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Abstract

In this study, we introduce a new approach
for learning language models by training
them to estimate word-context pointwise
mutual information (PMI), and then de-
riving the desired conditional probabili-
ties from PMI at test time. Specifically,
we show that with minor modifications to
word2vec’s algorithm, we get principled
language models that are closely related to
the well-established Noise Contrastive Es-
timation (NCE) based language models. A
compelling aspect of our approach is that
our models are trained with the same sim-
ple negative sampling objective function
that is commonly used in word2vec to learn
word embeddings.

1 Introduction

Language models (LMs) learn to estimate the prob-
ability of a word given a context of preceding
words. Recurrent Neural Network (RNN) language
models recently outperformed traditional n-gram
LMs across a range of tasks (Jozefowicz et al.,
2016). However, an important practical issue asso-
ciated with such neural-network LMs is the high
computational cost incurred. The key factor that
limits the scalability of traditional neural LMs is
the computation of the normalization term in the
softmax output layer, whose cost is linearly propor-
tional to the size of the word vocabulary.

Several methods have been proposed to cope
with this scaling issue by replacing the softmax
with a more computationally efficient component
at train time.1 These include importance sam-

1An alternative recent approach for coping with large word
vocabularies is to represent words as compositions of sub-
word units, such as individual characters. This approach has
notable merits (Jozefowicz et al., 2016; Sennrich et al., 2016),
but is out of the scope of this paper.

pling (Bengio and et al, 2003), hierarchical softmax
(Minh and Hinton, 2008), BlackOut (Ji et al., 2016)
and Noise Contrastive Estimation (NCE) (Gutmann
and Hyvarinen, 2012). NCE has been applied to
train neural LMs with large vocabularies (Mnih
and Teh, 2012) and more recently was also suc-
cessfully used to train LSTM-RNN LMs (Vaswani
et al., 2013; Chen et al., 2015; Zoph et al., 2016).
NCE-based language models achieved near state-
of-the-art performance on language modeling tasks
(Jozefowicz et al., 2016; Chen et al., 2016), and
as we later show, are closely related to the method
presented in this paper.

Continuous word embeddings were initially in-
troduced as a ‘by-product’ of learning neural lan-
guage models (Bengio and et al, 2003). However,
they were later adopted in many other NLP tasks,
and the most popular recent word embedding learn-
ing models are no longer proper language models.
In particular, the skip-gram with negative sampling
(NEG) embedding algorithm (Mikolov et al., 2013)
as implemented in the word2vec toolkit, has be-
come one of the most popular such models today.
This is largely attributed to its scalability to huge
volumes of data, which is critical for learning high-
quality embeddings. Recently, Levy and Goldberg
(2014) offered a motivation for the NEG objective
function, showing that by maximizing this function,
the skip-gram algorithm implicitly attempts to fac-
torize a word-context pointwise mutual information
(PMI) matrix. Melamud and Goldberger (2017)
rederived this result by offering an information-
theory interpretation of NEG.

The NEG objective function is considered a sim-
plification of the NCE’s objective, unsuitable for
learning language models (Dyer, 2014). However,
in this study, we show that despite its simplicity,
it can be used in a principled way to effectively
train a language model, based on PMI matrix fac-
torization. More specifically, we use NEG to train

1860



a model for estimating the PMI between words
and their preceding contexts, and then derive con-
ditional probabilities from PMI at test time. The
obtained PMI-LM can be viewed as a simple vari-
ant of word2vec’s algorithm, where the context of a
predicted word is the preceding sequence of words,
rather than a single word within a context window
(skip-gram), or a bag-of-context-words (CBOW).

Our analysis shows that the proposed PMI-LM
is very closely related to NCE language models
(NCE-LMs). Similar to NCE-LMs, PMI-LM avoids
the dependency of train run-time on the size of
the word vocabulary by sampling from a negative
(noise) distribution. Furthermore, conveniently, it
also has a notably more simplified objective func-
tion formulation inherited from word2vec, which
allows it to avoid the heuristic components and
initialization procedures used in various implemen-
tations of NCE language models (Vaswani et al.,
2013; Chen et al., 2015; Zoph et al., 2016).

Finally, we report on a perplexity evaluation
of PMI and NCE language models on two stan-
dard language modeling datasets. The evaluation
yielded comparable results, supporting our theoret-
ical analysis.

