
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2091–2100
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Deep Recurrent Generative Decoder for Abstractive Text Summarization∗

Piji Li† Wai Lam† Lidong Bing‡ Zihao Wang†
†Key Laboratory on High Confidence Software Technologies (Sub-Lab, CUHK),

Ministry of Education, China
†Department of Systems Engineering and Engineering Management,

The Chinese University of Hong Kong
‡AI Lab, Tencent Inc., Shenzhen, China

†{pjli, wlam, zhwang}@se.cuhk.edu.hk, ‡lyndonbing@tencent.com

Abstract

We propose a new framework for ab-
stractive text summarization based on a
sequence-to-sequence oriented encoder-
decoder model equipped with a deep re-
current generative decoder (DRGN). La-
tent structure information implied in the
target summaries is learned based on a re-
current latent random model for improv-
ing the summarization quality. Neural
variational inference is employed to ad-
dress the intractable posterior inference for
the recurrent latent variables. Abstractive
summaries are generated based on both
the generative latent variables and the dis-
criminative deterministic states. Extensive
experiments on some benchmark datasets
in different languages show that DRGN
achieves improvements over the state-of-
the-art methods.

1 Introduction

Automatic summarization is the process of auto-
matically generating a summary that retains the
most important content of the original text doc-
ument (Edmundson, 1969; Luhn, 1958; Nenkova
and McKeown, 2012). Different from the common
extraction-based and compression-based methods,
abstraction-based methods aim at constructing
new sentences as summaries, thus they require a
deeper understanding of the text and the capabil-
ity of generating new sentences, which provide
an obvious advantage in improving the focus of
a summary, reducing the redundancy, and keeping
a good compression rate (Bing et al., 2015; Rush
et al., 2015; Nallapati et al., 2016).

∗The work described in this paper is supported by a grant
from the Grant Council of the Hong Kong Special Adminis-
trative Region, China (Project Code: 14203414).

Apple sues Qualcomm for nearly $1 billion

Twitter fixes botched @POTUS account transfer

Track Trump’s 100-day promises, Silicon Valley-style

The emergence of the ‘cyber cold war’

Tesla Autopilot not defective in fatal crash

Twitter mostly meets modest diversity goals

Uber to pay $20 million for misleading drivers

top stories_

Figure 1: Headlines of the top stories from the
channel “Technology” of CNN.

Some previous research works show that
human-written summaries are more abstractive
(Jing and McKeown, 2000). Moreover, our in-
vestigation reveals that people may naturally fol-
low some inherent structures when they write the
abstractive summaries. To illustrate this observa-
tion, we show some examples in Figure 1, which
are some top story summaries or headlines from
the channel “Technology” of CNN. After analyz-
ing the summaries carefully, we can find some
common structures from them, such as “What”,
“What-Happened” , “Who Action What”, etc.
For example, the summary “Apple sues Qual-
comm for nearly $1 billion” can be structural-
ized as “Who (Apple) Action (sues) What (Qual-
comm)”. Similarly, the summaries “[Twitter]
[fixes] [botched @POTUS account transfer]”,
“[Uber] [to pay] [$20 million] for misleading
drivers”, and “[Bipartisan bill] aims to [reform]
[H-1B visa system]” also follow the structure of
“Who Action What”. The summary “The emer-
gence of the ‘cyber cold war”’ matches with
the structure of “What”, and the summary “St.
Louis’ public library computers hacked” follows
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the structure of “What-Happened”.

Intuitively, if we can incorporate the latent
structure information of summaries into the ab-
stractive summarization model, it will improve
the quality of the generated summaries. How-
ever, very few existing works specifically consider
the latent structure information of summaries in
their summarization models. Although a very pop-
ular neural network based sequence-to-sequence
(seq2seq) framework has been proposed to tackle
the abstractive summarization problem (Lopyrev,
2015; Rush et al., 2015; Nallapati et al., 2016), the
calculation of the internal decoding states is en-
tirely deterministic. The deterministic transforma-
tions in these discriminative models lead to lim-
itations on the representation ability of the latent
structure information. Miao and Blunsom (2016)
extended the seq2seq framework and proposed a
generative model to capture the latent summary in-
formation, but they did not consider the recurrent
dependencies in their generative model leading to
limited representation ability.

