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Abstract

Crowdsourcing offers a convenient means
of obtaining labeled data quickly and inex-
pensively. However, crowdsourced labels
are often noisier than expert-annotated
data, making it difficult to aggregate them
meaningfully. We present an aggregation
approach that learns a regression model
from crowdsourced annotations to predict
aggregated labels for instances that have
no expert adjudications. The predicted la-
bels achieve a correlation of 0.594 with
expert labels on our data, outperforming
the best alternative aggregation method by
11.9%. Our approach also outperforms the
alternatives on third-party datasets.

1 Introduction

Publicly-available labeled datasets are scarce for
many NLP tasks, and crowdsourcing services such
as Amazon Mechanical Turk1 (AMT) offer re-
searchers a quick, inexpensive means of labeling
their data. However, workers employed by these
services are typically unfamiliar with the anno-
tation tasks, and they may have little motivation
to perform high-quality work due to factors such
as low pay and anonymity. To further complicate
matters, some workers may produce spam or ma-
licious responses. Thus, it is not uncommon for
workers to correlate poorly with one another.

Researchers using crowdsourcing services com-
monly aggregate the labels they receive via sim-
ple strategies such as using the majority or av-
erage label. These methods are best suited for
simple, straightforward tasks; with noisier data
such as that which may be obtained for more dif-
ficult or subjective tasks, these strategies may pro-
duce skewed labels that misrepresent the instance.

1www.mturk.com

Thus, it is desirable to devise more effective aggre-
gation strategies that consider factors such as label
distribution and worker quality, while still avoid-
ing manual adjudication of all instances.

In this work, our contributions are as follows:
(1) we develop a regression-based method for au-
tomatically aggregating crowdsourced annotations
of varying quality, with poor agreement and mini-
mal expert-adjudicated data, that addresses multi-
ple potential flaws or biases in non-expert human
annotation. To do so, we (2) crowdsource anno-
tations for a difficult NLP task, metaphor novelty
scoring, and (3) describe a process by which we
automatically detect untrustworthy workers. We
then (4) introduce a feature set that captures label
distribution and trustworthiness, and extract the
features from our crowdsourced annotations. Fi-
nally, (5) we train a regression model that predicts
aggregated labels for unseen instances and com-
pare the predictions to expert annotations, finding
that our method outperforms the best alternative
approach. We evaluate our approach both on our
data and on existing crowdsourcing datasets. All
datasets and source code are available for the re-
search community to improve on our results.2

2 Related Work

Several methods have been proposed to identify
low-quality workers in crowdsourced data. Jaga-
bathula et al. (2016) filtered adversarial workers in
binary labeling tasks by identifying those with out-
lier labeling patterns, and Lin et al. (2014) identi-
fied when additional labels for binary tasks should
be crowdsourced to optimize classifier accuracy.
Unlike these approaches, our filtering algorithm is
suitable for multi-class annotation tasks.

2Our data can be downloaded at http://hilt.cse.
unt.edu/resources.html, and our source code is
available at https://github.com/natalieparde/
label-aggregation.
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Various methods have also been explored as in-
telligent modes of label aggregation. Most (Snow
et al., 2008; Raykar et al., 2010; Karger et al.,
2011; Liu et al., 2012; Hovy et al., 2013; Felt
et al., 2014; Huang et al., 2015) have built upon
the probabilistic item-response model first pro-
posed by Dawid and Skene (1979), which simul-
taneously estimates annotator quality and aggre-
gated labels using an expectation-maximization
algorithm. MACE (Hovy et al., 2013) is a popular
implementation inspired by this that aggregates la-
bels as a function of the annotation and a learned
binary variable indicating whether the annotator is
a spammer. We posit that although annotator qual-
ity is an important factor in predicting accurate ag-
gregations, the interplay between it and other fac-
tors is more nuanced. Thus, rather than adapting
the item-response method, our learning approach
incorporates features that address multiple poten-
tial flaws or biases in crowdsourced annotations.

