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Abstract

Neural networks have achieved state-of-
the-art performance on several structured-
output prediction tasks, trained in a fully
supervised fashion. However, annotated
examples in structured domains are of-
ten costly to obtain, which thus limits
the applications of neural networks. In
this work, we propose Maximum Mar-
gin Reward Networks, a neural network-
based framework that aims to learn from
both explicit (full structures) and implicit
supervision signals (delayed feedback on
the correctness of the predicted structure).
On named entity recognition and seman-
tic parsing, our model outperforms previ-
ous systems on the benchmark datasets,
CoNLL-2003 and WebQuestionsSP.

1 Introduction

Structured-output prediction problems, where the
goal is to determine values of a set of inter-
dependent variables, are ubiquitous in NLP. Struc-
tures of such problems can range from simple se-
quences like part-of-speech tagging (Ling et al.,
2015) and named entity recognition (Lample et al.,
2016), to complex syntactic or semantic analysis
such as dependency parsing (Dyer et al., 2015) and
semantic parsing (Dong and Lapata, 2016). State-
of-the-art methods of these tasks are often neu-
ral network models trained using fully annotated
structures, which can be costly or time-consuming
to obtain. Weakly supervised learning settings,
where the algorithm assumes only the existence of
implicit signals on whether a prediction is correct,
are thus more appealing in many scenarios.

For example, Figure 1 shows a weakly super-
vised setting of learning semantic parsers using
only question—answer pairs. When the system
generates a candidate semantic parse during train-
ing, the quality needs to be indirectly measured by

Q: “Who played Meg in Season 1 of Family Guy?”

(Ax. 3y. cast(FamilyGuySeason1, y) A actor(y, x)

{Lacey Chabert, Seth MacFarlane, Alex Borstein} ?

Seth Green, John Viener, Alec Sulkin

i

A: “Lacey Chabert”

Figure 1: Learning a semantic parser using im-
plicit supervision signals (labeled answers). Since
there are no gold parses, a model needs to explore
different parses, where their quality can only be
indirectly verified by comparing retrieved answers
and the labeled answers.

comparing the derived answers from the knowl-
edge base and the provided labeled answers.

This setting of implicit supervision increases
the difficulty of learning a neural model, not only
because the signals are vague and noisy, but also
delayed. For instance, among different semantic
parses that result in the same answers, typically
only few of them correctly represent the meaning
of the question. Moreover, the correctness of an-
swers corresponding to a parse can only be eval-
vated through an external oracle (e.g., executing
the query on the knowledge base) after the parse
is fully constructed. Early model update before the
search of a full semantic parse is complete is gen-
erally infeasible.! It is also not clear how to lever-
age implicit and explicit signals integrally during
learning when both kinds of labels are present.

In this work, we propose Maximum Margin Re-
ward Networks (MMRN), which is a general neu-
ral network-based framework that is able to learn
from both implicit and explicit supervision sig-
nals. By casting structured-output learning as a
search problem, the key insight in MMRN is the

"Existing weakly supervised methods (Clarke et al., 2010;
Artzi and Zettlemoyer, 2013) often leverage domain-specific
heuristics, which are not always available.
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special mechanism of rewards. Rewards can be
viewed as the training signals that drive the model
to explore the search space and to find the cor-
rect structure. The explicit supervision signals can
be viewed as a source of immediate rewards, as
we can often instantly know the correctness of the
current action. On the other hand, the implicit su-
pervision can be viewed as a source of delayed re-
wards, where the reward of the actions can only be
revealed later. We unify these two types of reward
signals by using a maximum margin update, in-
spired by structured SVM (Joachims et al., 2009).

The effectiveness of MMRN is demonstrated on
three NLP tasks: named entity recognition, entity
linking and semantic parsing. MMRN outperforms
the current best results on CoNLL-2003 named
entity recognition dataset (Tjong Kim Sang and
De Meulder, 2003), reaching 91.4% F;, in the
close setting where no gazetteer is allowed. It also
performs comparably to the existing state-of-the-
art systems on entity linking. Models for these
two tasks are trained using explicit supervision.
For semantic parsing, where only implicit super-
vision signals are provided, MMRN is able to learn
from delayed rewards, improving the entity link-
ing component and the overall semantic parsing
framework jointly, and outperforms the best pub-
lished system by 1.4% absolute on the WebQSP
dataset (Yih et al., 2016).