To tackle the above mentioned problems, we
design a new framework based on sequence-
to-sequence oriented encoder-decoder model
equipped with a latent structure modeling com-
ponent. We employ Variational Auto-Encoders
(VAEs) (Kingma and Welling, 2013; Rezende
et al., 2014) as the base model for our genera-
tive framework which can handle the inference
problem associated with complex generative
modeling. However, the standard framework of
VAEs is not designed for sequence modeling
related tasks. Inspired by (Chung et al., 2015),
we add historical dependencies on the latent
variables of VAEs and propose a deep recurrent
generative decoder (DRGD) for latent structure
modeling. Then the standard discriminative
deterministic decoder and the recurrent generative
decoder are integrated into a unified decoding
framework. The target summaries will be decoded
based on both the discriminative deterministic
variables and the generative latent structural
information. All the neural parameters are learned
by back-propagation in an end-to-end training
paradigm.

The main contributions of our framework
are summarized as follows: (1) We propose
a sequence-to-sequence oriented encoder-decoder
model equipped with a deep recurrent generative
decoder (DRGD) to model and learn the latent

structure information implied in the target sum-
maries of the training data. Neural variational in-
ference is employed to address the intractable pos-
terior inference for the recurrent latent variables.
(2) Both the generative latent structural informa-
tion and the discriminative deterministic variables
are jointly considered in the generation process of
the abstractive summaries. (3) Experimental re-
sults on some benchmark datasets in different lan-
guages show that our framework achieves better
performance than the state-of-the-art models.

2 Related Works

Automatic summarization is the process of auto-
matically generating a summary that retains the
most important content of the original text doc-
ument (Nenkova and McKeown, 2012). Tradi-
tionally, the summarization methods can be classi-
fied into three categories: extraction-based meth-
ods (Erkan and Radev, 2004; Goldstein et al.,
2000; Wan et al., 2007; Min et al., 2012; Nalla-
pati et al., 2017; Cheng and Lapata, 2016; Cao
et al., 2016; Song et al., 2017), compression-based
methods (Li et al., 2013; Wang et al., 2013; Li
et al., 2015, 2017), and abstraction-based meth-
ods. In fact, previous investigations show that
human-written summaries are more abstractive
(Barzilay and McKeown, 2005; Bing et al., 2015).
Abstraction-based approaches can generate new
sentences based on the facts from different source
sentences. Barzilay and McKeown (2005) em-
ployed sentence fusion to generate a new sentence.
Bing et al. (2015) proposed a more fine-grained
fusion framework, where new sentences are gen-
erated by selecting and merging salient phrases.
These methods can be regarded as a kind of in-
direct abstractive summarization, and complicated
constraints are used to guarantee the linguistic
quality.

Recently, some researchers employ neural net-
work based framework to tackle the abstractive
summarization problem. Rush et al. (2015) pro-
posed a neural network based model with local
attention modeling, which is trained on the Giga-
word corpus, but combined with an additional log-
linear extractive summarization model with hand-
crafted features. Gu et al. (2016) integrated a
copying mechanism into a seq2seq framework to
improve the quality of the generated summaries.
Chen et al. (2016) proposed a new attention mech-
anism that not only considers the important source

2092



segments, but also distracts them in the decoding
step in order to better grasp the overall meaning of
input documents. Nallapati et al. (2016) utilized
a trick to control the vocabulary size to improve
the training efficiency. The calculations in these
methods are all deterministic and the representa-
tion ability is limited. Miao and Blunsom (2016)
extended the seq2seq framework and proposed a
generative model to capture the latent summary in-
formation, but they do not consider the recurrent
dependencies in their generative model leading to
limited representation ability.

