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Abstract

In this paper, we present a novel docu-
ment similarity measure based on the def-
inition of a graph kernel between pairs of
documents. The proposed measure takes
into account both the terms contained in
the documents and the relationships be-
tween them. By representing each doc-
ument as a graph-of-words, we are able
to model these relationships and then de-
termine how similar two documents are
by using a modified shortest-path graph
kernel. We evaluate our approach on
two tasks and compare it against several
baseline approaches using various perfor-
mance metrics such as DET curves and
macro-average F1-score. Experimental re-
sults on a range of datasets showed that
our proposed approach outperforms tradi-
tional techniques and is capable of mea-
suring more accurately the similarity be-
tween two documents.

1 Introduction

In recent years, we have witnessed a tremendous
growth in the volume of textual documents avail-
able on the Web. With this rapid increase in the
number of available content, new opportunities for
knowledge extraction have arisen. Many text min-
ing tasks such as information retrieval, text catego-
rization and document clustering involve the direct
comparison of two documents. It is thus crucial to
be able to determine accurately how similar two
documents are by defining a document similarity
measure.

Generally speaking, a similarity measure is a
real-valued function that quantifies the common

information shared by two objects (in our case
documents). Determining the similarity between
two documents is not a trivial task. Whether two
documents are similar or different is not always
clear and may vary from application to applica-
tion.

Similarity measures that make use of the vector-
space model (Salton et al., 1975) treat words in a
document as if they were independent of one an-
other, which is not realistic. In fact, words relate
to one another to form meaningful phrases and to
develop ideas. It is known that the human brain
utilizes these relations between words to facilitate
understanding (Altmann and Steedman, 1988). In
general, we assume that two terms are related if
they co-occur together in a small context, typi-
cally a phrase or a window of specific size, which
resulted in n-gram features in many text mining
tasks (an n-gram is a sequence of n terms in this
paper). But n-grams correspond to sequences of
words and thus fail to capture word inversion and
subset matching (e.g., “article about news” vs.
“news article”). To take into account these statis-
tical relations, we propose to represent each doc-
ument as a graph-of-words instead. And then, in
order to measure the similarity between two doc-
uments, we capitalize on recent advances in graph
kernels. Kernels can be thought of as measures of
similarity between pairs of objects (Scholkopf and
Smola, 2002). A graph kernel is a kernel func-
tion that measures the similarity between pairs of
graphs.

Our aim in this paper is neither to define a sim-
ilarity measure for only a certain category of doc-
uments based on background knowledge and fea-
tures specific to that field nor to improve similar-
ity estimation by using external knowledge. In-
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stead, we propose to define a similarity measure
that does not incorporate any background or ex-
ternal knowledge. Hence it is, without changes,
applicable to all types of textual documents even
if they come from different areas. The method
takes as input a pair of documents and automati-
cally computes how similar they are to each other
based solely on their content.

The rest of this paper is organized as follows.
Section 2 provides an overview of the related work
and elaborates our contribution. Section 3 pro-
vides a detailed description of our proposed graph-
of-words kernel. Section 4 evaluates the proposed
approach on a wide range of tasks. Finally, Sec-
tion 5 summarizes the work and presents potential
future work.

2 Related Work

In this section, we review the related work
published in the areas of document similarity,
graph kernels, kernel-based text categorization
and graph-based text categorization.

2.1 Document Similarity

There has been a variety of similarity measures de-
fined to assess how close two objects are to each
other, including documents. Let < dj,d2 > be a
pair of documents and D; (resp. D3) the set of
terms in d; (resp. dz). Common similarity mea-
sures discussed by Manning (1999) are defined as
follows:

Matching(dl,dg) = ‘Dl N DQ‘
‘Dl ﬁDg‘
|D1| + | D2
o ‘Dl ﬁDQ‘
- ‘Dl UD2|
|D1 ﬁD2|
min(|D1|, |Da)
‘Dl ﬂD2|

VID1| x| Dy

Dice(dl, dg) =2

Jaccard(dy, ds)

Overlap(dy,ds) =

Cosine(dy,ds) =

The terms might be processed unigrams as well
as processed n-grams present in the text. The set
of operations described above are equivalent to
vector operations when representing d; and ds as
binary vectors.

