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Abstract

Sequence-to-sequence models have been
applied to the conversation response gen-
eration problem where the source se-
quence is the conversation history and
the target sequence is the response. Un-
like translation, conversation responding
is inherently creative. The generation of
long, informative, coherent, and diverse
responses remains a hard task. In this
work, we focus on the single turn set-
ting. We add self-attention to the de-
coder to maintain coherence in longer
responses, and we propose a practical
approach, called the glimpse-model, for
scaling to large datasets. We introduce
a stochastic beam-search algorithm with
segment-by-segment reranking which lets
us inject diversity earlier in the generation
process. We trained on a combined data
set of over 2.3B conversation messages
mined from the web. In human evalua-
tion studies, our method produces longer
responses overall, with a higher proportion
rated as acceptable and excellent as length
increases, compared to baseline sequence-
to-sequence models with explicit length-
promotion. A back-off strategy produces
better responses overall, in the full spec-
trum of lengths.

1 Introduction

Building computer systems capable of general-

purpose conversation is a challenging problem.

However, it is a necessary step toward building in-

telligent agents that can interact with humans via
*Both authors contributed equally to this work.

"Work done as a member of the Google Brain Residency
program (g.co/brainresidency).

London, UK

natural language, and for eventually passing the
Turing test. The sequence-to-sequence (seg2seq)
model has proven very popular as a purely data-
driven approach in domains that can be cast as
learning to map to and from variable-length se-
quences, with state-of-the art results in many do-
mains, including machine translation (Cho et al.,
2014; Sutskever et al., 2014; Wu et al., 2016).
Neural conversation models are the latest devel-
opment in the domain of conversation modeling,
with the promise of training computers to converse
in an end-to-end fashion (Vinyals and Le, 2015;
Shang et al., 2015; Sordoni et al., 2015; Wen et al.,
2016). Despite promising results, there are still
many challenges with this approach. In particu-
lar, these models produce short, generic responses
that lack diversity (Sordoni et al., 2015; Li et al.,
2015). Even when longer responses are explicitly
encouraged (e.g. via length normalization), they
tend to be incoherent (“The sun is in the center of
the sun.”), redundant (“i like cake and cake”), or
contradictory (“I don’t own a gun, but I do own a
gun.”).

In this paper, we provide two methods to ad-
dress these issues with minimal modifications to
the standard seq2seq model. First, we present
a glimpse model that only trains on fixed-length
segments of the target-side at a time, allowing
us to scale up training to larger data sets. Sec-
ond, we introduce a segment-based stochastic de-
coding technique which injects diversity earlier
in the generated responses. Together, we find
that these two methods lead to both longer re-
sponses and higher ratings, compared to a baseline
seq2seq model with explicit length and diversity-
promoting heuristics integrated into the generation
procedure (see Table 1 for examples generated us-
ing our model).

In Section 2, we present a high-level overview
of these two techniques. We then discuss each
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technique in more detail in Sections 3 and 4. Fi-
nally, we report small and large-scale experimen-
tal evaluations of the proposed techniques in Sec-
tion 5.

2 Overview and Motivation

A major difference between translation and re-
sponding to conversations is that, in the former, the
high-level semantic content to generate in the tar-
get sequence y is completely given by the source
sequence, i.e., given the source X, there is low con-
ditional entropy in the target distribution P(y|x).
In the seq2seq approach, the decoder network
therefore only has to keep track of where it is in the
output, and the content to generate can be trans-
formed from the relevant parts in the source via the
attention mechanism (Bahdanau et al., 2014). In
contrast, in conversation response generation, the
prompt turn may be short and general (e.g., “what
do you have planned tonight”), while an appropri-
ate response may be long and informative.

The standard seq2seq model struggles with gen-
erating long responses, since the decoder has to
keep track of everything output so far in its fixed-
length hidden state vector, which leads to incoher-
ent or even contradictory outputs. To combat this,
we propose to integrate target-side attention into
the decoder network, so it can keep track of what
has been output so far. This frees up capacity in
the hidden state for modeling the higher-level se-
mantics required during the generation of coherent
longer responses. We were able to achieve small
perplexity gains using this idea on the small Open-
Subtitles 2009 data set (Tiedemann, 2009). How-
ever, we found it to be too memory-intensive when
scaling up to larger data sets.