Some research works employ topic models to
capture the latent information from source docu-
ments or sentences. Wang et al. (2009) proposed
a new Bayesian sentence-based topic model by
making use of both the term-document and term-
sentence associations to improve the performance
of sentence selection. Celikyilmaz and Hakkani-
Tur (2010) estimated scores for sentences based
on their latent characteristics using a hierarchical
topic model, and trained a regression model to ex-
tract sentences. However, they only use the latent
topic information to conduct the sentence salience
estimation for extractive summarization. In con-
trast, our purpose is to model and learn the latent
structure information from the target summaries
and use it to enhance the performance of abstrac-
tive summarization.

3 Framework Description

3.1 Overview

As shown in Figure 2, the basic framework of
our approach is a neural network based encoder-
decoder framework for sequence-to-sequence
learning. The input is a variable-length sequence
X = {x1,x2, . . . ,xm} representing the source
text. The word embedding xt is initialized ran-
domly and learned during the optimization pro-
cess. The output is also a sequence Y =
{y1,y2, . . . ,yn}, which represents the generated
abstractive summaries. Gated Recurrent Unit
(GRU) (Cho et al., 2014) is employed as the ba-
sic sequence modeling component for the encoder
and the decoder. For latent structure modeling, we
add historical dependencies on the latent variables
of Variational Auto-Encoders (VAEs) and propose
a deep recurrent generative decoder (DRGD) to
distill the complex latent structures implied in the
target summaries of the training data. Finally, the
abstractive summaries will be decoded out based

on both the discriminative deterministic variables
H and the generative latent structural information
Z.

3.2 Recurrent Generative Decoder

Assume that we have obtained the source text rep-
resentation he ∈ Rkh . The purpose of the decoder
is to translate this source code he into a series
of hidden states {hd1,hd2, . . . ,hdn}, and then revert
these hidden states to an actual word sequence and
generate the summary.

For standard recurrent decoders, at each time
step t, the hidden state hdt ∈ Rkh is calculated us-
ing the dependent input symbol yt−1 ∈ Rkw and
the previous hidden state hdt−1:

hdt = f(yt−1,hdt−1) (1)

where f(·) is a recurrent neural network such as
vanilla RNN, Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), and Gated
Recurrent Unit (GRU) (Cho et al., 2014). No mat-
ter which one we use for f(·), the common trans-
formation operation is as follows:

hdt = g(Wd
yhyt−1 + Wd

hhh
d
t−1 + bdh) (2)

where Wd
yh ∈ Rkh×kw and Wd

hh ∈ Rkh×kh are
the linear transformation matrices. bdh is the bias.
kh is the dimension of the hidden layers, and kw is
the dimension of the word embeddings. g(·) is the
non-linear activation function. From Equation 2,
we can see that all the transformations are deter-
ministic, which leads to a deterministic recurrent
hidden state hdt . From our investigations, we find
that the representational power of such determin-
istic variables are limited. Some more complex
latent structures in the target summaries, such as
the high-level syntactic features and latent topics,
cannot be modeled effectively by the deterministic
operations and variables.

Recently, a generative model called Variational
Auto-Encoders (VAEs) (Kingma and Welling,
2013; Rezende et al., 2014) shows strong capa-
bility in modeling latent random variables and
improves the performance of tasks in different
fields such as sentence generation (Bowman et al.,
2016) and image generation (Gregor et al., 2015).
However, the standard VAEs is not designed for
modeling sequence directly. Inspired by (Chung
et al., 2015), we extend the standard VAEs by
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Figure 2: Our deep recurrent generative decoder (DRGD) for latent structure modeling.

introducing the historical latent variable depen-
dencies to make it be capable of modeling se-
quence data. Our proposed latent structure mod-
eling framework can be viewed as a sequence
generative model which can be divided into two
parts: inference (variational-encoder) and gener-
ation (variational-decoder). As shown in the de-
coder component of Figure 2, the input of the orig-
inal VAEs only contains the observed variable yt,
and the variational-encoder can map it to a latent
variable z ∈ Rkz , which can be used to reconstruct
the original input. For the task of summarization,
in the sequence decoder component, the previous
latent structure information needs to be considered
for constructing more effective representations for
the generation of the next state.