In the rest of the paper, we survey the most
related work in Sec. 2 and give an in-depth dis-
cussion on comparing MMRN and other learning
frameworks in Sec. 7. We start the description of
our method from the search formulation and the
state—action spaces in our targeted tasks in Sec. 3,
followed by the reward and learning algorithm in
Sec. 4 and the detailed neural model design in
Sec. 5. Sec. 6 reports the experimental results and
Sec. 8 concludes the paper.

2 Related Work

Structured output prediction tasks have been stud-
ied extensively in the field of natural language pro-
cessing (NLP). Many supervised structured learn-
ing algorithms has been proposed for capturing
the relationships between output variables. These
models include structured perceptron (Collins,
2002; Collins and Roark, 2004), conditional ran-
dom fields (Lafferty et al., 2001), and structured
SVM (Taskar et al., 2004; Joachims et al., 2009).
Later, the learning to search framework is pro-

posed (Daumé and Marcu, 2005; Daumé et al.,
2009), which casts the structured prediction task
as a general search problem. Most recently,
recurrent neural networks such as LSTM mod-
els (Hochreiter and Schmidhuber, 1997) have been
used as a general tool for structured output mod-
els (Vinyals et al., 2015).

Latent structured learning algorithms address
the problem of learning from incomplete labeled
data (Yu and Joachims, 2009; Quattoni et al.,
2007). The main difference compared to our
framework is the existence of the external envi-
ronment when learning from implicit signals.

Upadhyay et al. (2016) first proposed the idea of
learning from implicit supervision, and is the most
related paper to our work. Compared to their lin-
ear algorithm, our framework is more principled
and general as we integrate the concept of margin
in our method. Furthermore, we also extend the
framework using neural models.

3 Search-based Inference

In our framework, predicting the best structured
output, inference, is formulated as a state/action
search problem. Our search space can be de-
scribed as follows. The initial state, sg, is the
starting point of the search process. We define
~v(s) as the set of all feasible actions that can
be taken at s, and denote s’ = 7(s,a) as the
transition function, where s’ is the new state af-
ter taking action a from s. A path h is a se-
quence of state—action pairs, starting with the ini-
tial state: h = {(so,a0),..., (sk,ax)}, where
si = 7(si—1,ai-1),¥i = 1,...,k. We denote
h ~ §,if § = 7(sg, ay), the final state which the
path h leads to. A path essentially is a partial or
complete structured prediction. For each input x,
we define H(x) to be the set of all possible paths
for the input. We also define £(z) = {h | h €
H(z),h ~ §,v(5) = 0}, which is all possible
paths that lead to terminal states.

Given a state s and an action a, the scoring func-
tion fy(s, a) measures the quality of an immediate
action with respect to the current state, where 6 is
the model parameters. The score of a path h is
defined as the sum of the scores for state-action
pairs in h: fp(h) = Zf:o fo(si,a;). During test
time, inference is to find the best path in £(z):
arg maXpeg(g) fo(h; ). In practice, inference is
often approximated by beam search when no effi-
cient algorithm exists.
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In the remaining of this section, we describe
the states and actions in the targeted tasks in this
work: named entity recognition, entity linking and
semantic parsing. The the model and learning al-
gorithm will be discussed in Sec. 4 and Sec. 5.

3.1 Named entity recognition

The task of named entity recognition (NER) is to
identify entity mentions in a sentence, as well as
to assign their types, such as Person or Location.
Following the conventional setting, we treat it as
a sequence labeling problem using the standard
BIOES encoding. For instance, a “B-LOC” tag
on a word means that the word is the beginning of
a multi-word location entity.

Given a sentence as input, the states represent
the tags assigned to the words. Starting from the
initial state, sg, where no tag has been assigned,
the search process explores the sequence tagging
from the left-to-right order. For each word, the
actions are the legitimate tags that can be assigned
to it, which depend on previous actions. For exam-
ple, if the “S-PER” tag (“S” means a single word
entity) has been assigned to the previous word,
then an action of labeling the current word with
either “I-PER” or “E-PER” cannot can be taken.
The search reaches a terminal state when all words
in the sentence have been tagged.