As a trade-off, we propose a technique (called
the ‘glimpse model’) which interpolates between
source-side-only attention on the encoder, and
source and target-side attention on the encoder
and decoder, respectively. Our solution simply
trains the decoder on fixed-length glimpses from
the target side, while having both the source se-
quence and the part of the target sequence before
the glimpse on the encoder, thereby sharing the at-
tention mechanism on the encoder. This can be
implemented as a simple data-preprocessing tech-
nique with an unmodified standard seq2seq imple-
mentation, and allows us to scale training to very
large data sets without running into any memory
issues. See Figure 1 for a graphical overview,

where we illustrate this idea with a glimpse-model
of length 3.

Given such a trained model, the next chal-
lenge is how to generate long, coherent, and di-
verse responses with the model. As observed
in the previous section and in other work, stan-
dard maximum a posteriori (MAP) decoding us-
ing beam search often yields short, uninforma-
tive, and high-frequency responses. One ap-
proach to produce longer outputs is to em-
ploy length-promoting heuristics (such as length-
normalization (Wu et al., 2016)) during decod-
ing. We find this increases the length of the out-
puts, however often at the expense of coherence.
Another approach to explicitly create variation in
the generated responses is to rerank the /V-best
MAP-decoded list of responses from the model us-
ing diversity-promoting heuristics (Li et al., 2015)
or a backward RNN (Wen et al., 2015). We
find this works for shorter responses, but not for
long responses, primarily for two reasons: First,
the method relies on the MAP-decoding to pro-
duce the N-best list, and as mentioned above,
MAP-decoding prefers short, generic responses.
Second, it is too late to delay reranking in the
beam search until the whole sequence has been
generated, since beam-search decoding tends to
yield beams with low diversity per given prompt,
even when the number of beams is high. In-
stead, our solution is to break up the reranking
over shorter segments, and to rerank segment-by-
segment, thereby injecting diversity earlier during
the decoding process, where it has the most impact
on the resulting diversity of the generated beams.

To further improve variation in the generated
responses, we replace the deterministic MAP-
decoding of the beam search procedure with sam-
pling. If a model successfully captures the distri-
bution of responses given targets, one can expect
simple greedy sampling to produce reasonable re-
sponses. However, due to model underfitting, the
learned distributions are often not sharp enough,
causing step-by-step sampling to accumulate er-
rors along the way, manifesting as incoherent out-
puts. We find that integrating sampling into the
beam-search procedure yields responses that are
more coherent and with more variation overall.

In summary, the contributions of this work are
the following:

1. We propose to integrate target-side attention
in neural conversation models, and provide a
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PROMPT:

RESPONSE FROM BASELINE (A) vs OUR METHOD (B)

what do you have planned tonight

A: T have no idea what I want to do with my life. T have no idea what I want to (Bad, Mediocre, Bad)
B: I was planning on doing a few of these, but I'm not sure what to choose. I need to find a place to camp, and I don’t have a lot
of time to make a plan. (Excellent, Good, Mediocre)

I'd like to read a good science fiction novel. Haven't read scifi
in a while.

A: If you like sci fi you should check out The Name of the Wind by Patrick Rothfuss (Excellent, Excellent, Excellent)
B: If you want to know what sci-fi is, read the first book by Neil Gaiman. It’s a sci-fi sci-fi sci-fi novel. It is really good and I
recommend it to all of you. It has a great premise. (Acceptable, Excellent, Acceptable)

Got any big weekend plans?

A: I have plans for the weekend but I don’t know if I will be able to make it to the (Bad, Mediocre, Bad)
B: I don’t really have much to do on Saturday. But I plan on going to the movies at the mall and going to the show. (Good,
Good, Bad)

Sometimes flying messes my ears, because of the air pressure.
Especially if I have a cold or something, flying gets me messed
up.

A:Tdon’t know why, but when I was a kid I used to do this all the time when I was younger. (Good, Bad, Bad)
B: I have no idea why, but I feel exactly the same way. I don’t know why, but my brain is so sensitive to air that it makes my
nose twitch. (Excellent, Mediocre, Good)

Yeah. T have this friend, and we get bored just hanging out here
sometimes, so we take little trips to places. We went to Seattle
a couple of months ago.