2 NCE-based Language Modeling

Noise Contrastive Estimation (NCE) has recently
been used to learn language models efficiently.
NCE transforms the parameter learning problem
into a binary classifier training problem. Let p(w|c)
be the probability of a word w given a context c
that represents its entire preceding context, and let
p(w) be a ‘noise’ word distribution (e.g. a uni-
gram distribution). The NCE approach assumes
that the word w is sampled from a mixture distri-
bution 1

k+1(p(w|c) + kp(w)) such that the noise
samples are k times more frequent than samples
from the ‘true’ distribution p(w|c). Let y be a bi-
nary random variable such that y = 0 and y = 1
correspond to a noise sample and a true sample,
respectively, i.e. p(w|c, y = 0) = p(w) and
p(w|c, y = 1) = p(w|c). Assume the distribution
p(w|c) has the following parametric form:

pnce(w|c) =
1
Zc

exp(~w · ~c+ bw) (1)

such that ~w and ~c are vector representations of the
word w and its context c. Applying Bayes rule, it

can be easily verified that:

pnce(y = 1|w, c) = (2)

σ(~w · ~c+ bw − logZc − log(p(w)k))

where σ() is the sigmoid function.
NCE uses Eq. (2) and the following objective

function to train a binary classifier that decides
which distribution was used to sample w:

Snce =
∑

w,c∈D

[
log p(1|w, c) +

k∑
i=1

log p(0|ui, c)
]

(3)
such that w, c go over all the word-context co-
occurrences in the learning corpusD and u1, ..., uk

are ‘noise’ samples drawn from the word unigram
distribution.

Note that the normalization factorZc is not a free
parameter and to obtain its value, one needs to com-
pute Zc =

∑
w∈V exp(~w ·~c+ bw) for each context

c, where V is the word vocabulary. This computa-
tion is typically not feasible due to the large vocab-
ulary size and the exponentially large number of
possible contexts and therefore it was heuristically
circumvented by prior work. Mnih and Teh (2012)
found empirically that setting Zc = 1 didn’t hurt
the performance (see also discussion in (Andreas
and Klein, 2015)). Chen et al. (2015) reported that
setting log(Zc) = 9 gave them the best results. Re-
cent works (Vaswani et al., 2013; Zoph et al., 2016)
used Zc = 1 and also initialized NCE’s bias term
from Eq. (2) to bw = − log |V |. They reported that
without these heuristics the training procedure did
not converge to a meaningful model.

In the following section, we describe our pro-
posed language model, which is derived from
word2vec’s interpretation as a low-rank PMI matrix
approximation. Interestingly, this model turns out
to be a close variant of NCE language models, but
with a simplified objective function that avoids the
need for the normalization factor Zc and the bias
terms.

3 PMI-based Language Modeling

The skip-gram negative sampling word embedding
algorithm represents each word w and each context
word c as d-dimensional vectors, with the purpose
that words that are “similar” to each other will
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have similar vector representations. The algorithm
optimizes the following NEG objective function
(Mikolov et al., 2013):

Sneg =
∑

w,c∈D

[
log σ(~w · ~c) +

k∑
i=1

log σ(−~ui · ~c)
]

(4)
such that w, c go over all the word-context co-
occurrences in the learning corpus D, u1, ..., uk

are words independently sampled from the word
unigram distribution, ~x is the embedding of x and
σ() is the sigmoid function. The objective function
Sneg can be viewed as a log-likelihood function of
a binary logistic regression classifier that treats a
sample from a joint word-context distribution as
a positive instance, and two independent samples
from the word and context unigram distributions
as a negative instance, while k is the proportion
between negative and positive instances. Levy and
Goldberg (2014) showed that this objective func-
tion achieves its maximal value when for every
word-context pair w, c:

~w · ~c = pmik(w, c) = log
p(w|c)
kp(w)

(5)

where pmik(w, c) is the word-context PMI matrix.
Actually achieving this maximal value is typically
infeasible, since the embedding dimensionality is
intentionally limited. Therefore, learning word
and context embeddings that optimize skip-gram’s
NEG objective function (4) can be viewed as find-
ing a low-rank approximation of the word-context
PMI matrix. An explicit expression of the approxi-
mation criterion optimized by the skip-gram algo-
rithm can be found in (Melamud and Goldberger,
2017).