2.2 Graph Kernels

Graph kernels are instances of the R-convolution
kernels introduced by Haussler (1999). Convo-

Iution kernels have been proposed as a princi-
pled way of designing kernels on structured ob-
jects, such as sequences, trees and graphs. Graph
kernels compute the similarity between pairs of
graphs, based on common substructures they
share. A wide variety of substructures has been
proposed, such as random walks (Gértner et al.,
2003; Vishwanathan et al., 2010), shortest paths
(Borgwardt and Kriegel, 2005), subtrees (Ramon
and Gartner, 2003), cycles (Horvath et al., 2004),
and graphlets (Shervashidze et al., 2009).

2.3 Kernel-based Text Categorization

In recent years, there has been a great deal of
work in using kernel methods, such as SVMs for
text classification (Joachims, 1998; Dumais et al.,
1998). Such work concentrates on building spe-
cialized kernels aimed at measuring similarity be-
tween documents. We outline some of these ap-
proaches below.

The works closest to ours are the ones reported
by Lodhi et al. (2002) and by Cancedda et al.
(2003). Lodhi et al. propose the use of string ker-
nels as an alternative to the vector-space model.
The feature space is generated by any ordered sub-
sequence of characters found in the text not neces-
sarily contiguously. Each subsequence consists of
a specific number of characters and is weighted by
an exponentially decaying factor of its full length
in the text. Due to the enormous amount of com-
putation needed to compute this feature vector,
the authors present a dynamic programming tech-
nique, which allows the efficient calculation of
the kernel values. Our work differs from theirs
in that we use graph kernels instead of sequence
kernels, and we concentrate on the word level in-
stead of the character level. Cancedda et al. mod-
ified their string kernel to work with sequences of
words rather than characters. Two sequences of
words are considered similar if they have many
common words in a given order. The similarity
between two documents is assessed by the num-
ber of matching word sequences. Non-contiguous
occurrences are penalized according to the number
of gaps they contain. The proposed kernel is more
appealing as it is more computationally efficient
and it takes advantage of the standard linguistic
preprocessing techniques. This approach differs
in fundamental respects from our work since we
represented documents as graphs-of-words in or-
der to model word co-occurrence rather than se-
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quences of words and we used a graph kernel in-
stead of a sequence kernel to measure the similar-
ity between pairs of documents. Other text cate-
gorization works use kernels that measure the se-
mantic similarity between concepts extracted from
the text (Bleik et al., 2013; Wang and Domeniconi,
2008).

2.4 Graph-based Text Categorization

Our work is also related to methods that repre-
sent documents as graphs and perform graph min-
ing tasks to achieve improved classification per-
formance. These methods either extract frequent
subgraphs which are then used to produce fea-
ture vectors for the documents (Jiang et al., 2010;
Rousseau et al., 2015) or they determine term
weights to be used in the vector-space model based
on centrality criteria or random walks (Hassan
et al., 2007; Malliaros and Skianis, 2015).

3 A Graph Kernel for Document
Similarity

In this section, we first discuss the essential def-
initions from graph theory. We then present
our graph-of-words model for representing tex-
tual documents. And finally, we define our cus-
tom Shortest-Path Graph Kernel (SPGK) capable
of measuring the similarity between pairs of doc-
uments.

3.1 Graph Concepts

Let G = (V,€) be an undirected and unweighted
graph consisting of a set V of vertices and a set
& of edges between them. In this paper, we will
denote by n the number of vertices and by m the
number of edges.

A labeled graph is a graph with labels on ver-
tices and/or edges. Given a set of labels L, ¢ :
V' — L is a function that assigns labels to the
and/or edges of the graph. In our case, we deal
with fully-labeled graphs as labels are assigned
both to vertices and to edges.

A graph G can be represented by its adjacency
matrix A. The (i,5)"" entry of A is 1 if the edge
(vi,v;) between vertices v; and v; exists, and 0
otherwise.