Some researchers have also used data-aware ap-
proaches to predict aggregations (Raykar et al.,
2010; Felt et al., 2014, 2015, 2016). We do not
use the data itself in this work, to avoid skewing
labels in a way that makes it trivial to learn clas-
sifiers based on the same data. To the best of our
knowledge, our work is the first to frame label ag-
gregation as a regression task, with features based
solely on workers and their labels, that learns en-
tirely from a small amount of expert-adjudicated
crowdsourced annotations.

3 Methods

3.1 Data Collection

We evaluated our approach on our new metaphor
novelty dataset, as well as on third-party datasets.
To build our dataset, we crowdsourced annota-
tions for 3112 potentially metaphoric word pairs,
and randomly divided the instances into training
(1036), validation (1038), and test (1038) subsets.
We developed features and selected our regression
algorithm using the training and validation sets
only; the test set was withheld until the evaluation.

3.1.1 Annotation Task
Instances were comprised of pairs of words from
1840 sentences in the VU Amsterdam Metaphor
Corpus (VUAMC) (Steen et al., 2010). The
VUAMC consists of documents for which individ-
ual words are labeled as metaphors. The novelty
of those metaphors varies widely, from highly con-

Example Score
Alice looked up, and there stood the
Queen in front of them, with her arms
folded, frowning like a thunderstorm.

Novel
Metaphor (3)

‘Once,’ said the Mock Turtle at last, with
a deep sigh, ‘I was a real Turtle.’

Conventional
Metaphor (1)

A large rose-tree stood near the entrance
of the garden: the roses growing on it
were white, but there were three garden-
ers at it, busily painting them red.

Non-
Metaphor
(0)

Table 1: Sample word pairs provided to Turkers.

ventional to quite novel. Each sentence for which
we collected annotations contained a content word
(noun, verb, adjective, or adverb) labeled as being
metaphoric, and one or more other content words
or personal pronouns that were syntactically re-
lated to the metaphoric word. Word pairs contain-
ing a metaphoric word and a syntactically-related
content word or personal pronoun were considered
instances. AMT workers (“Turkers”) were asked
to score each instance on a discrete scale from
non-metaphoric (0) to highly novel metaphor (3).
Some examples are shown in Table 1.3

Instances were grouped into Human Intelli-
gence Tasks (HITs) containing all instances asso-
ciated with 10 sentences each. Five worker assign-
ments were requested per HIT, and Turkers were
paid $0.20 per HIT. Overall, 237 Turkers anno-
tated 942 assignments, with an average correlation
of 0.269 per HIT (the poor agreement suggests this
is a very difficult annotation task). An expert adju-
dicated all 3112 instances; those labels were con-
sidered the gold standard.

3.1.2 Data Filtering
Spam and malicious workers were identified dur-
ing data collection using a filtering algorithm that
compared annotations with those completed by
“potentially good annotators” (PGA). Alg. 1 de-
scribes this process. Letting Hi be a set of HITs
collected, Ai be the set of annotators who anno-
tated Hi, and A=∪(A1, . . . , Aj) be the set of all
annotators, the algorithm computes three sets of
annotators: good annotators (GA), spammers or
malicious annotators (Bad Robots, or BR), and
annotators of currently unknown quality UQA.

R(aj , ak) computes the correlation coefficient
between two annotators aj and ak, where ak is
a potentially good annotator whose annotations
overlap with aj’s, and AVG R(aj) computes the
average correlation between aj and all ak. HITs

3Sentences are from Lewis Carroll’s Alice in Wonderland.
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Algorithm 1 Worker Filtering for Annotation Set i

PGA← A \BR
repeat

for aj in A do
Aj ← {a ∈ PGA} who annotated ≥ 1 unfiltered

HIT in common with aj

for ak in Aj do
rj,k ← R(aj , ak)

rj ← AVG R(aj)

B− ← {aj ∈ A|rj < 0.0}
B0 ← {aj ∈ A|rj == 0.0 or rj ==∞}4

B+ ← {aj ∈ A}, of size |B−|, with the lowest rj >
0.0

B<.1 ← {aj ∈ A|rj < 0.1}
PGA = A− (B− + B0 + B+ + B<.1)

until convergence or iterations = max
GA← {aj ∈ A|rj > 0.35}
BR← B− + B0 + BOTTOM(ROUND( 2

3
|B−|), B+)

completed under a minimum time threshold were
also filtered. Following algorithm completion, fil-
tered HITs and unpaid HITs from members of BR
were rejected, and annotators in BR were disqual-
ified from accepting future HITs. 116 total as-
signments were rejected by the filtering algorithm.
Annotators in UQA (UQA=A−GA−BR) who
had completed≥ 2 HITs and had an rj < 0.1 were
also disqualified. All other HITs were accepted.

