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Abstract

Recent research in neural machine trans-
lation has largely focused on two aspects;
neural network architectures and end-to-
end learning algorithms. The problem of
decoding, however, has received relatively
little attention from the research commu-
nity. In this paper, we solely focus on the
problem of decoding given a trained neu-
ral machine translation model. Instead of
trying to build a new decoding algorithm
for any specific decoding objective, we pro-
pose the idea of trainable decoding algo-
rithm in which we train a decoding algo-
rithm to find a translation that maximizes
an arbitrary decoding objective. More
specifically, we design an actor that ob-
serves and manipulates the hidden state
of the neural machine translation decoder
and propose to train it using a variant of
deterministic policy gradient. We exten-
sively evaluate the proposed algorithm us-
ing four language pairs and two decoding
objectives, and show that we can indeed
train a trainable greedy decoder that gener-
ates a better translation (in terms of a target
decoding objective) with minimal compu-
tational overhead.

1 Introduction

Neural machine translation has recently become a
method of choice in machine translation research.
Besides its success in traditional settings of ma-
chine translation, that is one-to-one translation be-
tween two languages, (Sennrich et al., 2016; Chung
et al., 2016), neural machine translation has ven-
tured into more sophisticated settings of machine
translation. For instance, neural machine transla-
tion has successfully proven itself to be capable of

handling subword-level representation of sentences
(Lee et al., 2016; Luong and Manning, 2016; Sen-
nrich et al., 2015; Costa-Jussa and Fonollosa, 2016;
Ling et al., 2015). Furthermore, several research
groups have shown its potential in seamlessly han-
dling multiple languages (Dong et al., 2015; Luong
et al., 2015a; Firat et al., 2016a,b; Lee et al., 2016;
Ha et al., 2016; Viégas et al., 2016).

A typical scenario of neural machine transla-
tion starts with training a model to maximize its
log-likelihood. That is, we often train a model to
maximize the conditional probability of a reference
translation given a source sentence over a large par-
allel corpus. Once the model is trained in this way,
it defines the conditional distribution over all pos-
sible translations given a source sentence, and the
task of translation becomes equivalent to finding a
translation to which the model assigns the highest
conditional probability. Since it is computationally
intractable to do so exactly, it is a usual practice to
resort to approximate search/decoding algorithms
such as greedy decoding or beam search. In this
scenario, we have identified two points where im-
provements could be made. They are (1) training
(including the selection of a model architecture)
and (2) decoding.

Much of the research on neural machine trans-
lation has focused solely on the former, that is,
on improving the model architecture. Neural ma-
chine translation started with with a simple encoder-
decoder architecture in which a source sentence is
encoded into a single, fixed-size vector (Cho et al.,
2014; Sutskever et al., 2014; Kalchbrenner and
Blunsom, 2013). It soon evolved with the attention
mechanism (Bahdanau et al., 2014). A few variants
of the attention mechanism, or its regularization,
have been proposed recently to improve both the
translation quality as well as the computational ef-
ficiency (Luong et al., 2015b; Cohn et al., 2016;
Tu et al., 2016b). More recently, convolutional net-
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works have been adopted either as a replacement of
or a complement to a recurrent network in order to
efficiently utilize parallel computing (Kalchbrenner
etal., 2016; Lee et al., 2016; Gehring et al., 2016).

On the aspect of decoding, only a few research
groups have tackled this problem by incorporating
a target decoding algorithm into training. Wiseman
and Rush (2016) and Shen et al. (2015) proposed a
learning algorithm tailored for beam search. Ran-
zato et al. (2015) and (Bahdanau et al., 2016) sug-
gested to use a reinforcement learning algorithm
by viewing a neural machine translation model as
a policy function. Investigation on decoding alone
has, however, been limited. Cho (2016) showed the
limitation of greedy decoding by simply injecting
unstructured noise into the hidden state of the neu-
ral machine translation system. Tu et al. (2016a)
similarly showed that the exactness of beam search
does not correlate well with actual translation qual-
ity, and proposed to augment the learning cost func-
tion with reconstruction to alleviate this problem.
Li et al. (2016) proposed a modification to the ex-
isting beam search algorithm to improve its explo-
ration of the translation space.

