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Abstract

Word embeddings are used with success for
a variety of tasks involving lexical semantic
similarities between individual words. Us-
ing unsupervised methods and just cosine
similarity, encouraging results were ob-
tained for analogical similarities. In this pa-
per, we explore the potential of pre-trained
word embeddings to identify generic types
of semantic relations in an unsupervised
experiment. We propose a new relational
similarity measure based on the combina-
tion of word2vec’s CBOW input and output
vectors which outperforms alternative vec-
tor representations, when used for unsuper-
vised clustering on SemEval 2010 Relation
Classification data.

1 Introduction

Vector space word representations or word embed-
dings, both ’count’ models (Turney and Pantel,
2010) and learned vectors (Mikolov et al., 2013a;
Pennington et al., 2014), were proven useful for a
variety of semantic tasks (Mikolov et al., 2013b;
Baroni et al., 2014). Word vectors are used with
success because they capture a notion of seman-
tics directly extracted from corpora. Distributional
representations allow to compute a functional or
topical semantic similarity between two words or,
more recently, bigger text units (Le and Mikolov,
2014). The more similar two entities are semanti-
cally, the closer they are in the vector space (quan-
tified usually, but not necessarily in terms of cosine
similarity). Semantic similarity can be exploited
for lexical substitution, synonym detection, sub-
categorization learning etc. Recent studies sug-
gest that neural word embeddings show higher per-
formance than count models (Baroni et al., 2014;
Krebs and Paperno, 2016) for most semantic tasks,

although Levy et al. (2015a) argue that this is
only due to some specific hyperparameters that can
be adapted to count vectors. In what follows, we
will concentrate on exploring whether and how pre-
trained, general-purpose word embeddings encode
relational similarities.

1.1 Relational analogies as vector offsets

Relation extraction and classification deal with
identifying the semantic relation linking two en-
tities or concepts based on different kinds of in-
formation, such as their respective contexts, their
co-occurrences in a corpus and their position in
an ontology or other kind of semantic hierarchy.
Whether the vector spaces of pre-trained word em-
beddings are appropriate for discovering or iden-
tifying relational similarities remains to be seen.
Mikolov et al. (2013b) claimed that the embed-
dings created by a recursive neural network indeed
encode a specific kind of relational similarities, i.e.
analogies between pairs of words. He found that by
using simple vector arithmetic, analogy questions
in the form of "a1 is to a2 as b1 is to b2" (man ~king
:: woman ~queen) could be solved. Relationships
are assumed to be present as vector offsets, so that
in the embedding space, all pairs of words sharing a
particular relation are related by the same constant
offset. Vector arithmetics give us the vector which
fills the analogy, and we can search for the word b2

whose embedding vector has the greatest similarity
to it:

argmaxb2 = sim(b2, (b1 − a1 + a2)) (1)

Levy et al. (2015a) suggested that instead of a
vector offset method, this calculation can also be
considered as a combination of similarities. Using
cosine similarity for sim, equation 1 can be written
as a combination of similarities (Levy et al., 2015a)
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as

argmaxb2 = sim(b2, b1)− sim(b2, a1)+
+ sim(b2, a2) (2)

Analogy pairs, however, are a special case of
relational similarity because not only a1 (man) re-
lates to a2 (king) the same way that b1 (woman)
relates to b2 (queen); the relation between a1 (man)
and b1 (woman) is also parallel to the relation be-
tween a2 (king) and b2 (queen.) This is not always
the case: when it comes to different types of se-
mantic relations, their instances may or may not be
analogical.