3.2 Entity linking

The problem of entity linking (EL) is similar to
NER, but instead of tagging the mention using a
small set of generic entity types, the goal here is
to ground the mention to a specific entity, stored
in a knowledge base or described by a Wikipedia
page. For example, consider the sentence “nfl
news: draft results for giants” and assume that the
mention candidates “nfl” and “giants” are given. A
state reflects how we have assigned the entity la-
bels to these candidates. Following the same left-
to-right order and starting from the empty assign-
ment sg, the first action to take is to assign the
entity label to the first candidate “nfl”. A legit-
imate action set can be all the entities that have
been associated with this mention in the training
set (e.g., “National Football League” or “National
Fertilizers Limited”). Once the action is com-
pleted, the transition function will bring the focus
to the next mention candidate (i.e., “giants”). The
search reaches a terminal state when all the candi-
date mentions in the sentence have been linked.

Ax.3y. cast(FamilyGuySeasonl, y) A actor(y, x)
A character (y,MegGriffin)

Meg Griffin
Charatter
( Family Guy Season 1 )—cas%actor—b@

Figure 2: Semantic parses in A-calculus (top) and
query graph (bottom) of the question “who played
meg in season 1 of family guy?”

3.3 Semantic parsing

Our third targeted task is semantic parsing (SP),
which is a task of mapping a text utterance to a for-
mal meaning representation. In this paper, we fo-
cus on a specific type of semantic parsing problem
that maps a natural language question to a struc-
tured query, which is executed on a knowledge
base to retrieve the answer to the original question.
Figure 2 shows the semantic parses of an ex-
ample question “who played meg in season I of
Sfamily guy”, assuming the knowledge base is Free-
base (Bollacker et al., 2008). An entity linking
component plays an important role by mapping
“meg” to MegGriffin and “season 1 of family
guy” to FamilyGuySeasonl. Predicates like
cast, actor and character are also from the
knowledge base that define the relationships be-
tween these entities and the answer. Together the
semantic parse in A-calculus is shown in the top of
Figure 2. Equivalently, the semantic parse can be
represented as a query graph (Figure 2 bottom),
which is used in the STAGG system (Yih et al.,
2015). The nodes are either grounded entities or
variables, where x is the answer entity. The edges
denote the relationship between two entities.
Regardless of the choice of the formal language,
the process of constructing the semantic parse is
typically formulated as a search problem. A state
is essentially a partial or complete semantic parse,
and an action is to extend the current semantic
parse by adding a new relation or constraint.
Different from previous systems which treat en-
tity linking as a static component, our search space
consists of the search space of both entity linking
and semantic parsing. That is, the search space is
the union of the search space of entity linking de-
scribed in Section 3.2 and the search space of the
semantic parses, which we describe below. Inte-
grating search spaces allows the model to use im-
plicit signals to update both the semantic parsing
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and the entity linking systems. To the best of our
knowledge, this is the first work that jointly learns
the entity linking and semantic parsing systems.
Our search space is defined as follows. Start-
ing from the initial state sg, the model first ex-
plores the entity linking search space. Once
the entity linking assignment are assigned (e.g.
FamilyGuySeasonl in Figure 2.) The sec-
ond phase is then to determine the main rela-
tionship between the topic entity and the an-
swer (e.g., the cast-actor chain between
FamilyGuySeasonl and z). Constraints (e.g.,
the character is MegGriffin) that describe
the additional properties that the answer needs to
have are added last. In this case, any state that is a
legitimate semantic parse (consisting of one topic
entity and one main relationship, as well as zero or
more constraints) can lead to a terminal state.

4 Maximum Margin Reward Networks

In this section, we introduce the learning frame-
work of MMRN, which includes two main compo-
nents: reward and max-margin loss. The former is
a mechanism for using implicit and explicit super-
vision signals in a unified way; the latter formally
defines the learning objective.