In this paper, we tackle the problem of decod-
ing in neural machine translation by introducing
a concept of trainable greedy decoding. Instead
of manually designing a new decoding algorithm
suitable for neural machine translation, we propose
to learn a decoding algorithm with an arbitrary de-
coding objective. More specifically, we introduce
a neural-network-based decoding algorithm that
works on an already-trained neural machine trans-
lation system by observing and manipulating its
hidden state. We treat such a neural network as an
agent with a deterministic, continuous action and
train it with a variant of the deterministic policy
gradient algorithm (Silver et al., 2014).

We extensively evaluate the proposed trainable
greedy decoding on four language pairs (En-Cs,
En-De, En-Ru and En-Fi; in both directions) with
two different decoding objectives; sentence-level
BLEU and negative perplexity. By training such
trainable greedy decoding using deterministic pol-
icy gradient with the proposed critic-aware actor
learning, we observe that we can improve decod-
ing performance with minimal computational over-
head. Furthermore, the trained actors are found
to improve beam search as well, suggesting a fu-
ture research direction in extending the proposed
idea of trainable decoding for more sophisticated

underlying decoding algorithms.

2 Background

2.1 Neural Machine Translation

Neural machine translation is a special case of
conditional recurrent language modeling, where
the source and target are natural language sen-
tences. Letususe X = {z1,...,zp,} and Y =
{y1,...,yr} to denote source and target sentences,
respectively. Neural machine translation then mod-
els the target sentence given the source sentence
as: p(Y|X) = [T~ p(yely<s, X). Each term on
the r.h.s. of the equation above is modelled as a
composite of two parametric functions:

P(yely<t, X) oc exp (g (yt, 215 04)) ,

where 2z = f(z—1,yt—1,€(X;6¢);04). gis a
read-out function that transforms the hidden state
z¢ into the distribution over all possible symbols,
and f is a recurrent function that compresses all the
previous target words y.; and the time-dependent
representation e;(X; 6.) of the source sentence X.
This time-dependent representation e; is often im-
plemented as a recurrent network encoder of the
source sentence coupled with an attention mecha-
nism (Bahdanau et al., 2014).

Maximum Likelihood Learning We train a
neural machine translation model, or equivalently
estimate the parameters 04, 0 and ¢, by maximiz-
ing the log-probability of a reference translation
Y = {91, ..., g} given a source sentence. That is,
we maximize the log-likelihood function:

1NTn

TM(0g,05.00) = 2 > D logpo (G719, X,
n=1 t=1

given a training set consisting of N source-target
sentence pairs. It is important to note that this maxi-
mum likelihood learning does not take into account
how a trained model would be used. Rather, it is
only concerned with learning a distribution over all
possible translations.

2.2 Decoding

Once the model is trained, either by maximum like-
lihood learning or by any other recently proposed
algorithms (Wiseman and Rush, 2016; Shen et al.,
2015; Bahdanau et al., 2016; Ranzato et al., 2015),
we can let the model translate a given sentence by
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finding a translation that maximizes

Y = arg maxlog pp(Y]X),
Y

where 6 = (64,0, 6.). This is, however, compu-
tationally intractable, and it is a usual practice to
resort to approximate decoding algorithms.

Greedy Decoding One such approximate decod-
ing algorithm is greedy decoding. In greedy de-
coding, we follow the conditional dependency path
and pick the symbol with the highest conditional
probability so far at each node. This is equiv-
alent to picking the best symbol one at a time
from left to right in conditional language mod-
elling. A decoded translation of greedy decoding

isY = (41,...,9r), where
¢ = arg maxlog pg(y|J<t, X). (D
yev

Despite its preferable computational complexity
O(|V| x T), greedy decoding has been over time
found to be undesirably sub-optimal.

Beam Search Beam search keeps K > 1 hy-
potheses, unlike greedy decoding which keeps only
a single hypothesis during decoding. At each time
step t, beam search picks K hypotheses with the
highest scores ([]4_, p(y¢|y<t, X)). When all the
hypotheses terminate (outputting the end-of-the-
sentence symbol), it returns the hypothesis with the
highest log-probability. Despite its superior perfor-
mance compared to greedy decoding, the computa-
tional complexity grows linearly w.r.t. the size of
beam K, which makes it less preferable especially
in the production environment.

3 Trainable Greedy Decoding
3.1 Many Decoding Objectives

Although we have described decoding in neural
machine translation as a maximum-a-posteriori es-
timation in log p(Y'| X), this is not necessarily the
only nor the desirable decoding objective.