Our study is based on two simple observations
regarding this finding of Levy and Goldberg (2014).
First, Equation (5) can be reformulated as follows
to derive an estimate of the conditional distribution
p(w|c):

p̂(w|c) ∝ exp(~w · ~c)p(w) (6)

where the constant k is dropped since p(w|c) is a
distribution. Second, while the above analysis had
been originally applied to the case of word-context
joint distributions p(w, c), it is easy to see that the
PMI matrix approximation analysis also holds for
every Euclidean embedding of a joint distribution
p(x, y) of any two given random variables X and

Y . In particular, we note that it holds for word-
context joint distributions p(w, c), where w is a
single word, but c represents its entire preceding
context, rather than just a single context word, and
~c is a vector representation of this entire context.
Altogether, this allows us to use word2vec’s NEG
objective function (4) to approximate the language
modeling conditional probability p̂(w|c) (6), with c
being the entire preceding context of the predicted
word w.

We next describe the design details of the pro-
posed PMI-based language modeling. We use a
simple lookup table for the word representation ~w,
and an LSTM recurrent neural network to obtain a
low dimensional representation of the entire preced-
ing context ~c. These representations are trained to
maximize the NEG objective in Eq. (4), where this
time w goes over every word token in the corpus,
and c is its preceding context. We showed above
that optimizing this objective seeks to obtain the
best low-dimensional approximation of the PMI
matrix associated with the joint distribution of the
word and its preceding context (Eq. (5)). Hence,
based on Eq. (6), for a reasonable embedding di-
mensionality and a good model for representing the
preceding context, we expect p̂(w|c) to be a good
estimate of the language modeling conditional dis-
tribution.

At test time, to obtain a proper distribution, we
perform a normalization operation as done by all
other comparable models. The train and test steps
of the proposed language modeling algorithm are
shown in algorithm box 1.

Note that while the NCE approach (1) learns to
explicitly estimate normalized conditional distri-
butions, our model learns to approximate the PMI
matrix. Hence, we have no real motivation to in-
clude additional learned normalization parameters,
as considered in comparable NCE language models
(Mnih and Teh, 2012; Zoph et al., 2016).

The NEG and NCE objective functions share a
similar form:

S =
∑
w,c

[
log s(w, c)+

k∑
i=1

log(1−s(ui, c))
]

(7)

with the differences summarized in Table 1. The
comparison shows that PMI-LM’s NEG objective
function is much simpler. Furthermore, due to the
component log(p(w)k)) in NCE’s objective func-
tion, its input to the sigmoid function is sensitive to
the variable values in the unigram distribution, and
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Training objective function Test probability estimate
NCE-LM s(w, c) = σ(~w · ~c+ bw−logZc−log(kp(w))) p̂(w|c) ∝ exp(~w · ~c+ bw)
PMI-LM s(w, c) = σ(~w · ~c) p̂(w|c) ∝ exp(~w · ~c)p(w)

Table 1: Comparison of the training objective functions (see Eq. (7)) and the respective test-time
conditional word probability functions for NCE-LM and PMI-LM algorithms.

Algorithm 1 PMI Language Modeling

Training phase:
- Use a simple lookup table for the word repre-
sentation and an LSTM recurrent neural network
to obtain the preceding context representation.
- Train the word and preceding context embed-
dings to maximize the objective:

Sneg =
∑

w,c∈D

[
log σ(~w·~c)+

k∑
i=1

log σ(−~ui ·~c)
]

such that w and c go over every word and it pre-
ceding context in the corpus D, and u1, ..., uk

are words independently sampled from the uni-
gram distribution p(w).

Test phase:
The conditional probability estimate for a
word w given a preceding context c is:

p̂(w|c) =
exp(~w · ~c)p(w)∑
v∈V exp(~v · ~c)p(v)

where V is the word vocabulary.

therefore potentially more difficult to concentrate
around zero with low variance to facilitate effec-
tive back-propagation. This may explain heuristics
used by prior work for initializing the values of bw
(Vaswani et al., 2013; Zoph et al., 2016).

4 Experiments

The goal of the evaluation described in this sec-
tion is to empirically establish PMI-LM as a sound
language model. We do so by comparing its perfor-
mance with the well-established NCE-LM, using
the popular perplexity measure on two standard
datasets, under the same terms. We describe our
hyperparameter choices below and stress that for a
fair comparison, we followed prior best practices
and avoided hyperparameter optimization in favor
of PMI-LM. All of the models described hereafter
were implemented using the Chainer toolkit (Tokui
et al., 2015).