4.1 Reward

The key insight of MMRN is that different types of
supervision signals can be represented using the
appropriate design of the reward function. A re-
ward function is defined over a state—action pair
R(s,a), representing the frue quality of taking ac-
tion a in the state s. The reward for a path can
be formally defined as: R(h) = Zf:o R(si,a;).
Intuitively, when the annotated action sequences
(explicit supervision signals) exist, the model only
needs to learn to imitate the annotated sequence.
For instance, when learning NER in the fully su-
pervised setting, the equivalent way of using Ham-
ming distance is to define the reward R(s, a) to be
1 if @ matches the annotated sequence at the cur-
rent state, and 0 otherwise.

In the setting where only implicit supervision
is available, the reward function can still be de-
signed to capture the signals. For instance, when
only the question—answer pairs exist for learning
the semantic parser, the reward can be defined by
comparing the answers derived from a candidate
parse and the labeled answers. More formally, as-
sume that s = 7(s’,a) is the state after applying

s = ( Family Guy Season 1 cast—b@actor—b@

Y(s) = {Lacey Chabert, Seth MacFarlane, Alex Borstein,
Seth Green, John Viener, Alec Sulkin}

A = {Lacey Chabert}

Figure 3: For the question “who played meg in
season 1 of family guy?”, the candidate semantic
parse s lists all the actors in “Family Guy Season
1”7 (Y (s)). By comparing Y (s) to the answer set
A, the precision is é and the recall is 1. Therefore,
the F; score used for the reward is %

action a to state s’. Let Y'(s) be the set of predicted
answers generated from state s, and Y (s) = {}
when s is not a legitimate semantic parse. The
reward function R(s’,a) can be defined by com-
paring Y (s) and the labeled answers, A, to the in-
put question. While a set similarity function like
the Jaccard coefficient can be used as the reward
function, we chose the Fj score in this work as
it was used as the evaluation metric in previous
work (Berant et al., 2013). Figure 3 shows an ex-
ample of this reward function.

4.2 Max-Margin Loss & Learning Algorithm

The MMRN learning algorithm can be viewed as
an extension of M®N (Taskar et al., 2004) and
Structured SVM (Joachims et al., 2009; Yu and
Joachims, 2009). The learning algorithm takes
three steps, where the first two involve two differ-
ent search procedures. The final step is to update
the models with respect to the inference results.

Finding the best path The first search step is
to find the best path h* by solving the following
optimization problem:

h* = argmax R(h;y) + efy(h). (1)
heé(x)

The first term defines the path that has the highest
reward. Because it is possible that several paths
share the same reward, the second term leverages
the current model and serves as the tie-breaker,
where € is a hyper-parameter that is set to a small
positive number in our experiments.

When explicit supervision is available, solving
Eq. (1) is trivial — the search simply returns the
annotated sequence. In the case of implicit super-
vision, where true rewards are only revealed for
complete action sequences, the search problem be-
comes difficult as the rewards of early state—action
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pairs are zeros. In this situation, the search algo-
rithm uses the model score fy to guide the search.
One possible design is to use beam search for the
optimization problem, where the search procedure
follows the current model in the early stage (given
that R(h) = 0). After generating several complete
action sequences, the true reward function is then
used to find h*. The tie-breaker also picks the best
sequence when there are multiple sequences that
lead to the same reward. Note that h* can change
between iterations because of the tie-breaker.

Finding the most violated path Once h* is
found, it is used as our reference path. We would
like to update the model so that the scoring func-
tion fy will behave similarly to the reward R.
More formally, we aim to update the model pa-
rameters 0 to satisfy the following constraint.

fo(h*) — fa(h) > R(h*) — R(h),Vh.

The constraint implies that the “best” action se-
quence should rank higher than any other se-
quence by a margin computed from rewards
as R(h*) — R(h). The degree of violation
of this constraint, with respect to h, is thus
(R(h*) = R(h)) — (fo(h*) — fo(h)) = fo(h) —
R(h) — fo(h*) + R(h*). The max-margin loss is
defined accordingly:

L(h, ) = max(fy(h)—R(h)—fy(h*)+R(h%),0)

L(h, h*) is our optimization goal, where we want
to update the model by fixing the biggest violation.
Note that the associated constraint is only violated
when L(h, h*) is positive. To find the path h in
this step that maximizes the violation is equivalent
to maximizing fy(h) — R(h), given that the rest
of the terms are constant with respect to h.