A: What kind of things do you like to do? (Excellent, Excellent, Excellent)
B: That sounds like a great time. I have a lot of friends that go to Seattle, so I was wondering if you could share any of the
locations? (Excellent, Excellent, Excellent)

have you seen Suicide Squad?

A: T have not, but I will check it out. (Good, Good, Good)
B: I'saw it in a theater once and it was great. It was very... I don’t know, a little dark. I like the psychological effects and the
way it portrays the characters in the movie. (Excellent, Excellent, Excellent)

Actually I like the snow too, except for today. It’s all slushy and
it’s all over the sidewalks and it’s gross.

A: T hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the snow. I hate the
snow. (Acceptable, Good, Good)

B: I'm in the same boat as you. I hate it when it’s snowy and I don’t like to shovel it all day. :( So this is a perfect excuse to not
get out of bed and go somewhere else. (Excellent, Good, Acceptable)

What do you hope to see in the future?

A: T want to be able to go back in time to when I was born. I want to be (Mediocre, Bad, Mediocre)
B: T want to see an actual movie where the characters have the ability to hide the fact that they are actually in the movie. (Good,
Acceptable, Acceptable)

what dangers could happen with the singularity?

A: I'don’t think it would be that big of a deal. (Acceptable, Mediocre, Acceptable)
B: If you look at it from the perspective of an alien, you can’t say that there aren’t any alternative ways to deal with it. (Accept-
able, Mediocre, Acceptable)

I think you're a little crazy.

A:Idon’t think you know what that word means. (Acceptable, Good, Good)
B: I am, actually. I don’t think I'm crazy though. I certainly am. (Acceptable, Mediocre, Acceptable)

Table 1: Some example responses generated from the baseline (A) compared to our model (B), with
human ratings in parentheses. These were selected for quality. See the appendix for an unbiased sample.

practical approach, referred to as the glimpse
model, which scales well and is easy to im-
plement on top of the standard sequence-to-

sequence model.

2. We introduce a stochastic beam-search pro-

Seq2seq models with attention (Bahdanau et al.,
2014) parameterize the per-symbol conditional
probability as:

P (yi|y'[0:i71};x) = DecoderRNN (

Yi—1, hi—1, Attention (h;_1, X)) S

cedure with segment-by-segment reranking

which improves the diversity of the generated

responses.

3. We present large-scale experiments with hu-
man evaluations showing the proposed tech-
niques improve over strong baselines.

4. We release our collection of context-free con-
versation prompts used in our evaluations as
a benchmark for future open-domain conver-

sation response research.

3 Seq2Seq Model with Attention on

Target

We discuss conversation response generation in
the sequence-to-sequence problem setting. In
this setting, there is a source sequence X =
(z1,22,...,2p), and a target sequence y =
(Y0, Y1, Y2, .-, yn). We assume yo is always the
start-of-sequence token and yy is the end-of-
sequence token. In a typical sequence-to-sequence
model, the encoder gets its input from the source
sequence x and the decoder models the condi-
tional language model P (y|x) of the target se-

quence y, given X.

for 1 < i < N, where DecoderRNN() is a re-
current neural network that map the sequence of
decoder symbols into fixed-length vectors, and At-
tention() is a function that yields a fixed-size vec-
tor summary of the encoder symbols x (the ‘fo-
cus’) most relevant to predicting y;, given the pre-
vious recurrent state of the network h;_1 (the ‘con-
text’). The full conditional probability follows
from the product rule, as:

N
P(ylx) =[] P wilypi—;x) @
=1

We propose to implement target-side attention
by augmenting the attention mechanism to include
the part of the target sequence already generated,
i.e., we include yjg.;_o] in the arguments to the at-
tention function: Attention(h;_1,y[.i—2,%). We
implemented this in TensorFlow (Abadi et al.,
2015) using 3 LSTM layers on both the encoder
and the decoder, with 1024 units per layer. We
experimented on the OpenSubtitles 2009 data set,
and obtained a small perplexity gain from the
target-side attention: 24.6 without versus 24.2
with. However, OpenSubtitles is a small data set,
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(a) The vanilla sequence-to-sequence model.