For our NCE baseline, we used the heuristics that
worked well in (Vaswani et al., 2013; Zoph et al.,
2016), initializing NCE’s bias term from Eq. (2) to
bw = − log |V |, where V is the word vocabulary,
and using Zc = 1.

The first dataset we used is a version of the
Penn Tree Bank (PTB), commonly used to evalu-
ate language models.2 It consists of 929K training
words, 73K validation words and 82K test words
with a 10K word vocabulary. To build and train
the compared models in this setting, we followed
the work of Zaremba et al. (2014), who achieved
excellent results on this dataset. Specifically, we
used a 2-layer 300-hidden-units LSTM with a 50%
dropout ratio to represent the preceding (left-side)
context of a predicted word.3 We represented end-
of-sentence as a special<eos> token and predicted
this token like any other word. During training,
we performed truncated back-propagation-through-
time, unrolling the LSTM for 20 steps at a time
without ever resetting the LSTM state. We trained
our model for 39 epochs using Stochastic Gradient
Descent (SGD) with a learning rate of 1, which
is decreased by a factor of 1.2 after every epoch
starting after epoch 6. We clipped the norms of the
gradient to 5 and used a mini-batch size of 20. We
set the negative sampling parameter to k = 100
following Zoph et al. (2016), who showed highly
competitive performance with NCE LMs trained
with this number of samples.

As the second dataset, we used the much larger
WMT 1B-word benchmark introduced by Chelba et
al. (2013). This dataset comprises about 0.8B train-
ing words and has a held-out set partitioned into 50
subsets. The test set is the first subset in the held-
out, comprising 159K words, including the <eos>
tokens. We used the second subset as the validation
set with 165K words. The original vocabulary size
of this dataset is 0.8M words after converting all

2Available from Tomas Mikolov at: http:
//www.fit.vutbr.cz/˜imikolov/rnnlm/
simple-examples.tgz

3Zaremba et al. (2014) used larger models with more units
and also applied dropout to the output of the top LSTM layer,
which we did not.
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PMI-LM NCE-LM
PTB 98.35 104.33
WMT 65.84 69.28

Table 2: Perplexity results on test sets.

words that occur less than 3 times in the corpus to
an <unk> token. However, we followed previous
works (Williams et al., 2015; Ji et al., 2016) and
trimmed the vocabulary further down to the top
64K most frequent words in order to successfully
fit a neural model to this data using reasonably
modest compute resources. To build and train our
models, we used a similar method to the one used
with PTB, with the following differences. We used
a single-layer 512-hidden-unit LSTM to represent
the preceding context. We followed Jozefowicz et
al. (2016), who found a 10% dropout rate to be suf-
ficient for relatively small models fitted to this large
training corpus. We trained our model for only one
epoch using the Adam optimizer (Kingma and Ba,
2014) with default parameters, which we found to
converge more quickly and effectively than SGD.
We used a mini-batch size of 1000.

The perplexity results achieved by the compared
models appear in Table 2. As can be seen, the per-
formance of our PMI-LM is competitive, slightly
outperforming the NCE-LM on both test sets. To
put these numbers in a broader context, we note
that state-of-the-art results on these datasets are no-
tably better. For example, on the small PTB test set,
Zaremba et al. (2014) achieved 78.4 perplexity with
a larger LSTM model and using the more costly
softmax component. On the larger WMT dataset,
Jozefowicz et al. (2016) achieved 46.1 and 43.7 per-
plexity numbers using NCE and importance sam-
pling respectively, and with much larger LSTM
models trained over the full vocabulary, rather than
our trimmed one. They also achieved 23.7 with an
ensemble method, which is the best result on this
dataset to date. Yet, as intended, we argue that our
experimental results affirm the claim that PMI-LM
is a sound language model on par with NCE-LM.

5 Conclusions

In this work, we have shown that word2vec’s nega-
tive sampling objective function, popularized in the
context of learning word representations, can also
be used to effectively learn parametric language
models. These language models are closely re-
lated to NCE language models, but utilize a simpler,

potentially more robust objective function. More
generally, our theoretical analysis shows that any
word2vec model trained with negative sampling
can be used in a principled way to estimate the
conditional distribution p(w|c), by following our
proposed procedure at test time.
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