A walk in a graph G is a sequence of vertices
V1,02, ...,V+1 Where v; € V and (1)2‘, Ui—i—l) €&
for 1 <7 < k. The length of the walk is equal to
the number of edges in the sequence, i.e. k in the
above case. A walk in which v; # v; & @ # j

is called a path. In other words, a path is a walk
without repetition of nodes.

3.2 Graph-of-words

We chose to represent each textual document as
a statistical graph-of-words, following earlier ap-
proaches in keyword extraction (Ohsawa et al.,
1998; Mihalcea and Tarau, 2004) and more re-
cent ones in ad hoc IR (Blanco and Lioma, 2012;
Rousseau and Vazirgiannis, 2013) and in summa-
rization (Meladianos et al., 2015).

The construction of each graph is preceded by a
preprocessing phase where standard text process-
ing tasks such as tokenization, stopword, punctua-
tion and special character removal, and stemming
are performed. The processed document is then
transformed into an unweighted, undirected graph
whose vertices represent unique terms and whose
edges represent co-occurrences between the con-
nected terms within a fixed-size window (hence
the statistical denomination). The graph-of-words
representation of text provides enhanced model-
ing capabilities compared to the bag-of-words rep-
resentation. Besides the terms (vertices), it also
models the relationships between them (edges).
All the words present in a document have some
relationships with one another, modulo a window
size outside of which the relationship is not taken
into consideration, and graphs are able to capture
these dependencies. The extended modeling capa-
bilities, however, come with an increase in com-
plexity.

An example of a document represented as an
unweighted undirected graph is given in Figure 1.
The source text comes from Shakespeare’s play
“Hamlet”: “to be or not to be: that is the ques-
tion”. For illustration purposes, only the colon
is removed and no other text processing tasks are
performed. The size of the window is set to 2,
i.e. it captures bigram relationships. Hence, each
word (vertex) is connected with an edge with its
previous and its next word, if any.

3.3 Shortest-Path Graph-of-words Kernel
(SPGK)

Our proposed approach measures the similar-
ity between two textual documents by represent-
ing them as graphs-of-words, transforming these
graphs into other graphs, and using graph ker-
nels to calculate the similarity of the new graphs.
Specifically, we capitalize on the shortest-path
graph kernel (Borgwardt and Kriegel, 2005) and
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Figure 1: Example of the graph representation of
a textual document.

we modify it to compare the graph representations
of pairs of documents.

The first step of our proposed approach is to
transform the graph-of-words representation of
each document G into another graph C whose ver-
tices are connected with an edge only if the short-
est distance between them is not greater than a
variable d. The emerging graph contains the same
set of vertices as the graph-of-words from which
it was generated. However, there exist edges only
between vertices that are connected by a path of
length at most d. Every node in C is labeled by the
term that it represents, while every edge between
two vertices is labeled by the shortest distance be-
tween these vertices given that it is no greater than
d. Specifically, the label of an edge e that links
two vertices whose shortest path is p is set equal to
label(e) = 1/p. For d = 1, the emerging network
is equivalent in a structural sense to its correspond-
ing graph-of-words. For greater values of d, it is
very likely that the number of edges of the graph
will have increased compared to its predecessor.

The commonly-used unigram bag-of-words
representation assumes that words in a document
are independent of one another. Although sim-
ilarity measures based on this assumption have
shown to work well in practice in many fields, it is
not rational to completely ignore word order and
word dependence. Hence, the distance between
two terms in a document determines their rela-
tionship. This led us to explore alternative doc-

ument similarity metrics that take into account the
co-occurrence of words in the documents. More
specifically, we assume that two terms are re-
lated given that they appear together inside a win-
dow. The underlying assumption is that each word
present in a document has some relationship with
the other words that are close to it. We set the size
of the window over the processed text equal to 2.
Therefore, in our graph-of-words representation of
a document, each term is linked with its preceding
and its following term with an edge. In our trans-
formed graphs, terms are not only connected with
terms that are next to them, but also with terms that
are close to their neighbors (d = 2), with lower
label values, and close to neighbors of their neigh-
bors (d = 3), with even lower label values. Param-
eter d determines how far from the initial terms we
allow the paths to go. Our intuition is that given
an initial term, terms that are close to terms that
are close to the initial term or beyond, may have
also some relation with the initial term, and the
strength of this relation decreases as the shortest
path length increases. Therefore, although the pro-
posed kernel does not incorporate any knowledge
of the language being used, it does capture some
statistical information and is thus capable of out-
performing metrics based on the unigram and even
n-gram vector-space model.