Attention

(b) Length-3 Target-glimpse Model

Figure 1: The vanilla seq2seq with attention on the left, and our proposed target-glimpse model on the
right. The symbol “>" and “<” are start-of-sequence and end-of-sequence, respectively.

and the majority of its response sequences are
shorter than 10 tokens. This may prevent us from
seeing bigger gains, since our method is designed
to help with longer outputs. In order to train on the
much larger Reddit data set, we implemented this
method on top of the GNMT model (Wu et al.,
2016). Unfortunately, we met with frequent out-
of-memory issues, as the 8-layer GNMT model is
already very memory-intensive, and adding target-
side attention made it even more so. Ideally, we
would like to retain the model’s capacity in or-
der to train a rich response model, and therefore
a more efficient approach is necessary.

To this end, we propose the target-glimpse
model which has a fixed-length decoder. The
target-glimpse model is implemented as a stan-
dard sequence-to-sequence model with attention,
where the decoder has a fixed length K. Dur-
ing training, we split the target sequence into non-
overlapping, contiguous segments (glimpses) with
fixed length K, starting from the beginning. We
then train on each of these glimpses, one at a time
on the decoder, while putting all target-side sym-
bols before the glimpse on the encoder. For ex-
ample, if a sequence y is split into two glimpses
y1 and y9, each with length K (y2 may be shorter
than K), then we will train the model with two ex-
amples, (x — y1), and (x,y1 — y2). Each time
the concatenated sequence on the left of the arrow
is put on the encoder and the sequence on the right
is put on the decoder. Figure 1(b) illustrates the
training of (x,y; — y2) when K = 3. In our im-
plementation, we always put the source-side end-
of-sequence token at the end of the whole encoder
sequence, and we split the glimpses according to
the decoder time steps. For example, if the se-
quence y is Yo, Y1, Y2, ---, Y10, and K = 3, the first
example will have yg, y1, y2 on the input layer of
the decoder, and vy, y2, y3 on the output layer of
the decoder. The second example has ys3, y4, Y5 as

input of the decoder and y4, y5, ys as the output of
the decoder, and so on. In our experiments, we use
K =10.

While decoding each glimpse, the decoder
therefore attends to both the source sequence and
the part of the target sequence that precedes the
glimpse, thereby benefiting from the GNMT en-
coder’s bidirectional RNN. Through generaliza-
tion, the decoder should learn to decode a glimpse
of length K in any arbitrary position of the target
sequence (which we will exploit in our decoding
technique discussed in Section 4). One drawback
of this model, however, is that the context inputs
to the attention mechanism only include the words
that have been generated so far in this glimpse,
rather than the words from the full target side. The
workaround that we use is to simply connect the
last hidden state of the GNMT-encoder to the ini-
tial hidden state of the decoder!, thereby giving the
decoder access to all previous symbols regardless
of the starting position of the glimpse.

4 Stochastic Decoding with
Segment-by-Segment Reranking

We now turn our attention from training to in-
ference (decoding). Our strategy is to perform
reranking with a normalized score at the seg-
ment level, where we generate the candidate seg-
ments using a trained glimpse-model and using a
stochastic beam search procedure, which we dis-
cuss next. The full decoding algorithm proceeds
segment by segment.

The standard beam search algorithm generates
symbols step-by-step by keeping a set of the B
highest-scoring beams generated so far at each
step”. The algorithm adds all possible single-token
extensions to every existing beam, and then selects

!"This is the default in standard seq2seq models, but not in
the GNMT model.

*Beams are also called ‘hypotheses’, and B is referred to
as the ‘beam width’.
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the top B beams. In our stochastic beam search
algorithm, we replace this deterministic top-B se-
lection by a stochastic sampling operation in order
to encourage variation. Further, to discourage a
single beam from dominating the search and de-
creasing the final response diversity, we perform a
two-step sampling procedure: 1) For each single-
token extension of an individual beam we don’t
enumerate all possibilities, but instead sample a
fixed number of D candidate tokens to be added to
the beam. This yields a total of B x D beams, each
with one additional symbol. 2) We then compute
the accumulated conditional log-probabilities for
each beam (normalized across all B x D beams),
and treat these as the logits for sub-sampling B
beams for the next step. We repeat this procedure
until we reach the desired segment-length H, or
until a segment ends with the end-of-sequence to-
ken.