When there exist only explicit supervision sig-
nals, our objective function reduces to the one
for optimizing structured SVM without regular-
ization. For implicit signals, we find h* approxi-
mately before we optimize the margin loss. In this
case, the search is not exact as the reward signals
are delayed. Nevertheless, we found the margin
loss worked well empirically, as it kept decreasing
in general until being stable.

Algorithm 1 summarizes the learning procedure
of MMRN. Search is used in both Line 2 and 3. In
Line 4, the algorithm performs a gradient update
to modify all the model parameters.

Algorithm 1 Maximum Margin Reward Networks

1: for a random labeled data (x,y) do
2: h* « argmax R(h;y) + efy(h)
heé(x)
3: h — argmax fy(h) — R(h;y)
heé(x)
update # by minimizing £(h, h*)
5: end for

»

4.3 Practical Considerations

Although the learning algorithm of MMRN is sim-
ple and general, the quality of the learned model is
dictated by the effectiveness of the search proce-
dure. Increasing the beam size generally helps im-
prove the model, but also slows down the training,
and has a limited effect when dealing with a large
search space. Domain-specific heuristics for prun-
ing search space should thus be used when avail-
able. For instance, in the task of semantic parsing,
when the reward of a legitimate semantic parse is
0, it implies that none of the derived answers is in-
cluded in the labeled set of answers. When all the
possible follow-up actions can only make the se-
mantic parse stricter (e.g., adding constraints), and
result in a subset of the current derived answers, it
is clear that the rewards of all these new states are
0 as well. Paths from this state can thus be pruned.

Another strategy for improving search quality
is to use approximated reward in the early stage of
search. Very often the true rewards at this stage
are 0, and are not useful to guide the search to find
the best path. The approximated reward function
can be thought of as estimating whether there ex-
ists a high-reward state that is reachable from the
current state. The effectiveness of this strategy has
been demonstrated successfully by several recent
efforts (Mnih et al., 2013; Krishnamurthy et al.,
2015; Silver et al., 2016; Narasimhan et al., 2016).

5 Neural Architectures

While the learning algorithm of MMRN described in
Sec. 4 is general, the exact model design is task-
dependent. In this section, we describe in detail
the neural network architectures of the three tar-
geted tasks, named entity recognition, entity link-
ing and semantic parsing.

5.1 Named Entity Recognition

Recall that NER is formulated as a sequence la-
beling problem, and each action is to label a word
with a tag using the BIOES encoding (cf. Sec. 3.1).
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fo(s,a)

Previous action embedding

Action a
“~~ determines the

State s determines the word index m

Figure 4: The action scoring model for NER.

The model of the action scoring function fy(s, a)
is depicted in Figure 4, which is basically the dot
product of the action embedding and state em-
bedding. The action embedding is initialized ran-
domly for each action, but can be fine-tuned dur-
ing training (i.e. back-propagate the error through
the network and update the word/entity type em-
beddings). The state embedding is the concate-
nation of bi-LSTM word embeddings of the cur-
rent word, the character-based word embeddings,
and the embedding of the previous action. We
also include the orthographic embeddings pro-
posed by Limsopatham and Collier (2016).

5.2 Entity Linking

An action in entity linking is to determine whether
a mention should be linked to a particular entity
(cf. Sec. 3.2). As shown in Figure 5, we design the
scoring function as a feed-forward neural network
that takes as input three different input vectors: (1)
surface features from hand-crafted mention-entity
statistics that are similar to the ones used in (Yang
and Chang, 2015); (2) mention context embed-
dings from a bidirectional LSTM module; (3) en-
tity embeddings constructed from entity type em-
beddings. All these embeddings, except the fea-
ture vectors, are fine-tuned during training.

Some unique properties of our entity linking
model are worth noticing. First, we add mention
context embeddings from a bidirectional LSTM
module as additional input. While using LSTMs
is a common practice for sequence labeling, it is
not usually used for short-text entity linking. For
each mention, we only extract the output from the
bi-LSTM module at the start and end tokens of
the mention, and concatenate them as the men-
tion context embeddings. Second, we construct
entity embeddings using the average of its Free-
base (Bollacker et al., 2008) type embeddings?,

>We use only the 358 most frequent Freebase entity types.

v
Statistic features

A{}g . {%

Mention m Average of entity type embeddings

State s determines the mention index m Action a determines the entity index

Figure 5: The action scoring model for EL.

initialized using pre-trained embeddings. Adding
these two types of embeddings has shown to im-
prove the performance in our experiments.