To determine the edge labels in the new graph
C, we can perform depth-first search (DFS) or
breadth-first search (BFS) traversals from each
vertex in the graph, limiting the depth to d. The
complexity for calculating paths of length up to
d from a source vertex to all other vertices using
either DFS or BFS is at most O(b%), where b is
the average branching factor. The branching fac-
tor depends on the average degree of the vertices
of the graphs-of-words G which, in its turn, de-
pends on the selected size of the sliding window.
For W = 2, the average degree of the vertices will
be typically only slightly above 2 and the branch-
ing factor will be only slightly above 1. Calcu-
lating paths of length up to d for all vertices takes
thus O(nb?) time. This still yields reasonable time
complexity estimates for small values of d.

After our original graphs have been transformed
into the graphs described above, we can measure
their similarity using the following kernel:

Definition 1 (Custom shortest-path graph kernel).
Let Gy, Go denote two graph-of-words represen-
tations of two textual documents dy, dy that are
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transformed into graphs Cy, Co through the pro-
cess described above. The proposed Shortest-
Path Graph Kernel (SPGK) on C1 = (V1,&1) and
Co = (Va, &9) is defined as follows:

(Zm EV1,v2€V> knode (vly U2)
(1)
2 e ety ences Fuan(€1:€2)
k(1. dy) = byt Kuoi
(1)

where k4. is a positive definite kernel for com-
paring two vertices, ksglk a positive definite ker-
nel for comparing two edge walks of length 1 in
C (i.e. up to din G) and norm a normalization

factor described next.

The similarity value generated by our custom
shortest-path graph kernel is equal to the sum over
the kernel values of all pairs of vertices on the
transformed graphs plus the sum over the kernel
values of all pairs of edge walks of length 1 over a
positive normalization factor. The k,,,4. kernel is
a function for comparing two vertices. In practice,
we use a delta kernel defined as:

1 ifé(vl) = E(vg),

knode (U17 UQ) = { 0 otherwise (2)

but other works have considered distances in word
embeddings for instance to account for word sim-
ilarity at the cost of having to compare every node
of a graph to every other nodes of the other graph
(Srivastava et al., 2013).

The normalization factor is introduced because
the nominator of the proposed kernel depends on
the length of the compared documents. Specifi-
cally, given the adjacency matrices of the trans-
formed graph representations of two documents
A1, As where the value of each entry in the adja-
cency matrix is set equal to the label of the corre-
sponding edge, and the diagonal matrices D, Do
with diagonal entries set to 1 if the correspond-
ing term exists in the corresponding document, we
first compute the matrices M7, Mo as shown be-
low:

M; =A;+Dy

M, = Ay + D>

and we then compute the normalization factor us-
ing the following formula:

norm = [|[Mql||r x ||[Ma||r

where || - || 7 is the Frobenius norm for matrices.

The kfﬂl (Zl ;. kernel can be expressed as the prod-
uct of kernels on vertices and edges along the
walk. Only walks of length 1 in C are consid-
ered, therefore, ksglk can be calculated in terms
of the original vertex, the destination vertex, and

the edge connecting them.