For a given source sequence, we can use this
stochastic beam search algorithm to generate B
candidate H-length segments as the beginning of
the target sequence. We then perform a rerank-
ing step (described below), and keep one of these.
The concatenation of the source and the first tar-
get segment is then used as the input for generat-
ing the next B candidate segments. The algorithm
continues until the segment selected ends with an
end-of-sequence token.

This algorithm behaves similarly to standard
beam search when the categorical distribution
used during the process is sharp (‘peaked’), since
the samples are likely to be the top categories
(words) . However, when the distribution is
smooth, many of the choices are likely. In con-
versation response generation we are dealing with
a conditional probability model with high entropy,
so this is what often happens in practice.

For the reranking, we normalize the scores
using random prompts. In particular, suppose
Y& = Y1,.--,Yk—1 is a candidate segment, and
(X,¥1:k—1) is the input to the stochastic beam
search. The normalized score is then computed
as follows:

P (yk|x, y1:6-1)
weo P (YeIX y1e—1)
3)
In this equation, the set ® is a collection of ran-
domly sampled source sequences (prompts). In
our experiments, we randomly select () prompts
from the context-free evaluation set (introduced in

S (Yr|X, Yik-1) = 5

the Experiments section).

It is worth noting that when ¢ is an unbi-
ased sample from P(x), the summation in the
denominator is a Monte-Carlo approximation of
P(yk|ly1.k—1). In the case of reranking whole
target sequences y, this becomes the marginal
P(y), which corresponds to the same diversity-
promoting objective used in (Li et al., 2015).
However, we found that our approximation works
better in terms of N-choose-1 accuracy (see Sec-
tion 5.2), which suggests that its value may be
closer to the true conditional probability.

In our experiments, we set number of random
prompts ) to 15, segment length H to 10, num-
ber of beams B to 2, and samples per beam D
to 10. We select a small value for B, since we
find that larger values makes the algorithm behave
more like standard beam search.

5 Experimental Results

In this section we present experimental results
for evaluating the target-glimpse model and the
stochastic decoding method that we presented. We
train the model using the Google neural machine
translation model (GNMT, (Wu et al., 2016)), on
a data set that combines multiple sources mined
from the Web:

1. The full Reddit data® that contains 1.7 billion
messages (221 million conversations).

2. The 2009 Open Subtitles data (0.5 million
conversations, (Tiedemann, 2009)).

3. The Stack Exchange data (0.8 million conver-
sations).

4. Dialogue-like texts that we recognized and
extracted from the web (17 million conver-
sations).

For all these data sets, we extract pairs of mes-
sages where one can be considered as a response
to the other. For example, in the Reddit data set,
the messages belonging to the same post are or-
ganized as a tree. A child node is a message that
replies to its parent. This may not necessarily be
true as people may be replying to other messages
that are also visually close. However, for our cur-
rent single-turn experiments, we treat these as a
single exchange.

*Download links are at https://redd.it/3bxIg7

2214



In this setting, the GNMT model trained on
prompt-to-response pairs works surprisingly well
without modification when generating short re-
sponses with beam search. Similar to previous
work on neural conversation models, we find that
the generated responses are almost always gram-
matical, and sometimes even interesting. They
are also usually on topic. In addition, we found
that even greedy sampling from the 8-layer GNMT
model produces grammatical responses most of
the time, although these responses are more likely
to be semantically-broken than responses gener-
ated using standard beam search. We would like to
leverage the benefits of greedy sampling, because
the induced variation generates more surprises and
may potentially help improve user-engagement,
and we found that our proposed segment-based
beam sampling procedure accomplishes this to
some extent.