First, each potential scenario in which neural
machine translation is used calls for a unique
decoding objective. In simultaneous transla-
tion/interpretation, which has recently been studied
in the context of neural machine translation (Gu
et al., 2016), the decoding objective is formulated
as a trade-off between the translation quality and
delay. On the other hand, when a machine transla-
tion system is used as a part of a larger information

extraction system, it is more important to correctly
translate named entities and events than to translate
syntactic function words. The decoding objective
in this case must account for how the translation is
used in subsequent modules in a larger system.

Second, the conditional probability assigned by
a trained neural machine translation model does
not necessarily reflect our perception of translation
quality. Although Cho (2016) provided empiri-
cal evidence of high correlation between the log-
probability and BLEU, a de facto standard metric
in machine translation, there have also been reports
on large mismatch between the log-probability and
BLEU. For instance, Tu et al. (2016a) showed
that beam search with a very large beam, which
is supposed to find translations with better log-
probabilities, suffers from pathological translations
of very short length, resulting in low translation
quality. This calls for a way to design or learn a
decoding algorithm with an objective that is more
directly correlated to translation quality.

In short, there is a significant need for designing
multiple decoding algorithms for neural machine
translation, regardless of how it was trained. It is
however non-trivial to manually design a new de-
coding algorithm with an arbitrary objective. This
is especially true with neural machine translation,
as the underlying structure of the decoding/search
process — the high-dimensional hidden state of a re-
current network — is accessible but not interpretable.
Instead, in the remainder of this section, we pro-
pose our approach of trainable greedy decoding.

3.2 Trainable Greedy Decoding

We start from the noisy, parallel approximate de-
coding (NPAD) algorithm proposed in (Cho, 2016).
The main idea behind NPAD algorithm is that a
better translation with a higher log-probability may
be found by injecting unstructured noise in the tran-
sition function of a recurrent network. That is,

2t = flz—1 + €, yi—1,e0(X;0¢);0¢),

where ¢, ~ N(0, (00/t)?). NPAD avoids potential
degradation of translation quality by running such
a noisy greedy decoding process multiple times
in parallel. An important lesson of NPAD algo-
rithm is that there exists a decoding strategy with
the asymptotically same computational complexity
that results in a better translation quality, and that
such a better translation can be found by manipu-
lating the hidden state of the recurrent network.
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Figure 1: Graphical illustrations of the trainable greedy decoding. The left panel shows a single step
of the actor interacting with the underlying neural translation model, and The right panel the interaction
among the underlying neural translation system (dashed-border boxes), actor (red-border boxes), and
critic (blue-border boxes). The solid arrows indicate the forward pass, and the dashed yellow arrows the
actor’s backward pass. The dotted-border box shows the use of a reference translation.

In this work, we propose to significantly extend
NPAD by replacing the unstructured noise €; with
a parametric function approximator, or an agent,
mg. This agent takes as input the previous hidden
state z;_1, previously decoded word ;1 and the
time-dependent context vector e;(X; 6.) and out-
puts a real-valued vectorial action a; € RIm(z0),
Such an agent is trained such that greedy decoding
with the agent finds a translation that maximizes
any predefined, arbitrary decoding objective, while
the underlying neural machine translation model
is pretrained and fixed. Once the agent is trained,
we generate a translation given a source sentence
by greedy decoding however augmented with this
agent. We call this decoding strategy trainable
greedy decoding.

Related Work: Soothsayer prediction function
Independently from and concurrently with our
work here, Li et al. (2017) proposed, just two weeks
earlier, to train a neural network that predicts an ar-
bitrary decoding objective given a source sentence
and a partial hypothesis, or a prefix of translation,
and to use it as an auxiliary score in beam search.
For training such a network, referred to as a Q net-
work in their paper, they generate each training
example by either running beam search or using
a ground-truth translation (when appropriate) for
each source sentence. This approach allows one to
use an arbitrary decoding objective, but it still re-

lies heavily on the log-probability of the underlying
neural translation system in actual decoding. We
expect a combination of these and our approaches
may further improve decoding for neural machine
translation in the future.

3.3 Learning and Challenges

While all the parameters—6,, 0 and .— of the
underlying neural translation model are fixed, we
only update the parameters ¢ of the agent 7. This
ensures the generality of the pretrained translation
model, and allows us to train multiple trainable
greedy decoding agents with different decoding ob-
jectives, maximizing the utility of a single trained
translation model.