Definition 2 (Custom edge walk kernel). Let
u1, v be two vertices of graph Cy (ui,v1 € Vi)
and ey the edge connecting them. Let also ua, vy
be two vertices of graph Co (ua, vy € Vo) and es
the edge connecting them. The edge walk kernel is
defined as follows:

kfjjlk(el, €2) = knode(u1,u2) X kedge(e1, €2)

X knode (Ul ) UQ)

3)

where kyoqe is the kernel function defined above
and keqqe is a kernel function for comparing two
edges defined as follows:

E(el) X E(eg) ife; € E1N
kedge(elu 62) = e € 527
0 otherwise
4)

The measure of similarity between two graphs
depends on the kernel values corresponding to the
vertices and edges that compose each walk, while
the matching between two vertices or two edges
is determined by comparing their labels. The val-
ues of our kernel function lie in the interval [0, 1].
It takes a value equal to O for documents with no
common terms and a value equal to 1 for identical
documents.

Lemma 1. SPGK is a valid kernel.

Proof. Based on the proofs presented in (Borg-
wardt and Kriegel, 2005) and (Borgwardt et al.,
2005), we show that our custom shortest-path
graph kernel is positive definite. The k,,,4. kernel
is a delta kernel, which is known to be positive def-
inite (Scholkopf and Smola, 2002) and therefore a
valid kernel. The kg4 kernel is also a delta ker-
nel multiplied by a positive real number. Since the
multiplication of a kernel by a positive constant
preserves positive definiteness, this kernel is also
valid. Regarding the kfvl glk kernel, it is positive
definite as the point-wise multiplication of posi-
tive definite kernels (Kpode, Kedge) pPreserves posi-
tive definiteness. The Zvlevl ey Fnode (v1,v2)
function is the sum of valid kernel functions,
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hence, it is also positive definite. Regarding the
D e1cErercts ksglk(el,eg) function, it is a walk
kernel that takes into account only walks of length
1 on the transformed graphs and is zero-extended
to the whole set of pairs of walks that do not sat-
isfy the above constraint. Therefore, kernel values
for walks with length greater than 1 are set to zero.
This zero-extension is known to preserve positive
definiteness (Haussler, 1999). This function is a
convolution kernel, which is proven to be positive
definite (Haussler, 1999). Finally, the kernel is di-
vided by a positive constant and its positive defi-
niteness is preserved. O

3.4 Run Time Complexity

We now determine the time complexity of our pro-
posed kernel for measuring the similarity between
two documents. Let us assume that the graph-of-
words representations of the two documents con-
sist of n vertices each. To determine the shortest
paths of length at most d from a root vertex to all
other vertices, we need O(b?) time when using a
graph traversal algorithm (depth-first or breadth-
first search). There are also n vertices in the trans-
formed graph, hence, the transformation will re-
quire O(nb?) time for each graph. In order to de-
termine the kernel value, it is necessary to com-
pute the value of kfﬂl (Zl ;. for all pairs of edges be-
tween the two transformed graphs. The number
of edges in the transformed graph can be at most
n? in the case all the shortest paths in the origi-
nal graph are no longer than d. Thus, there are
at most n? - n?> = n* pairs of edges. However,
due to the label enrichment that has been applied
to the vertices of the transformed graphs, the num-
ber of matching nodes in the two graphs has been
radically reduced and the number of pairs of edges
that have to be considered is also reduced. Specifi-
cally, we have to consider n? pairs of edges as only
paths between vertices whose label is the same in
the two graphs are considered. The kernel value
can thus be computed in O(n? + nb?) time.

3.5 Alternative Computation Method for
d=1

In the case we consider only the common paths
of length 1, there is a more efficient algorithm to
compute the kernel values. The common paths
of length 1 correspond to common edges between
the graph representations of the documents. The
emerging kernel takes into account the number of

common vertices (terms) between the two graphs
and the number of common edges (terms co-
occurring in the same window) as well. More
specifically, given two documents d; and ds, the
adjacency matrices of their graph representations
A1, As where each entry in the adjacency matrix
is set to 1 if the corresponding edge exists in the
graph and the diagonal matrices D, Dy with di-
agonal entries set to 1 if the corresponding term
exists in the document, we first compute the ma-
trices M1, My as described previously and then
we compute the kernel value using the following
formula:
z M1 O M2

k(dy, do) = 5
e VA VA R

where (-o0-) is the Hadamard or element-wise prod-
uct between matrices.