For the inference stage, the variational-encoder
can map the observed variable y<t and the pre-
vious latent structure information z<t to the pos-
terior probability distribution of the latent struc-
ture variable pθ(zt|y<t, z<t). It is obvious that
this is a recurrent inference process in which zt
contains the historical dynamic latent structure in-
formation. Compared with the variational infer-
ence process pθ(zt|yt) of the typical VAEs model,
the recurrent framework can extract more complex
and effective latent structure features implied in
the sequence data.

For the generation process, based on the la-
tent structure variable zt, the target word yt at the
time step t is drawn from a conditional probabil-
ity distribution pθ(yt|zt). The target is to maxi-
mize the probability of each generated summary
y = {y1,y2, . . . ,yT } based on the generation
process according to:

pθ(y) =
T∏
t=1

∫
pθ(yt|zt)pθ(zt)dzt (3)

For the purpose of solving the intractable integral
of the marginal likelihood as shown in Equation 3,
a recognition model qφ(zt|y<t, z<t) is introduced
as an approximation to the intractable true poste-
rior pθ(zt|y<t, z<t). The recognition model pa-
rameters φ and the generative model parameters
θ can be learned jointly. The aim is to reduce
the Kulllback-Leibler divergence (KL) between
qφ(zt|y<t, z<t) and pθ(zt|y<t, z<t):
DKL[qφ(zt|y<t, z<t)‖pθ(zt|y<t, z<t)]

=
∫
z
qφ(zt|y<t, z<t) log

qφ(zt|y<t, z<t)
pθ(zt|y<t, z<t)dz

= Eqφ(zt|y<t,z<t)[log qφ(zt|·)− log pθ(zt|·)]
where · denotes the conditional variables y<t and
z<t. Bayes rule is applied to pθ(zt|y<t, z<t),
and we can extract log pθ(z) from the expectation,
transfer the expectation term Eqφ(zt|y<t,z<t) back
to KL-divergence, and rearrange all the terms.
Consequently the following holds:

log pθ(y<t) =
DKL[qφ(zt|y<t, z<t)‖pθ(zt|y<t, z<t)]
+ Eqφ(zt|y<t,z<t)[log pθ(y<t|zt)]
−DKL[qφ(zt|y<t, z<t)‖pθ(zt)]

(4)

LetL(θ, φ; y) represent the last two terms from the
right part of Equation 4:

L(θ, ϕ; y) =

Eqφ(zt|y<t,z<t)
{∑T

t=1
log pθ(yt|zt)

−DKL[qφ(zt|y<t, z<t)‖pθ(zt)]
} (5)

Since the first KL-divergence term of Equation 4
is non-negative, we have log pθ(y<t) ≥ L(θ, φ; y)
meaning that L(θ, φ; y) is a lower bound (the ob-
jective to be maximized) on the marginal likeli-
hood. In order to differentiate and optimize the
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lower bound L(θ, φ; y), following the core idea
of VAEs, we use a neural network framework for
the probabilistic encoder qφ(zt|y<t, z<t) for bet-
ter approximation.

3.3 Abstractive Summary Generation
We also design a neural network based frame-
work to conduct the variational inference and gen-
eration for the recurrent generative decoder com-
ponent similar to some design in previous works
(Kingma and Welling, 2013; Rezende et al., 2014;
Gregor et al., 2015). The encoder component and
the decoder component are integrated into a uni-
fied abstractive summarization framework. Con-
sidering that GRU has comparable performance
but with less parameters and more efficient com-
putation, we employ GRU as the basic recurrent
model which updates the variables according to
the following operations:

rt = σ(Wxrxt + Whrht−1 + br)
zt = σ(Wxzxt + Whzht−1 + bz)
gt = tanh(Wxhxt + Whh(rt � ht−1) + bh)
ht = zt � ht−1 + (1− zt)� gt

where rt is the reset gate, zt is the update gate. �
denotes the element-wise multiplication. tanh is
the hyperbolic tangent activation function.