1.2 Criticism of the vector offset method
As precise as neural word embeddings combined
with cosine similarity may be for calculating se-
mantic proximity between individual words, recent
results seem to suggest that their value in identi-
fying relational analogies using vector arithmetics
is limited. In fact, a big part of their merits is
likely to come from the precise calculation of indi-
vidual similarities instead of relational similarities.
Hence, they can be approximated using relation-
independent baselines. Linzen (2016) remarks that
currently used analogy tasks evaluate not only the
consistency of the offsets a1 − a2 and b1 − b2, but
also the neighborhood structure of the words in
the vector space. Concretely, "if a1 and a2 are very
similar to each other (...) the nearest word to b2 may
simply be the nearest neighbor of b1 (...) regardless
of offset consistency" (Linzen, 2016). Moreover,
some of the success obtained by the vector offset
method on analogies can also be obtained by base-
lines that ignore a2, or even both a1 and a2.
Levy et al. (2015b) point out similar limitations:
word embedding combinations in supervised learn-
ing of taxonomical relations do not seem to learn
the relations themselves, but individual properties
of words. They tested previously suggested vec-
tor compositions for supervised learning of infer-
ence relations: concatenation, difference, compar-
ing only the first or only the second element of the
pairs. The study concludes that the classifiers only
learn individual properties (e.g. a "category" type
word is a good hypernym candidate), but not se-
mantic relations between words. Altogether, these
studies suggest that the semantic information ob-
tained from word embeddings is correct for iden-
tifying similar or related units, but is already self-

contained and difficult to enrich in order to retrieve
more specific semantic contents such as relational
similarities or specific relations.

In this paper, we aim to challenge this conclusion
within a large scale semantic relation classification
experiment, and show that it is possible to achieve
improvements compared to baselines and current
methods. We apply known vector composition me-
thods, and propose a new one, to unsupervised
large-scale clustering of entity pairs categorized
according to their semantic relation. While large
scale semantic relation classification is a very diffi-
cult task and the state of the art does not perform
yet at human level, we expect that the experiment
provides information to compare the potential of
different vector/similarity combinations in a setting
(i.e. clustering) that is more reliant on the global
structure of the data instead of the close neighbor-
hood structure of selected items.

2 Semantic Relations in Vector Spaces

2.1 Related work

Relation classification includes the task of finding
the instances of the semantic relations, i.e. the
entity tuples, and categorizing their relation ac-
cording to an existing typology. In an unsupervised
framework, relation types are inferred directly from
the data. Supervised systems rely on a list of pre-
defined relations and categorized examples, as de-
scribed in the shared tasks of MUC, ACE or Sem-
Eval campaigns (Hobbs and Riloff, 2010; Jurgens
et al., 2012; Hendrickx et al., 2010). Competing
systems extract different kinds of features eventu-
ally combined with external knowledge sources,
and build classifiers to categorize new relationship
mentions (Zhou et al., 2005). A commonly used
method, initiated by Turney (2005; 2006), is to rep-
resent entity pairs by a pair-pattern matrix and cal-
culate similarities over the distribution of the pairs.
Another way of constructing a distributional vector
space to represent quantifiable context features for
relation extraction is to combine the vectors of the
two entities. Different combinations were proposed
to represent compositional meaning (Mitchell and
Lapata, 2010; Baroni and Zamparelli, 2010; Baroni
et al., 2012). Popular methods include addition
(Mitchell and Lapata, 2010), concatenating the two
vectors (Baroni et al., 2012) or taking their differ-
ence (Weeds et al., 2014; Roller et al., 2014). As
of now, these vector combinations had two types
of applications in semantic relation classification.
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The first one aims to find specific types of semantic
or functional analogies (Herdaǧdelen and Baroni,
2009; Makrai et al., 2013; Levy et al., 2015a). The
second one tries to infer taxonomical relations, i.e.
hypernymy, or lexical entailment, in supervised
experiments (Weeds et al., 2014; Turney and Mo-
hammad, 2014). For the hypernymy detection task,
relation directionality can be captured by the inclu-
sion of the hyponym’s context in the broader term
(Kotlerman et al., 2010), as well as by measuring
the informativeness of their contexts (Santus et al.,
2014).

A few experiments have been specifically tar-
geted at combining different kinds of linguistic
information for calculating relational similarities.
Turney (2012) suggested a dual distributional fea-
ture space, composed of a domain space and a syn-
tactic function space, for supervised classification.
Herdaǧdelen and Baroni (2009) combine individual
entity vectors with co-occurrence contexts in their
vector space. These works either aim to identify
very specific relation types (typically taxonomical
relations) with a mixture of features and a super-
vised classifier, or target analogy pairs: a task in
which, as we have seen, relation-unaware baselines
approximate relation-aware representations. How-
ever, more recently, Shwartz et al. (2016) achieved
promising results on the hypernymy detection task
by combining dependency path-based context rep-
resentations with distributional vectors; this finding
can be relevant for a broader range of semantic re-
lations as well.