If n is the number of unique node labels, i.e.
the length of the vocabulary, and m the number
of edges, the computation of the kernel values re-
quires O(n + m) time in the worst case scenario.
For the baseline similarity measures, with unigram
features, the computational cost is O(n) time but
it goes up as we consider higher order n-grams.

4 Experiments and Evaluation

In this section, we present the experiments we con-
ducted to evaluate and validate our proposed ker-
nel between documents.

4.1 Evaluation Metrics

To assess the effectiveness of the different ap-
proaches, we employed a set of well-known eval-
uation metrics inherited from Information Re-
trieval: accuracy, macro-average FI-score and for
the story link detection task DET curves (Martin
etal., 1997).

The DET curve is a variant of the ROC
curve that plots the missed detection probability
(Piss = fn/(tp+fn)) versus the false alarm prob-
ability (P, = f?/(tn+fp)) for various system op-
erating points, which allows someone to get a
greater insight into the effectiveness of the eval-
uated approaches. A method is considered to per-
form best at thresholds that correspond to points
that are close to the lower-left of the graph (i.e.
lower error probabilities) and the area under the
curve should be minimal.

For the story link detection experiments, we
also computed the normalized Cp.; costs, the
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Dataset # training # test # classes Voca!)ulary avg. terms avg.
examples | examples size per document | degree

WebKB 2,803 1,396 4 7,772 77.93 2.54

News 32,604 Cv 7 34,131 25.57 2.08

Subjectivity 10,000 CvV 2 21,335 20.74 2.08

Amazon 6,400 1,600 4 39,133 86.96 2.67

Polarity 10,662 (6\Y% 2 18,777 18.44 2.00

Table 1: Summary of the 5 datasets that were used in our text categorization experiments.

standard performance measure of TDT as de-
scribed in (Fiscus and Wheatley, 2004).

4.2 Datasets

We evaluate the SPGK and the baselines on 5 stan-
dard datasets for text categorization: (1) WebKB:
Web pages collected from Computer Science de-
partments of various Universities manually classi-
fied into 7 categories (we removed Web pages that
belong to the classes “staff”, “department” and
“other”) (Craven et al., 1998). (2) News: News
extracted from RSS feeds of popular newspaper
websites classified into 7 categories based on the
taxonomies of their publishing websites (Vitale
et al., 2012). (3) Subjectivity: Subjective
and objective sentences corresponding to movie
reviews from Rotten Tomatoes and to plot sum-
maries gathered from the Internet Movie Database
respectively (Pang and Lee, 2004). (4) Amazon:
Product reviews over four different sub-collections
(Blitzer et al., 2007). (5) Polarity: Positive
and negative snippets acquired from Rotten Toma-
toes (Pang and Lee, 2005). Table 1 shows statistics
of the datasets that were used for the evaluation.
For the Story Link Detection task, we employed
the TDT-5 corpus that contains stories from var-
ious newswire sources (Glenn et al., 2006; Graff
and Kong, 2006). We only used the English part
of the dataset for our experiments consisting of
221, 306 documents.

4.3 Baselines

The similarity measure presented in this paper is
best suited for settings where the concept of a pre-
defined corpus does not exist. For example, it
could find applications in plagiarism detection and
in cases where independent pairs of documents
must be compared to each other. In such settings,
due to the absense of a corpus, we cannot learn
mappings of terms to a vector space (i. e. word em-
beddings) or use methods that take advantage of
the corpus to increase their performance. Hence,

our set of baselines includes methods that take as
input two documents and output their similarity.