3.2 Features

We designed features to capture the distribution
and trustworthiness of crowdsourced labels for
each instance. The features are described in Ta-
ble 2. ANNOTATIONS are designed to provide the
regression algorithm with label distributions based
on label value and worker trustworthiness. AVG.
R features are intended to further clarify worker
quality, and AVG. R (GOOD) is meant to provide
a more selective view of the same characteristic.
AVG., WEIGHTED AVG., and WEIGHTED AVG.
(GOOD) allow the regressor to consider three dif-
ferent versions of a popular aggregation strategy,
and finally, HIT R supplies the algorithm with an
estimate of agreement on the current instance to
consider when making its prediction.

3.3 Regression Algorithm

The approach utilizes a random subspace regres-
sor, which was selected based on its performance
on the training and validation data relative to a

4Turkers who assigned the same label to every instance, or
whose assignments had already been filtered for some other
reason (e.g., violating the minimum time threshold).

5We also include a second copy of these features ordered
by the annotators’ average r values.

Feature Description
ANNOTA-
TIONS

From highest to lowest label, the five an-
notations for the instance.5

AVG. R
For each annotator, in order of label value,
his/her avg. correlation with other workers
across all instances he/she annotated.5

AVG. R
(GOOD)

AVG. R in which each annotator is com-
pared only to annotators with rj>0.35. If
the annotator has no overlapping annota-
tions with those, AVG. R is repeated.

AVG. Average of the five ANNOTATIONS.

WEIGHTED
AVG.

Let li be the ith ANNOTATION, and
ri be its annotator’s AVG. R. Then,

WEIGHTED AVG. =

∑5

i=1
(li×ri)∑5

i=1
ri

.

WEIGHTED
AVG.
(GOOD)

Similar to WEIGHTED AVG., with
weights (ri) taken from AVG. R. (GOOD)
instead of AVG. R.

HIT R

The average weighted correlation among
annotators for the HIT containing the in-
stance. Letting wi,j be the weight for a
pair of annotators equal to ri+rj

2
, where ri

and rj are the AVG. R associated with an-
notators ai and aj , ri,j be the correlation
between annotators ai and aj for the HIT,
and P contain all annotator pairs (ai, aj)

for the HIT, HIT R =

∑
p∈P

ri,j×wi,j∑
p∈P

wi,j

Table 2: Features used.

Affect
(Emo.)

Affect
(Val.) WebRel Ours

Instances 600 100 2439 3112
Annotators 38 38 722 237
Annotators /
Instance 10 10 5 5

Label Range 0-100 -100-100 0-2 0-3

Table 3: Dataset Details

large variety of other regression algorithms. Ran-
dom subspace is similar in nature to bagging and
random forests, using multiple decision trees con-
structed from subsets of features selected ran-
domly without replacement to make its predictions
(Ho, 1998). We used the implementation from
the Weka library (Frank et al., 2016), with Weka’s
REPTree classifier as the base decision tree model.

4 Evaluation

4.1 Other Datasets

In addition to evaluating our approach on our data,
we evaluate it on three existing crowdsourcing
datasets that differ in terms of their size, noise
level, and number of annotators. Details about
each dataset are shown in Table 3, with additional
information below. Each third-party dataset was
randomly divided into 66% training and 34% test.
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Affect (Emotion and Valence). Affect (Emo-
tion) and Affect (Valence) were created for Snow
et al.’s (2008) work, and contain emotion (anger,
fear, disgust, joy, sadness, and surprise) and va-
lence ratings for 100 headlines from the SemEval
affective text annotation task (Strapparava and Mi-
halcea, 2007) test set. Annotations indicate the de-
gree of emotion in an emotion-headline pair (Af-
fect (Emotion)) and the overall positive or negative
valence of a headline (Affect (Valence)). Snow et
al. report an average correlation among annotators
of 0.669 (emotion) and 0.844 (valence).