2.2 Task definition
Whether we use the vector offset method or any
pairwise similarity combination, finding the miss-
ing word in an analogy depends on two factors:

1. Vector quality (do semantically close elements
have a higher cosine similarity?);

2. Density and structure of the vector space.

If we adapt 1) above to the more generic relational
similarity task, the question can be formulated as
follows:

3. How much information about the semantic
relation is actually in the text and how fit is
the vector combination method to encode this
information?

In accordance with Linzen (2016) and Levy et
al. (2015b), we also think that analogy test sets

are not optimal to answer this question. It was al-
ready confirmed that word embeddings are precise
in identifying closely related items, while it is an
open question whether they are useful for inferring
a global structure from potentially noisy data in a
large scale experiment. We propose to study re-
lational similarity using a more generic and large
scale relation classification task (Hendrickx et al.,
2010), and clustering pairs according to semantic
relations, instead of finding the one missing word
in an analogy. This way, we rely less on the neigh-
borhood structure and more on actual "linguistic
regularities".

We evaluate different vector combination me-
thods, and propose a new one, for calculating re-
lational similarities. The evaluation concentrates
on the aspects above. We test whether cosine si-
milarity over these vector spaces is adapted for
discovering groups and classifying individual in-
stances. We report clustering results and compare
the vector combinations by their performance.

2.3 Motivation

The semantic relation classification task, super-
vised or not, is a difficult one with a strong upper
bound: relations vary considerably with respect to
the way they are defined and expressed in the text.
Some relation types are more lexical by nature: re-
lations such as dog is an animal; a teacher works
at a school; a car is kept at a parking lot, can be
identified out of context. On the other hand, many
relations are contextual; they are time-anchored or
tied to extra-linguistic, situational context. Con-
textual relations (e.g. "the accident was caused by
the woman") tend to be expressed explicitly, but
rarely, in a corpus. A similar distinction underlies
the notion of classical vs non-classical lexical se-
mantic relations coined by Morris and Hirst (2004);
however, their distinction is made on the level of
relation types, while different instances of the same
relation type can also be different with respect to
their lexical or contextual nature. Other types of
relations are defined exclusively through examples
or analogies (e.g. badge is to policeman as crown
is to king).

Semantic relations can also be viewed as binary
predicates, and such predicates have semantic con-
straints on their arguments, similarly to verb sub-
categorization. Indeed, the relations are often ex-
pressed by verbs, and we expect specific arguments
of relations to belong to a specific semantic type,
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e.g. Message (chapters in this book investigate
issues), Instrument (telescope assists the eye), Col-
lection (essays collected in this volume), Container
(image is hidden in a carafe). We expect vector
space models (VSMs) to capture such semantic
groups through pairwise similarity combinations.

Semantic relation types and instances differ with
respect to the degree of semantic constraint on their
arguments, the analogical nature of the relation,
and the lexical/contextual aspect. We expect distri-
butional VSMs to contribute to capture analogical
similarities, as well as the semantic types of the
arguments and lexical or prototypical relation in-
stances. Since their ability to capture contextual
relations is limited, they need to be complemented
with e.g. pattern-based or dependency-based ap-
proaches when it comes to less typical examples.

In the scope of the current experiment, our pri-
mary goal is to argue that vector combinations may
encode lexical relational similarities in themselves.
If a representation is more capable than others to
group together word pairs according to relational
similarities, this potential can further be exploited
in unsupervised as well as in supervised experi-
ments.

The current task requires a change of perspective
compared to the analogical task: when we look for
missing elements in an analogy, we know the word
exists and we presume to know where it will be in
the vector space. In unsupervised clustering, our
aim is to infer a global structure from the data.