More specifically, the performance of our pro-
posed kernel was compared to the performances
of three baseline kernels based on similarity mea-
sures between pairs of documents < dj,do > in
the n-gram feature space (up to 4-grams):

1. The linear kernel, which uses the dot product as
similarity measure: kdp(dﬂl, d;) = dz -d; where
d is the n-gram feature vector associated with
the document d;

2. Cosine, which measures the cosine of the an-
gle between the two vectors: k.(dy,d2) =
dy-do .
—182__ where || - || is the Lo—norm.
1l lld2 I -1
3. Tanimoto coefficient (also known as Jaccard co-
efficient), which measures the intersection of
features divided by their union: ky.(dy,d2) =
L didy
ld1]12+]|d2|?~d1-d2

In the task of text categorization, we also com-
pared the proposed kernel against the so-called
Dynamic Convolutional Neural Network (DCNN)
which is capable of generating representations for
larger pieces of text such as sentences and docu-
ments (Kalchbrenner et al., 2014) and a convolu-
tional neural network (CNN) architecture that has
recently showed state-of-the-art results on many
NLP sentence classification tasks (Kim, 2014).
We used two variants of the CNN: (1) a model
where all words are initialized to random vec-
tors and are kept static during training (CNN
static,rand), and (2) a model where again all
words are initialized to random vectors, but are
modified during training (CNN non-static,rand).
The second model as well as DCNN have access to
the whole corpus to generate word/document em-
beddings. Hence, it is not fair in a sense to com-
pare the proposed kernel against these methods.
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Dataset WebKB News Subjectivity Amazon Polarity
Method Accuracy Fl-score | Accuracy Fl-score | Accuracy Fl-score | Accuracy Fl-score | Accuracy Fl-score
n=1 0.9026 0.8923 0.8110 0.7764 0.8992 0.8992 0.9188 0.9188 0.7627 0.7626
Dot product n=2 0.9047 0.8950 0.8091 0.7732 0.9101 0.9101 0.9200 0.9202 0.7746 0.7745
n=3 0.9026 0.8917 0.8072 0.7710 0.9090 0.9090 0.9181 0.9185 0.7741 0.7740
n=4 0.8940 0.8813 0.8031 0.7651 0.9039 0.9039 0.9131 0.9133 0.7719 0.7718
n=1 0.9248 0.9188 0.8117 0.7766 0.9003 0.9002 0.9400 0.9400 0.7670 0.7669
Cosine n=2 0.9305 0.9275 0.8149 0.7797 0.9094 0.9094 0.9413 0.9413 0.7756 0.7756
n=3 0.9298 0.9259 0.8097 0.7738 0.9099 0.9099 0.9419 0.9418 0.7765 0.7765
n=4 0.9248 0.9208 0.8076 0.7709 0.9076 0.9075 0.9413 0.9413 0.7753 0.7753
n=1 0.9062 0.8983 0.8155 0.7815 0.9094 0.9093 0.9225 0.9226 0.7749 0.7748
Tanimoto n=2 0.9040 0.8945 0.8075 0.7700 0.9061 0.9060 0.9181 0.9185 0.7735 0.7735
n=3 0.9241 0.9180 0.7980 0.7575 0.9021 0.9020 0.9344 0.9347 0.7648 0.7648
n=4 0.9176 0.9084 0.7899 0.7483 0.8953 0.8952 0.9300 0.9300 0.7586 0.7586
DCNN 0.8918 0.8799 0.7991 0.7615 0.9026 0.9026 0.9181 0.9181 0.7326 0.7326
CNN static,rand > 1 day 0.7757 0.7337 0.8716 0.8715 0.8881 0.8882 0.7150 0.7150
non-static,rand > 1 day 0.8113 0.7749 0.8961 0.8960 0.9356 0.9356 0.7654 0.7653
d=1 0.9327 0.9278 0.8104 0.7749 0.9148" 0.9148 0.9400 0.9401 0.7776 0.7775
SPGK d=2 0.9370" 0.9336 0.8089 0.7729 0.9146j 0.9146 0.9413 0.9413 0.7789* 0.7788
d=3 0.9291 0.9233 0.8078 0.7703 0.9137° 0.9137 0.9444 0.9444 0.7761 0.7760
d=4 0.9291 0.9223 0.8097 0.7730 09118 09118 0.9463 0.9463 0.7780 0.7780

Table 2: Performance of the 6 approaches in text categorization. * indicates statistical significance in
accuracy improvement at p < 0.05 using the micro sign test against the Cosine (n = 2) baseline of the
same column. > 1 day indicates that the computation did not finish after 1 day.