5.3 Semantic Parsing

Our semantic parsing model follows the STAGG
system (Yih et al., 2015), which uses a stage-
wise search procedure to expand the candidate
semantic parses gradually (cf. Sec. 3.3). Com-
pared to the original system, we make two notable
changes. First, we use a two-layer feed-forward
neural network to replace the original linear ranker
that scores the candidate semantic parses. Second,
instead of using a separately trained entity link-
ing system, we incorporate our entity linking net-
works described in Sec. 5.2 as part of the semantic
parsing model. The training process will thus fine
tune the entity linking component to improve the
semantic parsing system.

6 Experiments

It is important to have a general machine learn-
ing model working for both implicit and explicit
supervision signals. We valid our learning frame-
work when the explicit supervision signals are pre-
sented, as well as demonstrate the support of the
scenario where supervision signals are mixed.
Specifically, in this section, we report the exper-
imental results of MMRN on named entity recogni-
tion and entity linking, both using explicit super-
vision, and on semantic parsing, using implicit su-
pervision. In all our experiments, we tuned hyper-
parameters on the development set (each task re-
spectively), and then re-trained the models on the
combination of the training and development set.

6.1 Named entity recognition

We use the CoNLL-2003 shared task data for the
NER experiments, where the standard evaluation
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System | Fu

Collobert et al. (2011) 89.59
Huang et al. (2015) 90.10
Chiu and Nichols (2015) | 90.77
Ratinov and Roth (2009) | 90.88
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.21
MMRN-NER Beam =5 90.03
MMRN-NER Beam = 20 91.39

Table 1: Explicit Supervision: Named Entity
Recognition. Our MMRN with beam size 20 out-
performs current best systems, which are based on
neural networks.

NEEL-Test TACL
Fy Fy
S-MART 71.7 63.6
NTEL 779 68.1
MMRN-EL 78.5 67.5
MMRN-EL - Entity 77.4 66.5
MMRN-EL - LSTM 76.6 66.0

Table 2: Explicit Supervision: Entity Linking.
Our system trained with MMRN is comparable to
the state-of-art NTEL system.

metric is the F; score. The pre-trained word em-
beddings are 100-dimension GloVe vectors trained
on 6 billion tokens (Pennington et al., 2014)3. The
search procedure is conducted using beam search,
and the reward function is simply the number of
correct tag assignments to the words.

The results are shown in Table 1, compared
with recently proposed systems based on neural
models. When the beam size is set to 20, MMRN
achieves 91.4, which is the best published result
so far (without using any gazetteers). Notice that
when beam size is 5, the performance drops to
90.03. This demonstrates the importance of search
quality when applying MMRN.

6.2 Entity linking

For entity linking, we adopt two publicly avail-
able datasets for tweet entity linking: NEEL (Cano
et al., 2014)4 and TACL (Guo et al., 2013; Fang

3 Available at http://nlp.stanford.edu/projects/glove/

“NEEL dataset was originally created for an entity link-
ing competition: http://microposts2016.seas.
upenn.edu/challenge.html

and Chang, 2014; Yang and Chang, 2015; Yang
et al., 2016). We follow prior works (Guo et al.,
2013; Yang and Chang, 2015) and perform the
standard evaluation for an end-to-end entity link-
ing system by computing precision, recall, and Fy
scores, according to the entity references and the
system output. An output entity is considered cor-
rect if it matches the gold entity and the mention
boundary overlaps with the gold mention bound-
ary. Interested readers can refer to (Carmel et al.,
2014) for more detail.

We initialize the word embeddings from pre-
trained GloVe vectors trained on the twitter cor-
pus, and type embeddings from the pre-trained
skip-gram model (Mikolov et al., 2013)°. Sizes
of both word embeddings are set to 200. Inference
is done using a dynamic programming algorithm.