2.4 Semantic relation data

The SemEval 2010 Task 8 data we used (Hendrickx
et al., 2010) contains examples of relation instances
for 9 relations with sufficiently broad coverage to
be of general and practical interest (Table 1).
There is no overlap between classes, but there are
two groups of strongly related relations to assess
models’ ability to make fine-grained distinctions
(CONTENT-CONTAINER, COMPONENT-
WHOLE, MEMBER-COLLECTION and
ENTITY-ORIGIN, ENTITY-DESTINATION).
Human agreement rates, when annotated in
context, range from 58.2% to 98.5% depending on
the relation type (Hendrickx et al., 2010). This
data set is very challenging, not only because of
the fine semantic distinctions, but also because
semantic relations were annotated in context and
contain many less typical relation instances. In the
current experiment, the goal we set for ourselves is

to explore models’ abilities to capture the structure
of the data, rather then in achieving a classification
precision close to that of humans.
We used 6637 pairs of single word instances from
the training data. Contexts in the training data were
discarded. Class bias is present: the most frequent
relation has 979 instances, the least frequent has
486.

3 Vector combination methods

If a1, a2, b1, b2 are entities (nouns or nominal
compositions) from a corpus, each of them
assigned a pre-trained word embedding, we
would like to classify entity pairs a = (a1, a2)
and b = (b1, b2) according to their semantic
relation. This means that we are looking for an
efficient combination of a1, a2 and b1, b2 vectors
that encode their relational attributes. We aim to
find effective methods to calculate a relational
similarity sim(a, b) by combining entity vectors
a1, a2 and b1, b2.

Pairwise similarities build on the idea that if a1

is semantically similar to b1 and a2 is similar to
b2, the relation between a1 and a2 is similar to the
relation between b1 and b2. The recall of this ap-
proach is expected to be limited: the same relation
can hold between different types of entities.
Analogical similarities presume that b1−b2 shares
the direction with a1 − a2, ignoring the pairwise
similarities. We adapt this measure, while aware
that analogy pairs are a specific case of relational
similarity in that analogies work both ways (man
~king :: woman ~queen and also man ~woman ::
king ~queen).
IN-OUT similarities: a new combination that
builds on the integration of second order similari-
ties.
Only a1 : In this baseline solution, the similarity
between two pairs is calculated as the similarity
between the first entity of each pair, the other pair
being ignored.

sim(a, b) = sim(a1, b1) (3)

3.1 Pairwise similarities

Different combinations proposed in the literature
were compared.

• concatenative : one vector for each entity
pair is defined as the concatenation of the vec-

1817



Relation Instances in Typical examples Atypical examples
training data

Cause-Effect 979 suicide− death, injury − discomfort women− accident
Component-Whole 978 claw − owl, walls− hospital image− photos
Entity-Destination 789 solvent− flask, hay − barn chair − corporation
Product-Producer 775 industry −models, artist− design officer − oath
Entity-Origin 762 relics− culture, plane− runway error − definition
Member-Collection 729 stable− hounds, ensemble− ladies mission−monkeys
Message-Topic 622 pages− scene, speech−measures exhibition− glamour
Instrument-Agency 517 user − console, eye− telescope companies− governments
Content-Container 486 document− folder, pictures− box message− paper

Table 1: Semantic Relation Classification data

tors of the two entities.

sim(a, b) = sim((a1 ⊕ a2), (b1 ⊕ b2)) (4)

• pairwise addition Pairwise similarities be-
tween respective entities are added up. If we
use cosine similarity, this is only slightly dif-
ferent from the concatenative method. Vec-
tor addition proved to work well as a compo-
sitional representation (Mitchell and Lapata,
2010), despite the fact that word order is ig-
nored.

sim(a, b) = sim(a1, b1) + sim(a2, b2) (5)

A potential problem with this addition objective
is that different properties of words are expressed
on a different scale and, as a consequence, terms
sharing these properties have a higher cosine simi-
larity than terms that are similar with respect to a
flatter property. It can be overcome by using multi-
plication instead of addition (Levy and Goldberg,
2014):

• pairwise multiplication

sim(a, b) = sim(a1, b1)× sim(a2, b2) (6)

3.2 Analogies
This is an adaptation of the measure proposed for
queen = king - man + woman (Mikolov et al.,
2013b). Vector arithmetics give us the vector which
fills the analogy, and we can search for the word b2

whose embedding vector has the greatest similarity
to it:

argmaxb2 = sim(b2, (b1 − a1 + a2)) (7)

which, using cosine similarity for sim, can be writ-
ten as a combination of similarities (Levy et al.,

2015a), as

argmaxb2 = sim(b2, b1)− sim(b2, a1)
+ sim(b2, a2) (8)

Mikolov (2013b) notes that this measure is qualita-
tively similar to the relational similarity model in
(Turney, 2012), which predicts similarity between
members of the word pairs (xb, xd), (xc, xd) and
dissimilarity for (xa, xd).
In the current context, we do not look for the miss-
ing b2 which maximizes the equation. Instead, we
have different pairs a and b, and we aim to calcu-
late sim(a, b) to quantify how much the analogy
queen - woman = king - man holds.

