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Abstract

In neural text generation such as neural
machine translation, summarization, and
image captioning, beam search is widely
used to improve the output text quality.
However, in the neural generation set-
ting, hypotheses can finish in different
steps, which makes it difficult to decide
when to end beam search to ensure op-
timality. We propose a provably optimal
beam search algorithm that will always re-
turn the optimal-score complete hypothe-
sis (modulo beam size), and finish as soon
as the optimality is established (finishing
no later than the baseline). To counter
neural generation’s tendency for shorter
hypotheses, we also introduce a bounded
length reward mechanism which allows a
modified version of our beam search al-
gorithm to remain optimal. Experiments
on neural machine translation demonstrate
that our principled beam search algorithm
leads to improvement in BLEU score over
previously proposed alternatives.

1 Introduction

In recent years, neural text generation using re-
current networks have witnessed rapid progress,
quickly becoming the state-of-the-art paradigms
in machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2014), summarization (Rush et al., 2015; Ranzato
et al., 2016), and image captioning (Vinyals et al.,
2015; Xu et al., 2015). In the decoder of neu-
ral generation, beam search is widely employed to
boost the output text quality, often leading to sub-
stantial improvement over greedy search (equiva-
lent to beam size 1) in metrics such as BLEU or
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ROUGE; for example, Ranzato et al. (2016) re-
ported +2.2 BLEU (on single reference) in trans-
lation and +3.5 ROUGE-2 in summarization, both
using a beam of 10. Our own experiments on ma-
chine translation (see Sec. 5) show +4.2 BLEU (on
four references) using a beam of 5.

However, unlike traditional beam search in
phrase-based MT or shift-reduce parsing where
all hypotheses finish in the same number of steps,
here in neural generation, hypotheses can finish in
vastly different numbers of steps. Once you find a
completed hypothesis (by generating the </s> sym-
bol), there are still other active hypotheses in the
beam that can continue to grow, which might lead
to better scores. Therefore when can you end the
beam search? How (and when) can you guarantee
that the returned hypothesis has the optimal score
modulo beam size?

There have not been satisfying answers to these
questions, and existing beam search strategies are
heuristic methods that do not guarantee optimality.
For example, the widely influential RNNsearch
(Bahdanau et al.,, 2014) employs a “shrinking
beam” method: once a completed hypothesis is
found, beam size shrinks by 1, and beam search
would finish if beam size shrinks to O or if the
number of steps hits a hard limit. The best scoring
completed hypothesis among all completed ones
encountered so far is returned. On the other hand,
OpenNMT (Klein et al., 2017), whose PyTorch
version will be the baseline in our experiments,
uses a very different strategy: beam search ter-
minates whenever the highest-ranking hypothesis
in the current step is completed (which is also the
one returned), without considering any other com-
pleted hypotheses. Neither of these two methods
guarantee optimality of the returned hypothesis.

We therefore propose a novel and simple beam
search variant that will always return the optimal-
score complete hypothesis (modulo beam size),
and finish as soon as the optimality is established.
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However, another well-known problem remains,
that the generated sentences are often too short,
compared to previous paradigms such as SMT
(Shen et al., 2016). To alleviate this problem, pre-
vious efforts introduce length normalization (as
a switch in RNNsearch) or length reward (He
et al., 2016) borrowed from SMT (Koehn et al.,
2007). Unfortunately these changes will invali-
date the optimal property of our proposed algo-
rithm. So we introduce a bounded length reward
mechanism which allows a modified version of
our beam search algorithm to remain optimal. Ex-
periments on neural machine translation demon-
strate that our principled beam search algorithm
leads to improvement in BLEU score over previ-
ously proposed alternatives.

2 Neural Generation and Beam Search

Here we briefly review neural text generation and
then review existing beam search algorithms.

Assume the input sentence, document, or image
is embedded into a vector x, from which we gen-
erate the output sentence y which is a completed
hypothesis:!

y" = argmax p(y | x)
y:comp(y)

= argmax H p(yi | x,y<i)
yieomp(y) <y

where y; is a popular shorthand notation for the
prefix yoy1...y;—1. We say that a hypothesis y is
completed, notated comp(y), if its last word is
</s>, i.e.,

A
comp(y) = (yly| = </=>)

in which case it will not be further expanded.