Results of entity linking experiments are pre-
sented in Table 2, which are compared with
those of S-MART (Yang and Chang, 2015)% and
NTEL (Yang et al., 2016)7, two state-of-the-art en-
tity linking systems for short texts. Our MMRN-EL
is comparable to the best system. We also con-
ducted two ablation studies by removing the entity
type vectors (MMRN-EL - Entity), and by removing
the LSTM vectors (MMRN-EL - LSTM). Both show
significant performance drops, which validates the
importance of these two additional input vectors.

6.3 Semantic parsing

For semantic parsing, we use the dataset We-
bQSP? (Yih et al., 2016) in our experiments. This
dataset is a clean and enhanced version of the
widely used WebQuestions dataset (Berant et al.,
2013), which consists of pairs of questions and an-
swers found in Freebase. Compared to WebQues-
tions, WebQSP excludes questions with ambigu-
ous intent, and provides verified answers and full
semantic parses to the remaining 4,737 questions.

We follow the implicit supervision setting
in (Yih et al., 2016), using 3, 098 question—answer
pairs for training, and 1, 639 for testing. A subset
of 620 pairs from the training set is used for hyper-
parameter tuning. Because there can be multiple
answers to a question, the quality of a semantic
parser is measured using the averaged F; score of
the predicted answers.

3 Available at https://code.google.com/archive/p/word2vec/

The winning system of the NEEL challenge.

"To have a fair comparison, we compare to the results of
NTEL which do not use pretrained user embedding.

8 Available at http://aka.ms/WebQSP
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We experiment with two configurations of in-
corporating the entity linking component. MMRN-
PIPELINE trains an MMRN-EL model using the en-
tity linking labels in WebQSP separately. Given a
question, the entities in it are first predicted, and
used as input to the semantic parsing system. In
contrast, MMRN-JOINT incorporates the MMRN-EL
model in the whole framework. During this joint
training process, 15 entity link results are sam-
pled according to the current MMRN-EL model,
and passed to the downstream networks. In both
cases, we use the previous entity linking model
trained on the NEEL dataset to initialize the pa-
rameters. As discussed in Sec. 4.1, in this implicit
supervision setting, we directly set the (delayed)
reward function to be the F; score, which can be
obtained by comparing the annotated answers with
predicted answers.

Table 3 summarizes the results of the MMRN-
based semantic parsing systems and other strong
baselines. The SP column reports the aver-
aged F; scores. Compared to the pipeline ap-
proach (MMRN-PIPELINE), the joint learning frame-
work (MMRN-JoInT) improves significantly, reach-
ing 68.1% F;. To compare different learning
methods, we also apply REINFORCE (Williams,
1992), a popular policy gradient algorithm, to train
our joint model using the same setting and re-
ward function.” MMRN-Joint outperforms REIN-
FORCE and its variant, REINFORECE+, which
re-normalizes the probabilities of the sampled can-
didate sequences. Its result is also better than
the state-of-the-art STAGG system. Note that
we use the same architectures and initialization
procedures for MMRN-PIPELINE/JOINT and REIN-
FORCE/REINFORCE+. Therefore, the superior
performance of MMRN-JoinT shows that the joint
learning plays a crucial role in addition to the
choices of architecture. Comparing to STAGG,
note that Yih et al. (2016) did not jointly train the
entity linker and semantic parser together, but they
did improve the results by taking the top 10 predic-
tions of their entity linking system for re-ranking
parses. Our algorithm further allows to update the
entity linker with the labels for semantic parsing
and shows superior performance.

Our joint model also improves the entity link-
ing prediction on the questions in WebQSP us-
ing the implicit signals (the EL columns in Ta-

°The REINFORCE algorithm uses warm initialization—
the entity linking parameters are initialized using the model
trained on the NEEL dataset.

SP EL
AVg. F1 P R F1
MMRN-PIPELINE 62.5 85.6 77.5 81.3
MMRN-JOINT 68.1 89.3 789 83.7
REINFORCE 62.9 87.5 76.6 81.7
REINFORCE+ 66.7 91.1 769 834
STAGG 66.8 - - -

Table 3: Implicit Supervision: Semantic Pars-
ing. By updating the entity linking and semantic
parsing models jointly, MMRN-JOINT improves over
MMRN-PIPELINE by 5 points in F; and outperforms
REINFORCE+ (SP). It also improves the entity
linking result on the WebQSP questions (EL).

ble 3). The F; score of MMRN-JoINT on entity link-
ing is 2.4 points higher than the baseline MMRN-
PipELINE. Note that the entity linking results of
MMRN-PIPELINE (line 1) are exactly the results of
the entity linking component MMRN-EL. The result
is also better than REINFORCE, and comparable
to REINFORCE+.