Let us denote by R our arbitrary decoding objec-
tive as a function that scores a translation generated
from trainable greedy decoding. Then, our learning
objective for trainable greedy decoding is

IN9) = BE Y (RO,

where we used G (X) as a shorthand for trainable
greedy decoding with an agent 7.

There are two major challenges in learning an
agent with such an objective. First, the decoding
objective R may not be differentiable with respect
to the agent. Especially because our goal is to ac-
commodate an arbitrary decoding objective, this be-
comes a problem. For instance, BLEU, a standard
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quality metric in machine translation, is a piece-
wise linear function with zero derivatives almost
everywhere. Second, the agent here is a real-valued,
deterministic policy with a very high-dimensional
action space (1000s of dimensions), which is well
known to be difficult. In order to alleviate these
difficulties, we propose to use a variant of the de-
terministic policy gradient algorithm (Silver et al.,
2014; Lillicrap et al., 2015).

4 Deterministic Policy Gradient
with Critic-Aware Actor Learning

4.1 Deterministic Policy Gradient
for Trainable Greedy Decoding

It is highly unlikely for us to have access to the
gradient of an arbitrary decoding objective R with
respect to the agent 7, or its parameters ¢. Fur-
thermore, we cannot estimate it stochastically be-
cause our policy 7 is defined to be deterministic
without a predefined nor learned distribution over
the action. Instead, following (Silver et al., 2014;
Lillicrap et al., 2015), we use a parametric, differ-
entiable approximator, called a critic R°, for the
non-differentiable objective k. We train the critic
by minimizing

s .12

W) = By | B (z1ir) = ROY)

The critic observes the state-action sequence of the
agent 7 via the modified hidden states (21, ..., 27)
of the recurrent network, and predicts the associ-
ated decoding objective. By minimizing the mean
squared error above, we effectively encourage the
critic to approximate the non-differentiable objec-
tive as closely as possible in the vicinity of the
state-action sequence visited by the agent.

We implement the critic R¢ as a recurrent net-
work, similarly to the underlying neural machine
translation system. This implies that we can com-
pute the derivative of the predicted decoding objec-
tive with respect to the input, that is, the state-action
sequence z1.7, which allows us to update the actor
m, or equivalently its parameters ¢, to maximize
the predicted decoding objective. Effectively we
avoid the issue of non-differentiability of the origi-
nal decoding objective by working with its proxy.

With the critic, the learning objective of the ac-
tor is now to maximize not the original decoding
objective R but its proxy R such that

(@) = EX5 ™ [RE)].

Algorithm 1 Trainable Greedy Decoding

Require: NMT 6, actor ¢, critic 1, N¢, Ng, Se, Sa, T

1: Train 0 using MLE on training set D;

2: Initialize ¢ and 1);

3: Shuffle D twice into Dy and Dy,

4: while stopping criterion is not met do
5: fort =1: N.do
6.
7
8

Draw a translation pair: (X,Y) ~ Dy;

r,7¢ = DECODE(S., X, Y, 1)

Update ¢ using Vy 3", (75 — r&)°/(Se + 1)
9: fort=1: N, do

10: Draw a translation pair: (X,Y) ~ Dg;
11: r,7° = DECODE(Sq, X, Y, 0)

12: Compute wy = exp (— (rf — ri)? /7)
13: Compute Wy = wr/ >, Wk

14: Update ¢ using — >, (W - Vo)

Function: DECODE(S, X, Y, c)
L Ye={}Z ={}r={r={h
2: fork=1:Sdo
3: Sample noise € ~ N (0, o) for each action;
4 Greedy decoding Y* = G (X)) with ¢;
5 Collect hidden states z¥.1 given X, Y, 0, ¢
6 Y, « Y, u{Y*}
7: Zs — Zs U {27}
8: if c = 1 then
9 Collect hidden states z1.7 given X, Y, 6
10 Y, « Y, U{Y}
11 Zs — Zs U{z1r}
12: forY,Z €Y., Z, do
13 Compute the critic output r° «— Rj,(Z,Y)
14: Compute true reward r — R(Y,Y)
15: return r, r¢

Unlike the original objective, this objective func-
tion is fully differentiable with respect to the agent
7. We thus use a usual stochastic gradient descent
algorithm to train the agent, while simultaneously
training the critic. We do so by alternating between
training the actor and critic. Note that we maximize
the return of a full episode rather than the Q value,
unlike usual approaches in reinforcement learning.