• difference Focuses on the similarity of b1, b2

and a1, a2, but does not take into account
the pairwise distances between the individual
entity vectors.

sim(a, b) = sim((a1 − a2), (b1 − b2)) (9)

Levy et al. (2015a) propose a multiplicative ver-
sion of the analogy formula. We tried to adapt
it; however, this measure is not symmetrical (con-
ceived to find b2 which maximizes the form) and
the adaptation produced bad results.

3.3 IN-OUT similarities
This metric is a combination of first order and se-
cond order similarities between the two entity pairs,
adapted to relational similarity: a and b are similar
if a1 is similar to b1 and also similar to the contexts
of b2, the opposite entity in b.
In the current experiment, second order similarities
are estimated using both input and output vectors
generated by word2vec’s CBOW model. In this
model, the IN vectors of words get closer to the
OUT vectors of other words that they co-occur with.
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Words with a high input-output similarity tend to
appear in the context of each other. This similarity
combination was recently included for a few, dif-
ferent tasks. It was shown to improve information
retrieval (Nalisnick et al., 2016). Pennington et
al. (2014) propose to use second-order similarity
to improve similarity calculation between words.
Their proposed formula combines first and second
order similarity, normalized by the reflective se-
cond order similarity of the words with themselves.
Finally, Melamud et al. (2015) used a combination
of input-output similarities for lexical substitution.

In these contexts, the use of second-order simi-
larities1 is based on the observation that words are
similar if they tend to appear in similar contexts,
or if they tend to appear in the contexts of each
other. In our experiment, second order similarities
are used in a different way and with a different
purpose. Second-order similarities are calculated
between opposite elements of the entity pairs. We
combine those similarities by taking the in-in simi-
larity between a1 and b1, and the in-out similarities
between a1 and b2, and between a2 and b1. Our mo-
tivation is to add relational information in a form
which also preserves pairwise similarity informa-
tion, as both are relevant for calculating relational
similarities. We do it by using a co-occurrence
component which gives higher score between more
prototypical example pairs. A pairwise similarity
can be high even if the entities are similar, but their
relation is not: an obvious example is ambiguity
(when they are similar with respect to a meaning,
but co-occur with their pair in an other meaning).
If an entity is similar to one argument of a relation
and is also likely to appear in the context of the
other argument, it indicates a higher likelihood of
being an instance of the same relation.

• additive in-out

sim(a, b) = sim(a1, b1) + sim(a2, b2)
+ sim2(a1, b2) + sim2(a2, b1) (10)

where sim2 designates the second order similarity
and is calculated as follows:

sim2(x1, y2) = sim(xin
1 , yout

2 ) + sim(xout
1 , yin

2 )
(11)

1Note that we use the term "second order similarity" in the
sense of word-to-context similarity, unlike Pennington et al.
(2014).

• multiplicative in-out: The same as above,
but addition is replaced by multiplication in
sim and sim2.

sim(a, b) = sim(a1, b1) ∗ sim(a2, b2)
∗ sim2(a1, b2) ∗ sim2(a2, b1)

(12)

where

sim2(x1, y2) = sim(xin
1 , yout

2 ) ∗ sim(xout
1 , yin

2 )
(13)