Recently Liang et al. (2016) proposed Neural
Symbolic Machine (NSM) and reported the best
result of 69.0 F1 score on the WebQSP dataset us-
ing the weak supervision settings.' The NSM
architecture for semantic parsing is significantly
different from the architecture used in (Yih et al.,
2016) and the one used in this paper. In contrast,
MMRN is a general learning framework that allows
joint training on existing models (i.e. entity link-
ing and semantic parsing modules). This allows
MMRN to use the labels of semantic parsing task as
implicit supervision signals for the entity linking
module. It would be interesting to apply MMRN on
the newly proposed architectures as well.

7 Discussion

We discuss several issues that are highly related to
MMRN 1in this section.

Learning to Search There are two main dif-
ferences between MMRN and search-based algo-
rithms, such as SEARN (Daumé et al., 2009)
and DAGGER (Ross et al., 2011). First, both
SEARN and DAGGER focus on imitation learn-
ing, assuming explicit supervision signals exist.
They use a two-step model learning approach:

19The paper is published after the submission of this paper.
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(1) create cost-sensitive examples by listing state—
action pairs and their corresponding (estimated)
losses; (2) apply cost-aware training algorithms.
In contrast, MMRN directly updates the parameters
using back-propagation based on search results of
each example. Second, SEARN mixes the op-
timal and current policies during learning, while
MMRN performs search twice and simply pushes
the current policy towards the optimal one. Re-
cently, Chang et al. (2015) extend this line of work
and discuss different roll-in and roll-out strate-
gies during training for structured contextual ban-
dit settings. As MMRN uses two search procedures,
there is no need to mix different search policies.

Reinforcement Learning In many reinforce-
ment learning scenarios, the search space is not
fully controllable by the agent. For example, a
chess playing agent cannot control the move made
by its opponent, and has to commit a single move
and wait for the opponent. Note that the agent can
still think ahead and build a search tree, but only
one move can be made in the end. In contrast, in
scenarios like semantic parsing, the whole search
space is controlled by the agent itself. Therefore,
from the initial state, we can explore several search
paths and get their real rewards. This may ex-
plain why MMRN can be more efficient than RE-
INFORCE, as MMRN can use the reward signals of
multiple paths more effectively. In addition, MMRN
is not a probabilistic model, so it does not need
to handle normalization issues, which often causes
large variance in estimating the gradient direction
when optimizing the expected reward.

Semantic Parsing MMRN can be applied for
many semantic parsing tasks. One key step is to
design the right approximated reward for a given
task to guide the beam search to nd the reference
parses in MMRN, given that the actual reward is of-
ten very sparse. In our companion paper, (Iyyer
et al., 2017), we used a simple form of approx-
imated reward to get feedback as early as possi-
ble during search. In other words, the semantic
parse will be executed as soon as the parse is ex-
ecutable (even if the parse is still not completed)
during search. The execution results will be used
to calculate the Jaccard coefficient with respect to
the labeled answers as the approximated rewards.
The use of approximated reward has been proven
to be effective in (Iyyer et al., 2017).

An important research direction for semantic

parsing is to reduce the supervision cost. In (Yih
et al., 2016), the authors demonstrated that label-
ing semantic parses is possible and often more
effective with a sophisticated labeling interface.
However, collecting answers may still be easier or
faster for certain problems or annotators. This sug-
gests that we could allow the annotators to choose
to label semantic parses or answers in order to
minimize the supervision cost. MMRN would be
an ideal learning algorithm for this scenario.

8 Conclusion

This paper proposes Maximum Margin Reward
Networks, a structured learning framework that
can learn from both explicit and implicit supervi-
sion signals. In the future, we plan to apply Max-
imum Margin Reward Networks on other struc-
tured learning tasks. Improving MMRN for dealing
with large search space is an important future di-
rection as well.
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