WebRel. WebRel was originally created for the
TREC 2010 Relevance Feedback Track (Buckley
et al., 2010), and its annotations indicate the rele-
vance of web documents retrieved for queries. The
full dataset contains crowdsourced annotations for
20,232 topic-document pairs; 3277 of those pairs
additionally have gold-standard labels. The num-
ber of annotations collected per instance varied.
We used the subset of instances with gold stan-
dard labels and at least five annotations, and recon-
structed their HIT groupings based on the workers
that annotated each instance (we assumed all in-
stances annotated by the exact same set of work-
ers were originally from the same HIT). Average
correlation per HIT was 0.102 (quite noisy).

4.2 Experimental Setup

We compare our approach to a number of alter-
native methods, detailed with justifications in Ta-
ble 4. The alternatives are popular aggregation
techniques that address different potential flaws
in non-expert annotation. We train our approach
on the training (and validation, for our dataset)
data, and test on the test set. Since MACE (used
for Item-Response) learns from and outputs pre-
dictions for the same data, we provide it with
the entire dataset (training, validation if available,
and test), but report its results for the test in-
stances only. We provide input to MACE in an n-
dimensional sparse matrix (1 row per instance and
1 column per each of n distinct annotators in the
dataset, with filled values only for the annotators
who provided annotations for that instance), since
the approach requires knowledge of which annota-
tor provided each annotation to function properly.6

6Note: Item-response approaches are better-suited to sce-
narios in which fewer workers annotate more instances each,
but our results would also improve under such circumstances
where a worker’s trustworthiness, as measured by average r
value, is more reliable.

Approach Description

Majority
Vote

The most frequent label given by annotators
for the instance. Ties were broken by taking
the highest of the tied labels—assumes the
most popular opinion should be trusted.

Highest The highest label for the instance—assumes
those who see a metaphor should be trusted.

Item-
Response

The prediction expected from an item-
response model. We use MACE (Hovy
et al., 2013) to generate predictions since
it is a well-documented item-response ap-
proach that is publicly available online.

Mode
Average

The real-valued average of the mode(s) of
the instance’s labels (if only one mode,
this feature is that mode)—assumes popu-
lar opinions should be trusted, and equally
popular opinions are equally trustworthy.

Average The average of all five labels—assumes
each annotator’s opinion is equally valid.

Rule-
Based

Assigns a value of 0 if 4+ annotators labeled
the instance as such; otherwise, takes the
avg. non-zero label—assumes annotators
frequently miss tricky or subtle instances.

Table 4: Alternative Approaches.

We also evaluate the performance of different
feature subsets on our data. All−Averages con-
tains all features except for AVG., WEIGHTED

AVG., and WEIGHTED AVG. (GOOD). Each other
subset contains all features except for the respec-
tive feature type noted from Table 2. The corre-
lation coefficient (r) and root mean squared er-
ror (RMSE) were recorded for each test condition
since our estimator produced continuous-valued
scores. Since Mode Average, Average, and Rule-
Based result in continuous values and Majority
Vote, Highest, and Item-Response result in discrete
values, we present two versions of our results; in
one, predictions were rounded to the nearest inte-
ger (forcing a 0, 1, 2, or 3) and in the other, they
were left as-is. For the discrete approaches on our
data, we also report accuracy.