As shown in the left block of Figure 2, the en-
coder is designed based on bidirectional recurrent
neural networks. Let xt be the word embedding
vector of the t-th word in the source sequence.
GRU maps xt and the previous hidden state ht−1

to the current hidden state ht in feed-forward di-
rection and back-forward direction respectively:

⇀

ht = GRU(xt,
⇀

ht−1)
↼

ht = GRU(xt,
↼

ht−1)
(6)

Then the final hidden state het ∈ R2kh is concate-
nated using the hidden states from the two direc-
tions: het =

⇀

ht||
↼

h. As shown in the middle block
of Figure 2, the decoder consists of two compo-
nents: discriminative deterministic decoding and
generative latent structure modeling.

The discriminative deterministic decoding is an
improved attention modeling based recurrent se-
quence decoder. The first hidden state hd1 is ini-
tialized using the average of all the source input

states: hd1 = 1
T e

T e∑
t=1

het , where het is the source in-

put hidden state. T e is the input sequence length.

The deterministic decoder hidden state hdt is cal-
culated using two layers of GRUs. On the first
layer, the hidden state is calculated only using the
current input word embedding yt−1 and the previ-
ous hidden state hd1t−1:

hd1t = GRU1(yt−1,hd1t−1) (7)

where the superscript d1 denotes the first decoder
GRU layer. Then the attention weights at the time
step t are calculated based on the relationship of
hd1t and all the source hidden states {het}. Let ai,j
be the attention weight between hd1i and hej , which
can be calculated using the following formulation:

ai,j =
exp(ei,j)∑T e

j′=1 exp(ei,j′)

ei,j = vT tanh(Wd
hhh

d1
i + We

hhh
e
j + ba)

where Wd
hh ∈ Rkh×kh , We

hh ∈ Rkh×2kh , ba ∈
Rkh , and v ∈ Rkh . The attention context is ob-
tained by the weighted linear combination of all
the source hidden states:

ct =
∑T e

j′=1
at,j′hej′ (8)

The final deterministic hidden state hd2t is the
output of the second decoder GRU layer, jointly
considering the word yt−1, the previous hidden
state hd2t−1, and the attention context ct:

hd2t = GRU2(yt−1,hd2t−1, ct) (9)

For the component of recurrent generative
model, inspired by some ideas in previous works
(Kingma and Welling, 2013; Rezende et al., 2014;
Gregor et al., 2015), we assume that both the prior
and posterior of the latent variables are Gaussian,
i.e., pθ(zt) = N (0, I) and qφ(zt|y<t, z<t) =
N (zt;µ,σ2I), where µ and σ denote the varia-
tional mean and standard deviation respectively,
which can be calculated via a multilayer percep-
tron. Precisely, given the word embedding yt−1,
the previous latent structure variable zt−1, and the
previous deterministic hidden state hdt−1, we first
project it to a new hidden space:

hezt = g(Wez
yhyt−1+Wez

zhzt−1+Wez
hhh

d
t−1+bezh )

where Wez
yh ∈ Rkh×kw , Wez

zh ∈ Rkh×kz , Wez
hh ∈

Rkh×kh , and bezh ∈ Rkh . g is the sigmoid acti-
vation function: σ(x) = 1/(1 + e−x). Then the
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Gaussian parameters µt ∈ Rkz and σt ∈ Rkz can
be obtained via a linear transformation based on
hezt :

µt = Wez
hµh

ez
t + bezµ

log(σ2
t ) = Whσh

ez
t + bezσ

(10)

The latent structure variable zt ∈ Rkz can be cal-
culated using the reparameterization trick:

ε ∼ N (0, I), zt = µt + σt ⊗ ε (11)

where ε ∈ Rkz is an auxiliary noise variable. The
process of inference for finding zt based on neural
networks can be teated as a variational encoding
process.

To generate summaries precisely, we first in-
tegrate the recurrent generative decoding compo-
nent with the discriminative deterministic decod-
ing component, and map the latent structure vari-
able zt and the deterministic decoding hidden state
hd2t to a new hidden variable:

hdyt = tanh(Wdy
zhzt + Wdz

hhh
d2
t + bdyh ) (12)

Given the combined decoding state hdyt at the
time t, the probability of generating any target
word yt is given as follows:

yt = ς(Wd
hyh

dy
t + bdhy) (13)

where Wd
hy ∈ Rky×kh and bdhy ∈ Rky . ς(·) is the

softmax function. Finally, we use a beam search
algorithm (Koehn, 2004) for decoding and gener-
ating the best summary.