A crucial difference in RNN-based neural gen-
eration compared to previous paradigms such as
phrase-based MT is that we no longer decom-
pose p(y; | X,y<i) into the translation model,
p(yi | x), and the language model, p(y; | y<i),
and more importantly, we no longer approximate
the latter by n-gram models. This ability to model
arbitrarily-lengthed history using RNNs is an im-
portant reason for NMT’s substantially improved
fluency compared to SMT.

To (approximately) search for the best output
y*, we use beam search, where the beam B; at step

"For simplicity reasons we do not discuss bidirectional

LSTM:s and attentional mechanisms here but our algorithms
still work with those encoders (we have tested them).

1 is an ordered list of size (at most) b, and expands
to the next beam B;; of the same size:

Bo=[(css, ples> | %))]
Bi=top{(y'o i, s-p(uslx.y)) | (v,5) € Bi_y}

where the notation top? S selects the top b scoring
items from the set .S, and each item is a pair (y, s)
where y is the current prefix and s is its accumu-
lated score (i.e., product of probabilities).

3 Optimal Beam Search (modulo beam size)

We propose a very simple method to optimally fin-
ish beam search, which guarantees the returned
hypothesis is the highest-scoring completed hy-
pothesis modulo beam size; in other words, we
will finish as soon as an “optimality certificate”
can be established that future hypotheses will
never score better than the current best one.

Let best<; be the best completed hypothesis so
far up to step ¢, i.e.,

best<; £ max{y € Uj<;B; | comp(y)} (1)

We update it every time we find a completed hy-
pothesis (if there is none yet, then it remains unde-
fined). Now at any step 4, if best<; is defined, and
the highest scoring item B; ;1 in the current beam
B; scores worse than or equal to best<;, i.e., when

Bi,l S b@StSi (2)

we claim the optimality certificate is established,
and terminate beam search, returning best<; (here
smaller means worse, since we aim for the highest-
probability completed hypothesis).

Theorem 1 (optimality). When our beam search
algorithm terminates, the current best completed
hypothesis (i.e., best<;) is the highest-probability
completed hypothesis (modulo beam size).

Proof. If Bi’1 < bestgi then Bi,j < Bi,l <
best<; for all items B; ; in beam B;. Future de-
scendants grown from these items will only be no
better, since probability < 1, so all items in current
and future steps are no better than best<;. O

Theorem 2 (early stopping). Our beam search al-
gorithm terminates no later than OpenNMT's ter-
mination criteria (when B 1 is completed).

Proof. When B; 1 is itself completed, best<; =
max{B; 1,---} > B; 1, so our stopping criteria is
also met. ]
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Figure 1: Comparison between optimal beam

search and OpenNMT-py’s default search, in terms
of search quality (model score, T is better).

This above Theorem shows that our search is
stopping earlier once the optimality certificate is
established, exploring fewer items than Open-
NMT’s default search. Also note that the latter,
even though exploring more items than ours, still
can return suboptimal solutions; e.g., when B; 1 is
worst than best<; (they never stored best<;). In
practice, we noticed our search finishes about 3—
5 steps earlier than OpenNMT at a beam of 10,
and this advantage widens as beam size increases,
although the overall speedup is not too notice-
able, given the target language sentence length is
much longer. Also, our model scores (i.e., log-
probabilities) are indeed better (see Fig. 1), where
the advantage is also more pronounced with larger
beams (note that OpenNMT baseline is almost flat
after b = 10, while our optimal beam search still
steadily improves). Combining these two Theo-
rems, it is interesting to note that our method is
not just optimal but also faster.

4 Optimal Beam Search for Bounded
Length Reward

However, optimal-score hypothesis, though satis-
fying in theory, is not ideal in practice, since neu-
ral models are notoriously bad in producing very
short sentences, as opposed to older paradigms
such as SMT (Shen et al., 2016). To alleviate
this problem, two methods have been proposed:
(a) length normalization, used in RNNsearch as
an option, where the revised score of a hypothesis
is divided by its length, thus favoring longer sen-
tences; and (b) explicit length reward (He et al.,
2016) borrowed from SMT, rewarding each gen-

erated word by a constant tuned on the dev set.