4.3 Results

The results are presented in Tables 5, 6, and 7.
Table 5 compares our method with each alter-
native approach on our data, and Table 6 com-
pares our method with the alternatives on each
third-party dataset. Table 7 shows the results
of the feature ablation. On our dataset, our ap-
proach outperformed all other approaches, with r
= 0.594 with the gold standard and RMSE (0-3)
= 0.605. This represented correlation improve-
ments of 18.6%, 11.9%, and 69.2% relative to
the continuous alternative approaches (Mode Aver-
age, Average, and Rule-Based, respectively). The
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Method r RMSE Acc.
Majority Vote 0.443 1.011 0.536
Highest 0.295 1.701 0.183
Item-Response 0.362 1.083 0.483
Ours (Rounded) 0.490 0.690 0.600
Mode Average 0.501 0.836 —
Average 0.531 0.743 —
Rule-Based 0.351 1.126 —
Ours (Continuous) 0.594 0.605 —

Table 5: Comparison with alternative methods.

Method r RMSE

Affect (Emotion)

Majority Vote 0.510 23.2
Highest 0.416 52.4
Item-Response 0.526 21.8
Ours (R) 0.578 16.6
Mode Average 0.506 21.9
Average 0.613 16.7
Rule-Based 0.462 26.5
Ours (C) 0.578 16.6

Affect (Valence)

Majority Vote 0.423 50.1
Highest 0.573 75.3
Item-Response 0.483 46.0
Ours (R) 0.938 18.4
Mode Average 0.644 37.4
Average 0.926 22.4
Rule-Based 0.913 19.7
Ours (C) 0.938 18.4

WebRel

Majority Vote 0.325 1.0
Highest 0.219 1.2
Item-Response 0.385 0.9
Ours (R) 0.412 0.8
Mode Average 0.350 0.9
Average 0.372 0.8
Rule-Based 0.282 0.9
Ours (C) 0.523 0.7

Table 6: Comparison on third-party datasets.

rounded predictions also outperformed all discrete
alternatives (Majority Vote, Highest and Item-
Response) with relative correlation improvements
of 10.6%, 66.1%, and 35.4%, respectively. All ap-
proaches had strong positive statistically signifi-
cant (p<<0.0001) correlations and the improve-
ment of our results over the alternatives was sta-
tistically significant (p<<0.0001).

On WebRel and Affect (Valence), our approach
outperformed all other approaches for both the dis-
crete and continuous conditions. On Affect (Emo-
tion), our approach outperformed all alternatives
for the discrete condition and had a lower RMSE
than all other approaches for the continuous condi-
tion (relative reductions in error to RULE-BASED,
AVERAGE, and MODE AVERAGE were 37.4%,
0.6%, and 24.2%, respectively), but the predic-
tions from AVERAGE correlated better with the
gold standard than did those of our approach.

Rounded Continuous
Feature Set r RMSE r RMSE
All 0.490 0.690 0.594 0.605
All−Annotations 0.440 0.716 0.557 0.627
All−Avg. R 0.480 0.701 0.581 0.611
All−Avg. R (G.) 0.494 0.692 0.582 0.611
All−Averages 0.465 0.703 0.594 0.607
All−HIT R 0.486 0.693 0.587 0.608

Table 7: Feature subset performance comparison.

Interestingly, Table 7 shows that the discrete
version of our approach performed slightly better
when the features indicating annotators’ correla-
tions with good annotators were removed; this was
not the case for the continuous-labeled version.
The raw annotations themselves were the most
valuable features for both cases. Their removal led
to a correlation reduction of 10.2% (rounded) and
6.2% (continuous) relative to using all features.

The results suggest that our approach is a suit-
able means of automatically aggregating noisy
crowdsourced labels, and that reasonable results
can be obtained even when training on only a small
amount of expert-adjudicated instances. Further,
the performance of the alternative approaches sug-
gests that typical aggregation techniques may be
less suitable for tasks with many workers who
completed relatively few annotations.

5 Conclusion

In this work, we present a regression-based ag-
gregation method that addresses multiple poten-
tial flaws or biases in non-expert human annota-
tion. We show that the predictions from our ap-
proach correlate at r=0.594 with expert adjudica-
tions for a noisy, difficult task, outperforming the
best alternative approach by 11.9% on our data
and by up to 63.7% on third-party crowdsourcing
datasets. This improvement shows that a learn-
ing approach can overcome some of the challenges
faced by simple label aggregation techniques for
these types of tasks. Our data and source code is
publicly available for further research by others.
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