3.4 Learning
Although the proposed model contains a recurrent
generative decoder, the whole framework is fully
differentiable. As shown in Section 3.3, both the
recurrent deterministic decoder and the recurrent
generative decoder are designed based on neural
networks. Therefore, all the parameters in our
model can be optimized in an end-to-end paradigm
using back-propagation. We use {X}N and {Y }N
to denote the training source and target sequence.
Generally, the objective of our framework con-
sists of two terms. One term is the negative log-
likelihood of the generated summaries, and the
other one is the variational lower boundL(θ, φ;Y )
mentioned in Equation 5. Since the variational
lower bound L(θ, φ;Y ) also contains a likelihood
term, we can merge it with the likelihood term of
summaries. The final objective function, which

needs to be minimized, is formulated as follows:

J =
1

N

N∑
n=1

T∑
t=1

{
− log

[
p(y

(n)
t |y(n)

<t , X(n))

]

+DKL

[
qφ(z

(n)
t |y(n)

<t , z
(n)
<t )‖pθ(z(n)

t )

]} (14)

4 Experimental Setup

4.1 Datesets
We train and evaluate our framework on three pop-
ular datasets. Gigawords is an English sentence
summarization dataset prepared based on Anno-
tated Gigawords1 by extracting the first sentence
from articles with the headline to form a source-
summary pair. We directly download the prepared
dataset used in (Rush et al., 2015). It roughly con-
tains 3.8M training pairs, 190K validation pairs,
and 2,000 test pairs. DUC-20042 is another En-
glish dataset only used for testing in our experi-
ments. It contains 500 documents. Each document
contains 4 model summaries written by experts.
The length of the summary is limited to 75 bytes.
LCSTS is a large-scale Chinese short text summa-
rization dataset, consisting of pairs of (short text,
summary) collected from Sina Weibo3 (Hu et al.,
2015). We take Part-I as the training set, Part-II
as the development set, and Part-III as the test set.
There is a score in range 1 ∼ 5 labeled by human
to indicate how relevant an article and its summary
is. We only reserve those pairs with scores no less
than 3. The size of the three sets are 2.4M, 8.7k,
and 725 respectively. In our experiments, we only
take Chinese character sequence as input, without
performing word segmentation.

4.2 Evaluation Metrics
We use ROUGE score (Lin, 2004) as our evalua-
tion metric with standard options. The basic idea
of ROUGE is to count the number of overlapping
units between generated summaries and the ref-
erence summaries, such as overlapped n-grams,
word sequences, and word pairs. F-measures of
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-
L) and ROUGE-SU4 (R-SU4) are reported.

4.3 Comparative Methods
We compare our model with some baselines and
state-of-the-art methods. Because the datasets are

1https://catalog.ldc.upenn.edu/ldc2012t21
2http://duc.nist.gov/duc2004
3http://www.weibo.com
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quite standard, so we just extract the results from
their papers. Therefore the baseline methods on
different datasets may be slightly different.

• TOPIARY (Zajic et al., 2004) is the best on
DUC2004 Task-1 for compressive text sum-
marization. It combines a system using lin-
guistic based transformations and an unsu-
pervised topic detection algorithm for com-
pressive text summarization.

• MOSES+ (Rush et al., 2015) uses a phrase-
based statistical machine translation system
trained on Gigaword to produce summaries.
It also augments the phrase table with “dele-
tion” rulesto improve the baseline perfor-
mance, and MERT is also used to improve
the quality of generated summaries.

• ABS and ABS+ (Rush et al., 2015) are both
the neural network based models with local
attention modeling for abstractive sentence
summarization. ABS+ is trained on the Gi-
gaword corpus, but combined with an ad-
ditional log-linear extractive summarization
model with handcrafted features.