4.2 Critic-Aware Actor Learning

Challenges The most apparent challenge for
training such a deterministic actor with a large ac-
tion space is that most of action configurations will
lead to zero return. It is also not trivial to devise
an efficient exploration strategy with a determinis-
tic actor with real-valued actions. This issue has
however turned out to be less of a problem than
in a usual reinforcement learning setting, as the
state and action spaces are well structured thanks
to pretraining by maximum likelihood learning. As
observed by Cho (2016), any reasonable perturba-
tion to the hidden state of the recurrent network
generates a reasonable translation which would re-
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Figure 2: The plots draw the improvements by the trainable greedy decoding on the test set. The x-axes
correspond to the objectives used to train trainable greedy decoding, and the y-axes to the changes in
the achieved objectives (BLEU for the figures on the left, and negative perplexity on the right.) The top
row (a) shows the cases when the trainable greedy decoder is used on its own, and the bottom row (b)
when it is used together with beam search. When training and evaluation are both done with BLEU, we
test the statistical significance (Koehn, 2004), and we mark significant cases with red stars (p < 0.05.)
The underlying neural machine translation models achieved the BLEU scores of 14.49/16.20 for En-Cs,
18.90/21.20 for Cs-En, 18.97/21.33 for En-De, 21.63/24.46 for De-En, 16.97/19.68 for En-Ru, 21.06/23.34
for Ru-En, 7.53/8.82 for En-Fi and 9.79/11.03 for Fi-En (greedy/beam).

ceive again a reasonable return.

Although this property of dense reward makes
the problem of trainable greedy decoding more
manageable, we have observed other issues during
our preliminary experiment with the vanilla deter-
ministic policy gradient. In order to avoid these
issues that caused instability, we propose the fol-
lowing modifications to the vanilla algorithm.

Critic-Aware Actor Learning A major goal of
the critic is not to estimate the return of a given
episode, but to estimate the gradient of the return
evaluated given an episode. In order to do so, the
critic must be trained, or presented, with state-
action sequences zj.7 similar though not identi-
cal to the state-action sequence generated by the
current actor 7. This is achieved, in our case, by
injecting unstructured noise to the action at each

time step, similar to (Heess et al., 2015):
as = ¢(2¢,ai-1) + 0 - €, (2)

where € is a zero-mean, unit-variance normal vari-
able. This noise injection procedure is mainly used
when training the critic.

We have however observed that the quality of
the reward and its gradient estimate of the critic is
very noisy even when the critic was trained with
this kind of noisy actor. This imperfection of the
critic often led to the instability in training the actor
in our preliminary experiments. In order to avoid
this, we describe here a technique which we refer
to as critic-aware actor gradient estimation.

Instead of using the point estimate %—Ig of the
gradient of the predicted objective with respect to
the actor’s parameters ¢, we propose to use the
expected gradient of the predicted objective with
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respect to the critic-aware distribution ). That is,

RS,

where we define the critic-aware distribution () as

2

QUe) ox exp(— (R, — R)?/7) exp(—5 ). ()
— ~——

Critic-awareness Locality

This expectation allows us to incorporate the noisy,
non-uniform nature of the critic’s approximation
of the objective by up-weighting the gradient com-
puted at a point with a higher critic quality and
down-weighting the gradient computed at a point
with a lower critic quality. The first term in )
reflects this, while the second term ensures that
our estimation is based on a small region around
the state-action sequence generated by the current,
noise-free actor 7.

Since it is intractable to compute Eq. (3) exactly,
we resort to importance sampling with the proposed
distribution equal to the second term in Eq. (4).
Then, our gradient estimate for the actor becomes
the sum of the gradients from multiple realizations
of the noisy actor in Eq. (2), where each gradient is
weighted by the quality of the critic exp(—(R{, —
R)?/7). 7 is a hyperparameter that controls the
smoothness of the weights. We observed in our
preliminary experiment that the use of this critic-
aware actor learning significantly stabilizes general
learning of both the actor and critic.

Reference Translations for Training the Critic
In our setting of neural machine translation, we
have access to a reference translation for each
source sentence X, unlike in a usual setting of
reinforcement learning. By force-feeding the ref-
erence translation into the underlying neural ma-
chine translation system (rather than feeding the
decoded symbols), we can generate the reference
state-action sequence. This sequence is much less
correlated with those sequences generated by the
actor, and facilitates computing a better estimate of
the gradient w.r.t. the critic.