4 Clustering Experiments

For supervised classification tasks, it is desirable
to adapt word2vec’s hyperparameters to the task
and the data at hand (Levy et al., 2015a). The
interaction between hyperparameters is also to be
considered (Krebs and Paperno, 2016). However,
our experiment is a clustering scenario aimed at
exploratory analysis on a vector space created by
pre-trained word embeddings; therefore, we set the
parameters once and in advance.
We trained a word2vec CBOW model (Mikolov
et al., 2013a) with negative sampling and a window
size of 10 words on the ukWaC corpus (Baroni
et al., 2009), and extracted both input and output
vectors of size = 400 to build the vector combina-
tions above. This size corresponds to the best per-
forming model in the comparative paper by Baroni
et al. (2012). An adjacency matrix was constructed
for each vector/similarity combination using cosine
similarity.
Clustering was implemented with Cluto’s (Zhao
et al., 2005) clustering function which takes the
adjacency matrix as input. We used a hierarchi-
cal agglomerative clustering with the unweighted
average distance (UPGMA) criterion function2.

4.1 Evaluation as classification

At first, we ran the clustering with 9 clusters (the
number of classes in the standard) and tried to make
one-to-one correspondences between the standard
and the output. Every cluster is mapped to the stan-
dard class that shares the more elements with. We

2We observed that these settings are sensitive to the chain-
ing effect and there is probably room for improvement by
experimenting with different task-specific clustering parame-
ters.
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then calculate precision and recall for each stan-
dard class (zero if the class doesn’t show up as a
majority class in any cluster). Average class-based
precision and recall is reported, as well as the num-
ber of classes in the standard that could be assigned.
These scores were published for the SemEval task
participants, but ours are not comparable because
we only consider one cluster for each class, and
because we did the clustering on the training data.

INPUT classes P R F
found

a1(base) 5 0.1700 0.2086 0.1873

add 6 0.1918 0.1973 0.1945
conc 6 0.2031 0.2115 0.2072
in-out.add 8 0.2635 0.2192 0.2393
mult 7 0.1824 0.1493 0.1642
in-out.mult 5 0.1102 0.1232 0.1163
diff 5 0.3762 0.0918 0.1476

Table 2: Class-based results for 9 clusters

4.2 Evaluation as clustering

While the scores above can be indicative of the
potential of different representations, they do not
provide information on other aspects as cluster sta-
bility, purity, the amount of post-processing needed.
Above all, in a completely unsupervised setting, the
number of classes in the standard is not known and
cluster quality (precision) plays an important role
with respect to interpretability: it is easier to unify
two homogeneous clusters than to separate a noisy
one. We ran complementary experiments with dif-
ferent numbers of clusters. Table 3 indicates results
for 20 and 30 clusters. The input-output combina-
tion method still has an advantage, and concatena-
tion and multiplication also perform well. However,
the advantages over the baseline are less significant
than when the number of clusters was identical to
the standard.
In the next runs, we measure how stable the differ-
ent clustering solutions are with settings that are
structurally very different from the standard, i.e.
have significantly more clusters. Class-based pre-
cision and recall are less relevant measures in this
setting, since they take the average over the nine
standard classes and not over the produced clusters.
We therefore decided to use modified purity (Korho-
nen et al., 2008), adapted for structurally different
clustering solution. Modified purity gives the pro-
portion of word pairs belonging to the majority

INPUT #clust P R F

a1(base) 20 0.3429 0.1642 0.2221

add 20 0.2434 0.1843 0.2098
conc 20 0.2718 0.2116 0.2380
in-out.add 20 0.2947 0.2076 0.2436
mult 20 0.3405 0.1886 0.2428
in-out.mult 20 0.2711 0.1432 0.1874
diff 20 0.2997 0.1161 0.1674

a1(base) 30 0.3855 0.1712 0.2371

add 30 0.2714 0.1726 0.2110
conc 30 0.3331 0.1862 0.2389
in-out.add 30 0.3548 0.1947 0.2514
mult 30 0.3037 0.1995 0.2408
in-out.mult 30 0.3916 0.1304 0.1957
diff 30 0.3770 0.1318 0.1953

Table 3: Class-based results for 20 and 30 clusters

class c in their cluster k:

PUR =
∑|K|

i=1 maxj |w in ki ∩ w in cj |∑|K|
i=1 w in ki

(14)

Modified purity is indicative of the quality and
interpretability of the clusters. It favorizes small
clusters, but singleton clusters were discarded. This
measure corresponds to prediction accuracy in clas-
sification if we assign the majority label to clusters.
Two series of runs were evaluated: for 10, 20... up
to 50, and for 60, 70... up to 100 clusters. Aver-
age results are reported. These scores indicate the
average purity of clusters over different runs.