Unfortunately, each of these methods breaks
the optimality proof of our beam search algo-
rithm in Section 3, since a future hypothesis, be-
ing longer, might end up with a higher (revised)
score. We therefore devise a novel mechanism
called “bounded length reward”, that is, we reward
each word until the length of the hypothesis is
longer than the “estimated optimal length”. In ma-
chine translation and summarization, this optimal
length [ can be ratio - |x| where |x| is the source
sentence length, and ratio is the average ratio of
reference translation length over source sentence
length on the dev set (in our Chinese-to-English
NMT experiments, it is 1.27 as the English side
is a bit longer). Note that we use the same ratio
estimated from dev on test, assuming that the op-
timal length ratio for test (which we do not know)
should be similar to those of dev ones. We denote
sc(y) to be the revised score of hypothesis y with
the bounded length reward, i.e.,

sc(y) = sc(y) 4+ r-min{l, |y|}.

We also define best<; to be the revised version
of best<; that optimizes the revised instead of the
original score, i.e.,

argmax
Y€EU,<;Bj,comp(y)

best <; 2 sc(y)

Now with bounded length reward, we can mod-
ify our beam search algorithm a little bit and still
guarantee optimality. First we include in the re-
vised cost a reward r for each generated word, as
long as the length is less than [/, the estimated op-
timal length. If at step ¢, the highest scoring item
B; 1’s revised score (i.e., including bounded length
reward) plus the heuristic “future” extra length re-
ward of a descendant, r - max{l — i,0}, is worse
than (or equal to) the similarly revised version of
best<;, i.e.,

$¢(Bj1) 4+ r-max{l —i,0} < sc(best<;) (3)

at which time we claim the revised optimality
certificate is established, and terminate the beam
search and return besthi.

Actually with some trivial math we can simplify
the stopping criteria to

sc(Bi1) + 1 -1 < sc(best<;). 4)

This much simplified but still equivalent crite-
ria can speed up decoding in practice, since this
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‘ sents tokens vocab. w/BPE
Chinese 1M 28M 112k 18k
English 1M 23M 93k 10k

Table 1: Machine translation training set.

means we actually do not need to compute the re-
vised score for every hypothesis in the beam; we
only need to add the bounded length reward when
one is finished (i.e., when updating bes~t§i), and
the simplified criteria only compares it with the
original score of a hypothesis plus a constant re-
ward r - [.

Theorem 3 (modified optimality). Our modified
beam search returns the highest-scoring com-
pleted hypothesis where the score of an item is its
log-probability plus a bounded length reward.

Proof. by admissibility of the heuristic. O

Theorem 4 (correctness of the simplified criteria).
Eq. 4 is equivalent to Egq. 3.

Proof. trivial. [

S Experiments: Neural Translation

5.1 Data Preparation, Training, and Baselines

We conduct experiments on Chinese-to-English
neural machine translation, using OpenNMT-
py,> the PyTorch port of the Lua-based Open-
NMT (Klein et al.,, 2017). We choose this li-
brary because PyTorch’s combination of Python
with Torch’s dynamic computation graphs made
it much easier to implement various search algo-
rithms on it than on Theano-based implementa-
tions derived from RNNsearch (Bahdanau et al.,
2014) (such as the widely used GroundHog> and
Laulysta* codebases) as well as the original Lu-
aTorch version of OpenNMT. We use 1M Chi-
nese/English sentence pairs for training (see Ta-
ble 1 for statistics); we also trained on 2M sen-
tence pairs and only saw a minor improvement so
below we report results from 1M training. To al-
leviate the vocabulary size issue we employ byte-
pair encoding (BPE) (Sennrich et al., 2015) which
reduces the source and target language vocabulary
sizes to 18k and 10k, respectively; we found BPE
to significantly improve BLEU scores (by at least
+2 BLEU) and reduce training time. Following

https://github.com/opennmt/opennmt-py
*https://github.com/lisa-groundhog/
*nttps://github.com/laulysta/nmt/

reward r 0 1 1.1 12 13 14 15

BLEU 322 34.6 34.6 34.7 34.6 34.6 34.6
len.ratio 0.88 95 96 97 98 98 .99
best b 4 17 17 15 20 20 17

Table 2: Tuning length reward r (with beam size
b=1..20) for optimal bounded-reward beam search.

other papers on Chinese-English translation such
as Shen et al. (2016), we use NIST 06 newswire
portion (616 sentences) for development and NIST
08 newswire portion (691 sentences) for testing;
we will report case-insensitive 4-reference BLEU-
4 scores (using original segmentation).