In Alg. 1, we present the complete algorithm.
To make the description less cluttered, we only
show the version of minibatch size = 1 which can
be naturally extended. We also illustrate the pro-
posed trainable greedy decoding and the proposed
learning strategy in Fig. 1.

= =
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102 10° 104
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Figure 3: Comparison of greedy BLEU scores
whether using the critic-aware exploration or not
on Ru-En Dataset. The green line means the BLEU
score achieved by greedy decoding from the under-
lying NMT model.

5 Experimental Settings

We empirically evaluate the proposed trainable
greedy decoding on four language pairs — En-
De, En-Ru, En-Cs and En-Fi — using a standard
attention-based neural machine translation system
(Bahdanau et al., 2014). We train underlying neu-
ral translation systems using the parallel corpora
made available from WMT’15.! The same set of
corpora are used for trainable greedy decoding as
well. All the corpora are tokenized and segmented
into subword symbols using byte-pair encoding
(BPE) (Sennrich et al., 2015). We use sentences of
length up to 50 subword symbols for MLE train-
ing and 200 symbols for trainable decoding. For
validation and testing, we use newstest-2013 and
newstest-2015, respectively.

5.1 Model Architectures and Learning

Underlying NMT Model For each language
pair, we implement an attention-based neural ma-
chine translation model whose encoder and decoder
recurrent networks have 1,028 gated recurrent units
(GRU, Cho et al., 2014) each. Source and target
symbols are projected into 512-dimensional embed-
ding vectors. We trained each model for approxi-
mately 1.5 weeks using Adadelta (Zeiler, 2012).

Actor m  We use a feedforward network with a
single hidden layer as the actor. The input is a
2,056-dimensional vector which is the concate-
nation of the decoder hidden state and the time-
dependent context vector from the attention mech-

"http://www.statmt.org/wmt15/
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(a)

S: TnaBHoe 3epKano WHPPAKPACHOrO KOCMUYECKOro Tefeckona uMeeT AuvameTp 6,5 MeTpos

T: The primary mirror of the infrared space telescope has a diameter of 6.5 metres .
G: The main mirror of the infrared spaceboard has a diameter 6.5 m .

A: The main mirror of the infrared space-type telescope has a diameter of 6.5 meters .

(b) S: Ewe oAMH NYHKT - 3TO AATb WM MOHATb , YTO OHM AOJKHbl BeCTW cebsi OHNANH TAK Xe , KAK AendioT 3To odpnanH .
T: Another point is to make them see that they must behave online as they do offline .
G: Another option is to give them a chance to behave online as well as do this offline .
A: Another option is to give them to know that they must behave online as well as offline .
(c) S: Bo3MOXeH M [ONrOBPEMEHHbIN MUPp Mexay apabamu v M3paunbTsHAMM Ha BamxHem BocToke ?
T: Can there ever be a lasting peace between Arabs and Jews in the Middle East ?
G: Can the Long-term Peace be Qut of the Middle East ?
A: Can the Long-term Peace be between Arabs and Israelis in the Middle East ?

Figure 4. Three Ru-En examples in which the difference between the trainable greedy decoding (A)
and the conventional greedy decoding (G) is large. Each step is marked with magenta, when the actor

significantly influenced the output distribution.

anism, and it outputs a 1,028-dimensional action
vector for the decoder. We use 32 units for the
hidden layer with tanh activations.

Critic R® The critic is implemented as a variant
of an attention-based neural machine translation
model that takes a reference translation as a source
sentence and a state-action sequence from the actor
as a target sentence. Both the size of GRU units
and embedding vectors are the same with the under-
lying model. Unlike a usual neural machine transla-
tion system, the critic does not language-model the
target sentence but simply outputs a scalar value to
predict the true return. When we predict a bounded
return, such as sentence BLEU, we use a sigmoid
activation at the output. For other unbounded return
like perplexity, we use a linear activation.

Learning We train the actor and critic simultane-
ously by alternating between updating the actor and
critic. As the quality of the critic’s approximation
of the decoding objective has direct influence on the
actor’s learning, we make ten updates to the critic
before each time we update the actor once. We
use RMSProp (Tieleman and Hinton, 2012) with
the initial learning rates of 2 x 1075 and 2 x 1074,
respectively, for the actor and critic.

We monitor the progress of learning by measur-
ing the decoding objective on the validation set.
After training, we pick the actor that results in the
best decoding objective on the validation set, and
test it on the test set.