• RNN and RNN-context (Hu et al., 2015) are
two seq2seq architectures. RNN-context in-
tegrates attention mechanism to model the
context.

• CopyNet (Gu et al., 2016) integrates a
copying mechanism into the sequence-to-
sequence framework.

• RNN-distract (Chen et al., 2016) uses a new
attention mechanism by distracting the his-
torical attention in the decoding steps.

• RAS-LSTM and RAS-Elman (Chopra et al.,
2016) both consider words and word po-
sitions as input and use convolutional en-
coders to handle the source information. For
the attention based sequence decoding pro-
cess, RAS-Elman selects Elman RNN (El-
man, 1990) as decoder, and RAS-LSTM se-
lects Long Short-Term Memory architecture
(Hochreiter and Schmidhuber, 1997).

• LenEmb (Kikuchi et al., 2016) uses a mech-
anism to control the summary length by con-
sidering the length embedding vector as the
input.

• ASC+FSC1 (Miao and Blunsom, 2016) uses
a generative model with attention mechanism
to conduct the sentence compression prob-
lem. The model first draws a latent summary
sentence from a background language model,
and then subsequently draws the observed
sentence conditioned on this latent summary.

• lvt2k-1sent and lvt5k-1sent (Nallapati et al.,
2016) utilize a trick to control the vocabulary
size to improve the training efficiency.

4.4 Experimental Settings
For the experiments on the English dataset Giga-
words, we set the dimension of word embeddings
to 300, and the dimension of hidden states and la-
tent variables to 500. The maximum length of doc-
uments and summaries is 100 and 50 respectively.
The batch size of mini-batch training is 256. For
DUC-2004, the maximum length of summaries is
75 bytes. For the dataset of LCSTS, the dimen-
sion of word embeddings is 350. We also set the
dimension of hidden states and latent variables to
500. The maximum length of documents and sum-
maries is 120 and 25 respectively, and the batch
size is also 256. The beam size of the decoder
was set to be 10. Adadelta (Schmidhuber, 2015)
with hyperparameter ρ = 0.95 and ε = 1e − 6
is used for gradient based optimization. Our neu-
ral network based framework is implemented us-
ing Theano (Theano Development Team, 2016).

5 Results and Discussions

5.1 ROUGE Evaluation

Table 1: ROUGE-F1 on validation sets

Dataset System R-1 R-2 R-L
GIGA StanD 32.69 15.29 30.60

DRGD 36.25 17.61 33.55
LCSTS StanD 33.88 21.49 31.05

DRGD 36.71 24.00 34.10

We first depict the performance of our model
DRGD by comparing to the standard decoders
(StanD) of our own implementation. The compari-
son results on the validation datasets of Gigawords
and LCSTS are shown in Table 1. From the re-
sults we can see that our proposed generative de-
coders DRGD can obtain obvious improvements
on abstractive summarization than the standard de-
coders. Actually, the performance of the standard
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Table 2: ROUGE-F1 on Gigawords

System R-1 R-2 R-L
ABS 29.55 11.32 26.42
ABS+ 29.78 11.89 26.97
RAS-LSTM 32.55 14.70 30.03
RAS-Elman 33.78 15.97 31.15
ASC + FSC1 34.17 15.94 31.92
lvt2k-1sent 32.67 15.59 30.64
lvt5k-1sent 35.30 16.64 32.62
DRGD 36.27 17.57 33.62

Table 3: ROUGE-Recall on DUC2004

System R-1 R-2 R-L
TOPIARY 25.12 6.46 20.12
MOSES+ 26.50 8.13 22.85
ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
RAS-Elman 28.97 8.26 24.06
RAS-LSTM 27.41 7.69 23.06
LenEmb 26.73 8.39 23.88
lvt2k-1sen 28.35 9.46 24.59
lvt5k-1sen 28.61 9.42 25.24
DRGD 31.79 10.75 27.48

Table 4: ROUGE-F1 on LCSTS

System R-1 R-2 R-L
RNN 21.50 8.90 18.60
RNN-context 29.90 17.40 27.20
CopyNet 34.40 21.60 31.30
RNN-distract 35.20 22.60 32.50
DRGD 36.99 24.15 34.21

decoders is similar with those mentioned popular
baseline methods.