INPUT PUR

a1(baseline) 0.2940

add 0.3059
conc 0.3107
in-out.add 0.3235
mult 0.2575
in-out.mult 0.2119
diff 0.2297

Table 4: Cluster-based results, 10-50 clusters

INPUT PUR

a1(baseline) 0.3291

add 0.3578
conc 0.3737
in-out.add 0.3674
mult 0.3235
in-out.mult 0.2587
diff 0.3058

Table 5: Cluster-based results, 60-100 clusters
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5 Discussion

We note that the baseline and the simple pairwise
combinations have a high performance because
they already capture arguments’ semantic types
successfully. This also lies behind previous suc-
cess on the analogy dataset. Moreover, the nature
of semantic spaces and of semantic datasets is such
that they typically contain close or quasi-identical
variants for the same phenomenon, that the base-
lines identify easily.

The additive input-output combination shows
promising results, especially when it comes to cap-
turing the structure: in the clustering setting with
9 clusters, it identifies 8 classes out of 9 in the
standard. This indicates a good potential in differ-
entiating between relation types, especially because
the standard is conceived in a way that it contains
strongly related classes. It outperforms every other
measure until the number of clusters grows signifi-
cantly above those in the standard (Table 5), when
the concatenative measure catches up. The base-
line performs well, but additive methods all beat
it, while difference is especially weak. Pairwise
multiplication is good at recognizing the structure
(7 classes out of 9), but not good at assigning ele-
ments.

Multiplicative methods show a fluctuating perfor-
mance, especially the multiplicative input-output
combination. This is due to the higher variance in
similarities obtained by multiplication (in the case
of input-output combination, 6 operands are multi-
plied), combined with the agglomerative clustering,
which is sensitive to chaining.

The very high precision of the baseline method
with a large number of clusters (Table 3) is note-
worthy but not unexpected. Individual similarities
have a strong precision for the easily identifiable
clusters, while additional relational information is
mostly expected to improve recall.

6 Conclusion and Future Work

We presented an experiment to identify relational
similarities in word embedding compositions at a
large scale, using an unsupervised approach. On
the one hand, our results confirm the recent find-
ing that many of the success attributed to vector
arithmetics for analogies come from similarities
between individual elements. On the other hand,
taking second order similarity into account, we can
improve relational similarities and take a step to-
ward a meaningful representation for entity couples

in a semantic relation.
The baseline performs well and is difficult

to enrich with relation-aware information. The
results indicate that the vector offset method for
analogies, which replaces the pairwise similarity,
is the least efficient in capturing generic semantic
relations at a large scale. The vector difference
representation does not conserve pairwise similar-
ities and the offsets do not prove to be constant
enough for unsupervised clustering. Multiplicative
methods do not scale up either, although to a
lesser extent: they capture some of the relational
information, but this happens at the expense
of losing precision from individual similarities.
Pairwise similarities can be better exploited in
an additive or concatenative setting. Moreover,
they can be meaningfully complemented by
including second order similarities without losing
too much information for precise classification.
The input-output combination measure coherently
outperformed the other combinations in almost
every setting, indicating a better potential for
unsupervised experiments.

Unsupervised relation classification is a very
challenging task for several reasons. Some relation
instances are lexical by nature and, therefore, can
be expected to show up in the same cluster based
on distributional cues. On the other hand, contex-
tual relation instances tend to have relation-specific
indicators when they co-occur, but their individual
vectors will not reveal this information (unless they
co-occur very often). Moreover, semantic relations
differ with respect to the semantic constraints they
put on their arguments. For instance, the second
argument of the Content-Container relation tend
to belong to a specific semantic class in the stan-
dard (bag, box, trunk, case, drawer...), while both
arguments of the Cause-Effect relation are much
freer (gas, prices, pain, acts, species and pyrol-
ysis, collapse, contraction, society, noise). Any
future development towards an automated unsu-
pervised classification needs to take these aspects
into account and work towards a hybrid solution by
separating relations with semantically constrained
arguments from free ones, as well as adapting the
clustering method to handle outliers.
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