Decoding Objectives For each neural machine
translation model, pretrained using maximum like-
lihood criterion, we train two trainable greedy de-
coding actors. One actor is trained to maximize
BLEU (or its smoothed version for sentence-level

scoring (Lin and Och, 2004)) as its decoding ob-
jective, and the other to minimize perplexity (or
equivalently the negative log-probability normal-
ized by the length.)

We have chosen the first two decoding objectives
for two purposes. First, we demonstrate that it is
possible to build multiple trainable decoders with
a single underlying model trained using maximum
likelihood learning. Second, the comparison be-
tween these two objectives provides a glimpse into
the relationship between BLEU (the most widely
used automatic metric for evaluating translation
systems) and log-likelihood (the most widely used
learning criterion for neural machine translation).

Evaluation We test the trainable greedy decoder
with both greedy decoding and beam search. Al-
though our decoder is always trained with greedy
decoding, beam search in practice can be used to-
gether with the actor of the trainable greedy de-
coder. Beam search is expected to work better es-
pecially when our training of the trainable greedy
decoder is unlikely to be optimal. In both cases, we
report both the perplexity and BLEU.

5.2 Results and Analysis

We present the improvements of BLEU and per-
plexity (or its negation) in Fig. 2 for all the lan-
guage pair-directions. It is clear from these plots
that the best result is achieved when the trainable
greedy decoder was trained to maximize the target
decoding objective. When the decoder was trained
to maximize sentence-level BLEU, we see the im-
provement in BLEU but often the degradation in
the perplexity (see the left plots in Fig. 2.) On the
other hand, when the actor was trained to minimize
the perplexity, we only see the improvement in per-
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plexity (see the right plots in Fig. 2.) This confirms
our earlier claim that it is necessary and desirable
to tune for the target decoding objective regard-
less of what the underlying translation system was
trained for, and strongly supports the proposed idea
of trainable decoding.

The improvement from using the proposed train-
able greedy decoding is smaller when used together
with beam search, as seen in Fig. 2 (b). However,
we still observe statistically significant improve-
ment in terms of BLEU (marked with red stars.)
This suggests a future direction in which we extend
the proposed trainable greedy decoding to directly
incorporate beam search into its training procedure
to further improve the translation quality.

It is worthwhile to note that we achieved all of
these improvements with negligible computational
overhead. This is due to the fact that our actor is
a very small, shallow neural network, and that the
more complicated critic is thrown away after train-
ing. We suspect the effectiveness of such a small ac-
tor is due to the well-structured hidden state space
of the underlying neural machine translation model
which was trained with a large amount of parallel
corpus. We believe this favourable computational
complexity makes the proposed method suitable for
production-grade neural machine translation (Wu
et al., 2016; Crego et al., 2016).

Importance of Critic-Aware Actor Learning
In Fig. 3, we show sample learning curves with and
without the proposed critic-aware actor learning.
Both curves were from the models trained under
the same condition. Despite a slower start in the
early stage of learning, we see that the critic-aware
actor learning has greatly stabilized the learning
progress. We emphasize that we would not have
been able to train all these 16 actors without the
proposed critic-aware actor learning.

Examples In Fig. 4, we present three examples
from Ru-En. We defined the influence as the KL
divergence between the conditional distributions
without the trainable greedy decoding and with the
trainable greedy decoding, assuming the fixed pre-
vious hidden state and target symbol. We colored
a target word with magenta, when the influence of
the trainable greedy decoding is large (> 0.001).
Manual inspection of these examples as well as
others has revealed that the trainable greedy de-
coder focuses on fixing prepositions and removing
any unnecessary symbol generation. More in-depth

analysis is however left as future work.

6 Conclusion

We proposed trainable greedy decoding as a way
to learn a decoding algorithm for neural machine
translation with an arbitrary decoding objective.
The proposed trainable greedy decoder observes
and manipulates the hidden state of a trained neural
translation system, and is trained by a novel variant
of deterministic policy gradient, called critic-aware
actor learning. Our extensive experiments on eight
language pair-directions and two objectives con-
firmed its validity and usefulness. The proposed
trainable greedy decoding is a generic idea that can
be applied to any recurrent language modeling, and
we anticipate future research both on the funda-
mentals of the trainable decoding as well as on the
applications to more diverse tasks such as image
caption generating and dialogue modeling.
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