The results on the English datasets of Giga-
words and DUC-2004 are shown in Table 2 and
Table 3 respectively. Our model DRGD achieves
the best summarization performance on all the
ROUGE metrics. Although ASC+FSC1 also uses
a generative method to model the latent summary
variables, the representation ability is limited and
it cannot bring in noticeable improvements. It
is worth noting that the methods lvt2k-1sent and
lvt5k-1sent (Nallapati et al., 2016) utilize linguis-
tic features such as parts-of-speech tags, named-
entity tags, and TF and IDF statistics of the words
as part of the document representation. In fact,
extracting all such features is a time consuming
work, especially on large-scale datasets such as

Gigawords. lvt2k and lvt5k are not end-to-end
style models and are more complicated than our
model in practical applications.

The results on the Chinese dataset LCSTS are
shown in Table 4. Our model DRGD also achieves
the best performance. Although CopyNet employs
a copying mechanism to improve the summary
quality and RNN-distract considers attention in-
formation diversity in their decoders, our model is
still better than those two methods demonstrating
that the latent structure information learned from
target summaries indeed plays a role in abstractive
summarization. We also believe that integrating
the copying mechanism and coverage diversity in
our framework will further improve the summa-
rization performance.

5.2 Summary Case Analysis

In order to analyze the reasons of improving
the performance, we compare the generated sum-
maries by DRGD and the standard decoders StanD
used in some other works such as (Chopra et al.,
2016). The source texts, golden summaries, and
the generated summaries are shown in Table 5.
From the cases we can observe that DRGD can in-
deed capture some latent structures which are con-
sistent with the golden summaries. For example,
our result for S(1) “Wuhan wins men’s soccer ti-
tle at Chinese city games” matches the “Who Ac-
tion What” structure. However, the standard de-
coder StanD ignores the latent structures and gen-
erates some loose sentences, such as the results for
S(1) “Results of men’s volleyball at Chinese city
games” does not catch the main points. The reason
is that the recurrent variational auto-encoders used
in our framework have better representation ability
and can capture more effective and complicated la-
tent structures from the sequence data. Therefore,
the summaries generated by DRGD have consis-
tent latent structures with the ground truth, leading
to a better ROUGE evaluation.

6 Conclusions

We propose a deep recurrent generative decoder
(DRGD) to improve the abstractive summariza-
tion performance. The model is a sequence-
to-sequence oriented encoder-decoder framework
equipped with a latent structure modeling compo-
nent. Abstractive summaries are generated based
on both the latent variables and the determinis-
tic states. Extensive experiments on benchmark
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Table 5: Examples of the generated summaries.

S(1): hosts wuhan won the men ’s soccer title
by beating beijing shunyi #-# here at the #th
chinese city games on friday.
Golden: hosts wuhan wins men ’s soccer title
at chinese city games.
StanD: results of men ’s volleyball at chinese
city games.
DRGD: wuhan wins men ’s soccer title at
chinese city games.
S(2): UNK and the china meteorological
administration tuesday signed an agreement
here on long - and short-term cooperation in
projects involving meteorological satellites and
satellite meteorology.
Golden: UNK china to cooperate in meteorol-
ogy.
StanD: weather forecast for major chinese
cities.
DRGD: china to cooperate in meteorological
satellites.
S(3): the rand gained ground against the dollar
at the opening here wednesday , to #.# to the
greenback from #.# at the close tuesday.
Golden: rand gains ground.
StanD: rand slightly higher against dollar.
DRGD: rand gains ground against dollar.
S(4): new zealand women are having more
children and the country ’s birth rate reached its
highest level in ## years , statistics new zealand
said on wednesday.
Golden: new zealand birth rate reaches ##-
year high.
StanD: new zealand women are having more
children birth rate hits highest level in ## years.
DRGD: new zealand ’s birth rate hits ##-
year high.

datasets show that DRGD achieves improvements
over the state-of-the-art methods.
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