5.1 Evaluation Metric

It is difficult to come up with an objective eval-
uation metric for conversation response genera-
tion that can be computed automatically. The con-
ditional distribution P (y|x) is supposed to have
high entropy in order to be interesting (many pos-
sible valid responses to a given prompt). Therefore
BLEU scores used in translation are not a good fit
(also see (Liu et al., 2016)). Other than looking
at the evaluation set perplexity, we use two met-
rics, the N-choose-1 accuracy and 5-scale side-
by-side human evaluation. In the N-choose-K
metric, we use the model as a retriever. Given a
prompt, we ask the model to rank N candidate
responses, where one is the ground truth and the
other N — 1 are random responses from the same
data set. We then calculate the N-choose-K ac-
curacy as the proportion of trials where the true
response is in the top K. The prompts used for
evaluation are selected randomly from the same
data set. This metric isn’t necessarily correlated
well with the true response quality, but provides a
useful first diagnostic for faster experimental itera-
tion. It takes about a day to train a small model on
a single GPU that reaches 2-choose-1 accuracies
of around 70% or 80%, but it is much harder to
make progress on the 50-choose-1 accuracy. As a
reference, human performance on the 10-choose-1
task is around 45% accuracy.

In the 5-scale human evaluation, we use a

collection of 200 context-free prompts*. These
prompts are collected from the following sources,
and filtered to prompts that are context-free (i.e.
do not depend on previous turns in the conversa-
tion), general enough, and by eliminating near du-
plicates:

1. The questions and statements that users asked
an internal testing bot.

2. The Fisher corpus (David et al., 2004).
3. User inputs to the Jabberwacky chatbot’.

These can be either generic or specific. Some
example prompts from this collection are shown
in Table 1. These prompts are open-domain (not
about any specific topic), and include a wide range
of topics. Many require some creativity for an-
swering, such as “Tell me a story about a bear.”
Our evaluation set is therefore not from the same
distribution as our training set. However, since our
goal is to produce good general conversation re-
sponses, we found it to be a good general purpose
evaluation set.

The evaluation itself is done by human raters.
They are well-trained for the purpose of ensuring
rating quality, and they are native English speak-
ers. The A 5-scale rating is produced for each
prompt-response pair: Excellent, Good, Accept-
able, Mediocre, and Bad. For example, the in-
structions for rating Excellent is “On topic, inter-
esting, shows understanding, moves the conver-
sation forward. It answers the question.” The
instruction for Acceptable is “On topic but with
flaws that make it seem like it didnt come from
a human. It implies an answer.” The instruction
for Bad is “A completely off-topic statement or
question, nonsensical, or grammatically broken. It
does not provide an answer.”

In our experiments, we perform the evaluations
side-by-side, each time using responses generated
from two methods. Every prompt-response pair is
rated by three raters. We rate 200 pairs in total for
every method, garnering 600 ratings overall. After
the evaluation, we report aggregated results from
each method individually.

5.2 Motivating Experiments

To see whether generating long responses is in-
deed a challenging problem, we trained the plain

“This list will be released to the community.
Shttp://www.jabberwacky.com/
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seq2seq with the GNMT model where the encoder
holds the source sequence and the decoder holds
the target sequence. We experimented with the
standard beam search and the beam search with
length normalization o = 0.8 similar to (Wu et al.,
2016). With this length normalization the gener-
ated responses are indeed longer. However, they
are more often semantically incoherent. It pro-
duces “I have no idea what you are talking about.”
more often, similarly observed in (Li et al., 2016).
The human evaluation results are summarized in
Figure 2(b). Methods that generate longer re-
sponses have more Bad and less Excellent | Good
ratings.

We also performed the N-choose-1 evaluation
on the baseline model using different normal-
ization schemes. The results are shown in Ta-
ble 2(a). No Normalization means that we use
P(y|x) for scoring, Normalize by Marginal uses
P(y|x)/P(y), as suggested in (Li et al., 2015),
and Normalize by Random Prompts is our scoring
objective described in Section 4. The significant
boost when using both normalization schemes in-
dicates that the conditional log probability pre-
dicted by the model may be biased towards the
language model probability of P(y). After adding
the normalization, the score may be closer to the
true conditional log probability.

Overall, this reranking evaluation indicates that
our heuristic is preferred to scoring using the
marginal. However, it is unfortunately hard to di-
rectly make use of this score during beam search
decoding (i.e., generation), since the resulting se-
quences are usually ungrammatical, as also ob-
served by (Li et al., 2015). This is the motivation
for using a segment-by-segment reranking proce-
dure, as described in Section 4.

