improvement of efficiency caused by
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Metrics No Teaching Teaching
DQN Dropout DQN 1 Dropout DQN 32 A2C A2C PreTrain EA CL D CL AAD

Safety 1043.3 321.4 258.0 1020.8 176.9 48.8 30.6 18.6
Efficiency(×104) 534.7 249.1 75.6 299.0 205.4 58.0 62.6 53.5

FP 0.684 0.709 0.749 0.727 0.726 0.751 0.749 0.751

Table 1: The quantitative evaluation results of different methods. Here final performance (FP) is the
success rate of last 2000 dialogues. The FP of Dropout DQN 32 0.749 is used as the ideal performance
Si for computing efficiency loss, and the performance of the rules 0.695 is used as the acceptable
performance Sa for computing safety loss.

dropout can be observed as claimed in (Gal and
Ghahramani, 2016). However, Dropout DQN 1
seems to suffer premature and sub-optimal con-
vergence, while our proposed Dropout DQN 32,
whose decision is based on multi votes (algo-
rithm 1), can result in improvement of effi-
ciency and better final performance. Moreover,
Dropout DQN 32 also performs much better
than the policy gradient method A2C.

For the following experiments, the times of
stochastic forward pass N in Algorithm 1 is 32.

5.2 Policy Learning with Teaching

In this section, four methods of teaching by the
rule-based policy are compared:

• EA: 500 dialogues are taught with EA at the
beginning (Chen et al., 2017).

• A2C PreTrain: At the beginning, 500 di-
alogue are collected with rule-based policy.
These examples are used to pre-train the actor
network with supervised learning. After the
pre-training, the policy is continuously opti-
mized with the A2C algorithm (Fatemi et al.,
2016).

• CL AAD: Full CL with AAD-DQN described
in section 3.

• CL D: CL without agent-aware experience
repay, i.e. the teacher’s experiences and stu-
dent’s experiences are put in one pool and are
uniformly sampled for the experience replay
in equation (1).

As can be seen in Figure 4, there is a big dip in
the performance of A2C PreTrain. One possi-
ble explanation is that because the rule-based pol-
icy is sub-optimal, the pre-training makes the stu-
dent policy reach a local minimum point. The rl-
training should first make it escape from the local

Figure 4: Comparison of four methods with teach-
ing by rule-based teacher.

minimum point, which results in a temporary loss
in performance.

Comparing CL methods (CL D and CL AAD)
with EA in Figure 4 and in Table 1, we can con-
clude that CL can significantly boost the safety
of learning process. Moreover, except for safety,
CL AAD can boost the efficiency, which benefits
from the agent-aware experience replay.

5.3 Comparison of Optimized Student Policy
and Rule-based Teacher Policy

To interpret what the student has learnt, we fur-
ther compare the rules and an optimized student
policy with 76.7% success rate. The rule-based
policy is used to collect 5000 dialogues, while in
each turn the decision made by the student policy
is also recorded. Figure 5 is a confusion matrix.
The x-axis denotes the student’s decision and the
y-axis denotes the rules’ decision. The numbers
on the left are the statistics for each action in 5000
dialogues. Each element in the matrix denotes the
normalized number of turns when the rule chooses
the action in the corresponding line, the student
chooses the action in the corresponding column.

As is shown in Figure 5, offer and confirm
are two action types used most frequently. In
more than half of turns when the rule-based pol-
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Figure 5: Confusion matrix between the decisions
of rule-based policy and the decisions of the opti-
mised student policy. The x-axis denotes the stu-
dent’s decision and the y-axis denotes the rules’
decision.

icy chooses offer 1, the student policy will choose
a different action. Furthermore, from the element
in line offer 1 and column request area, we can
find that in this situation the student policy prefers
the action request area. Inspired by this disagree-
ment, we designed a new rule:

• R4: request values for slot area when there is
only one other slot constraint for the database
query.

Similarly, as can be seen in Figure 5, in a con-
siderable proportion of turns when the rule-based
policy chooses confirm area, confirm pricerange,
or confirm name, the student policy will choose
the action offer 2, which may mean that for slots
area, pricerange, or name, when there are val-
ues for database query, the system should offer
a restaurant instead of confirming the slot-value
constraints. Therefore, the rule R1 in section 3.2
was revised as follows:

• R1*: For slot food, confirm the most likely
value has the probability between 0.1 and 0.6;
For slot area, pricerange and name, confirm
the most likely value, the belief of which is
smaller than the belief of the special value
“none” and is larger than 0.1.

Table 2 is the evaluation results of different or-
dered rules. The rule R4 can significantly boost
the success rate (comparing line 2 with line 1),

Ordered Rules Success Rate #Turn Reward
R1, R2, R3 0.695 4.58 0.4657

R1, R4, R2, R3 0.749 5.16 0.4910
R1*, R2, R3 0.705 4.44 0.4824

R1*, R4, R2, R3 0.753 4.98 0.5042

Table 2: Evaluation results of different ordered
rules. As a reference, the performance of opti-
mised student policy is success rate 0.767, #turn
5.10 and reward 0.5124.

while the rule R1* can both boost the success rate
and decrease the dialogue length (comparing line
3 with line 1). The combination of R4 and R1*
takes respective advantages (comparing line 4 with
line 1, line 2 and line 3). The performance of fi-
nal order rules is comparable to the performance
of optimized student policy.

It is worth noting that the primary rules R1, R2,
and R3 in section 3.2 don’t distinguish between
different slots. However, the new rules R4 and
R1* are all slot-specific, which it is difficult to de-
sign at the beginning.

6 Conclusion

This paper has proposed a companion learning
framework to unify rule-based policy and RL-
based policy. Here, the rule-based policy acts as
a teacher, which either directly shows example ac-
tion or gives an extra reward. Based on the un-
certainty estimated using a dropout Q-Network, a
companion strategy is proposed to control when
the student policy directly consults rules and how
often the student policy learns from the teacher’s
experiences. Simulation experiments showed that
our proposed framework can significantly improve
both safety and efficiency of on-line policy opti-
mization. Additionally, we visually analyzed the
differences in behaviors between the rule-based
teacher policy and the optimized student policy,
which gave us some inspirations to refine the rules.
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