4.4 Text Categorization

To perform text categorization, for all methods ex-
cept the DCNN and the two CNNs, we employed
a Support Vector Machine (SVM) classifier (Boser
et al., 1992). It is interesting to note that all we
need to train an SVM classifier is the kernel ma-
trix of the training examples. We optimized the
parameter C' of the SVM by performing 10-fold
cross-validation on the training set. We then made
predictions on the test set using the optimal value
of C. For DCNN the dimensionality of the gen-
erated embeddings was set to 100, while for the
two CNNs it was set to 300. For DCNN and the
two CNNs, the number of training epochs was
set to 25. All similarity measures were coded in
Python'.

For each value of the parameter d, we obtain a
new kernel and in turn the resultant kernel matrix
contains different values. To study the effect of
parameter d on the classification performance, we
performed tests for values of d ranging from 1 to
4. We did not further increase the value of d since
in most cases, for values greater than 4, the perfor-
mance of the classifier stayed the same.

Table 2 shows the performance of the baseline
methods and the proposed shortest-path graph ker-
nel (SPGK), on the five datasets. Bold font marks
the best performance in a column, while * indi-

!Code available at: http://www.db-net.aueb.
gr/nikolentzos/code/spgk.zip

cates statistical significance in accuracy improve-
ment at p < 0.05 using the micro sign test (Yang
and Liu, 1999) against the Cosine (n = 2) baseline
of the same column. We chose to test for signifi-
cance against that measure, as it corresponds to the
best-performing baseline. On all datasets except
one (News), SPGK outperforms the other three
similarity measures and the neural network archi-
tectures. In addition, the results show a statisti-
cally significant improvement of at least one of our
kernels over the Cosine (n = 2) approach on all
datasets except two (News, Amazon). In general,
our kernel is followed in performance by Cosine,
Tanimoto, Dot Product in that order. The three
neural network architectures fail to outperform the
proposed kernel even on a single dataset. Further-
more, the approaches that make use of the whole
corpus to generate embeddings (DCNN and CNN
non-static,rand) do not seem to gain any advantage
from having access to the whole dataset. This may
be due to the fact that the size of the datasets is not
large enough for learning high-quality representa-
tions.

4.5 Story Link Detection

Story link detection, as defined by the Topic De-
tection and Tracking (TDT) research program (Al-
lan, 2002), is the task of determining whether two
stories, such as news articles and radio broadcasts,
are “linked” by the same event. According to TDT,
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Figure 2: DET curves for all similarity measures
on story link detection track.

| Similarity measure || (Cdet)norm |

Dot product 0.3908
Cosine 0.0953
Tanimoto coefficient 0.1453
d=1 0.0883
d=2 0.0884
SPGK d=3 0.0888
d=14 0.0888

Table 3: Performance of all similarity measures in
story link detection.

an event is something that happens at some spe-
cific time and place and two stories are “linked” if
they discuss the same event.

In Figure 2, we plot the DET curves compar-
ing the proposed approaches. For clarity, we only
plot one curve for our SPGK approach (d = 1)
since the plots overlapped, and the best perform-
ing curve for each of the baseline approaches. It
is clear that our approach outperforms the base-
lines over the whole set of operating points. We
also searched for the threshold values for which
each approach maximizes its performance. Our
next step was to compare the four systems in terms
of detection effectiveness at that optimal thresh-
old. Table 3 illustrates the normalized Cy,; of the
proposed methods and the baselines. We can see
that the proposed methods are better than baseline
methods in terms of the normalized Cj.; metric.

5 Conclusion

In this paper, we presented a graph kernel for mea-
suring the similarity between pairs of documents.
The graph-of-words representation of textual doc-
uments allows us to model relationships between

terms in documents and, hence, to go beyond the
limits of the vector-space model. At the same
time, it allows us to measure the similarity be-
tween two documents by comparing their graph
representations using kernel functions. The effec-
tiveness of the proposed kernel was empirically
tested on two different tasks, namely text catego-
rization and story link detection. The proposed
measure showed improved performance on both
tasks compared to the baselines.
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