5.3 Large-Scale Experiments

For our large-scale experiments, we train our
target-glimpse model on the full combined data
set. Figure 2(d) shows the training progress curve.
In this figure, we also include the curve for K = 1,
that is, the glimpse model with decoder-length
1. It is clear enough that this model progresses
much slower, so we terminated it early. How-
ever, it is surprising that the glimpse model with
K = 10 progresses faster than the baseline model
with only source-side attention, because the model
is trained on examples with decoder-length fixed
at 10, while the average response length is 38 in

our data set. This means it takes on average 3.8x
training steps for the glimpse model to train on the
same number of raw training-pairs as the baseline
model. Despite this, the faster progress indicates
that target-side attention indeed helps the model
generalize better.

The human evaluation results shown in Figure 2
compare our proposed method with the baseline
seq2seq model. For this, we trained a length-10
target-glimpse model and decoded with stochastic
beam-search using segment-by-segment rerank-
ing. In our experiments, we were unable to gen-
erate better long, coherent responses using the
whole-sequence level reranking method from (Li
et al., 2015) compared to using standard beam
search with length-normalization®. We therefore
choose the latter as our baseline, because it is the
only method which generates responses that are
long enough that we can compare to.

Figure 2 shows that our proposed method gen-
erates more long responses overall. One third
of all responses are longer than 100 characters,
while the baseline model produces only a neg-
ligible fraction. Although we do not employ
any length-promoting objectives in our method,
length-normalization is used for the baseline. For
responses generated by our method, the proportion
of Acceptable and Excellent responses remains
constant or even increases as the responses grow
longer. Conversely, human ratings decline sharply
with length for the baseline model.

The percentage of test cases with major agree-
ment is high for both methods. We consider a test
to have major agreement if two ratings out of the
three are the same. For the baseline method, 80%
of the responses have major agreements, and for
our method it is 70%.

However, shorter responses have a much
smaller search space, and we find that standard
beam search tends to generate better (“safer”)
short responses. To maximize cumulative re-
sponse quality, we therefore implemented a back-
off strategy that combines the strengths of the two
methods. We choose to fallback to the baseline
model without length normalization when the lat-
ter produces a response shorter than 40 characters,
otherwise we use the response from our method.
This corresponds to the white histogram in Fig-
ure 2(b). Compared to the other methods in the fig-

This is because the method reranks the responses in the

N-best list resulting from the beam search, which tend to be
short with not much variation to begin with.
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ure, the combined strategy results in more ratings
of Excellent, Good, Acceptable, and Mediocre,
and fewer Bad ratings. With this strategy, among
the responses generated for the same 200 prompts,
133 were from the standard beam search and 67
were from our model. Out of the 67 long re-
sponses, two thirds were longer than 60 characters
and half were longer than 75 characters. To com-
pare the combined model’s performance with the
baseline, we generated responses from both mod-
els using the same 200 prompts. For 20 of the re-
sponse pairs, human raters had no preference, but
for the remaining 180, human raters preferred the
combined model’s response in 103 cases and the
baseline’s in only 77, indicating a significant win.

6 Conclusion

The research of building end-to-end systems that
can engage in general-purpose conversation is still
in its infancy. More significant progress is ex-
pected to be made with more advanced neural ar-
chitectures. However, our results reported in this
paper show that minimal modeling change and a
slightly more advanced decoding technique, com-
bined with training over very large data sets, can
still lead to noticeable improvements in the quality
of responses generated using neural conversation
models. Overall, we found using fixed-lengths in
the decoder to make it easier to train on large data
sets, as well as to allow us to improve the diversity
and coherence of the generated responses earlier
during generation, when it has most impact. While
the focus of this work has been on conversation
modeling, we expect some of these results to carry
over to other sequence-to-sequence settings, such
as machine translation or image-captioning.
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Figure 2: (a) N-choose-1 evaluation on the baseline model. (d) Training progress of different models on
the full combined data set. Length-1 and Length-10 are the target-glimpse models we propose, and Plain
Seq2seq is the baseline model we described. (b)(c)(e)(f): Human evaluation results on the conversation
data. (b) The histogram of 5 ratings per method. (c) The length thresholds (horizontal axis) and the
number of responses generated that are above the length threshold (vertical axis); (e) The proportion of
responses above the length-threshold that are judged at least Acceptable; (f) The proportion of responses
above the length-threshold that are judged as Excellent. The length thresholds are all measured in number
of characters.
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