Following OpenNMT-py’s default settings, we
train our NMT model for 20 epochs to minimize
perplexity on the training set (excluding 15% sen-
tences longer than 50 source tokens), with a batch
size of 64, word embedding size of 500, and
dropout rate of 0.3. The total number of param-
eters is 29M. Training takes about an hour per
epoch on Geforce 980 Ti GPU, and the model at
epoch 15 reaches the lowest perplexity on the dev
set (9.10) which is chosen as the model for testing.

On dev set, the default decoder of OpenNMT-py
reaches 29.2 BLEU with beam size 1 (greedy) and
33.2 BLEU with the default beam size of 5. To put
this in perspective, the most commonly used SMT
toolkit Moses (Koehn et al., 2007) reaches 30.1
BLEU (with beam size 70) using the same 1M sen-
tence training set (trigram language model trained
on the target side). With 2.56M training sentence
pairs, Shen et al. (2016) reported 32.7 BLEU on
the same dev set using Moses and 30.7 BLEU
using the baseline RNNsearch (GroundHog) with
beam size 10 (without BPE, without length nor-
malization or length reward). So our OpenNMT-
py baseline is extremely competitve.

5.2 Beam Search & Bounded Length Reward
We compare the following beam search variants:
1. OpenNMT-py’s default beam search, finish-

ing only when the top hypothesis in a step is
completed (see Section 2);

2. The “shrinking beam” method in RNNsearch
with two variants to encourage longer trans-
lations:

(a) length normalization; Google NMT (Wu
et al.,, 2016) also adopted a similar
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Figure 2: BLEU score and length ratio against beam size (on dev) of various beam search algorithms for

neural machine translation.

mechanism.

(b) unbounded length reward (tuned on dev
set) in Baidu NMT (He et al., 2016).

3. Our optimal-ending beam search (Section 3);

4. Our modified optimal-ending beam search
for bounded length reward (Section 4).

Notice that length reward has no effect on both
methods 1 and 2(a) above. To tune the optimal
length reward » we run our modified optimal-
ending beam search algorithm with all combina-
tions of r = 0,0.5,1,1.1,1.2,1.3, 1.4 with beam
sizes b = 1...20 on the dev set, since different
beam sizes might prefer different length rewards.
We found r» = 1.2 to be the best among all length
rewards (see Table 2) which is used in Figure 2
and b = 15 is the best for r = 1.2.

We can observe from Figure 2 that (a) our opti-
mal beam search with bounded length reward per-
forms the best, and at b=15 it is +5 BLEU better
than b=1; (b) pure optimal beam search degrades
after b=4 due to extremely short translations; (c)
both the shrinking beam method with length nor-
malization and OpenNMT-py’s default search al-
leviate the shortening problem, but still produce
very short translations (length ratio ~0.9). (d) the
shrinking beam method with length reward works
well, but still 0.3 BLEU below our best method.
These are confirmed by the test set (Tab. 3).

6 Conclusions

We have presented a beam search algorithm for
neural sentence generation that always returns

decoder | b dev test

Moses | 70 30.14 29.41

OpenNMT-py default | 16 33.60 29.75
shrinking, len. norm. | 17 33.71 30.11
shrinking, reward r=1.3 | 15 34.42 30.37
optimal beam search, r=1.2 | 15 34.70 30.61

Table 3: Final BLEU scores on the test set (nist
08) using best settings from the dev set (nist 06).

optimal-score completed hypotheses. To counter
neural generation’s natural tendancy for shorter
hypotheses, we introduced a bounded length re-
ward mechanism which allows a modified version
of our beam search algorithm to remain optimal.
Experiments on top of strong baselines have con-
firmed that our principled search algorithms (to-
gether with our bounded length reward mecha-
nism) outperform existing beam search methods in
terms of BLEU scores. We will release our imple-
mentations (which will hopefully be merged into
OpenNMT-py) when this paper is published. >
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