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Abstract

For the task of relation extraction, dis-
tant supervision is an efficient approach to
generate labeled data by aligning knowl-
edge base with free texts. The essence of
it is a challenging incomplete multi-label
classification problem with sparse and
noisy features. To address the challenge,
this work presents a novel nonparametric
Bayesian formulation for the task. Ex-
periment results show substantially higher
top-precision improvements over the tradi-
tional state-of-the-art approaches.

1 Introduction

To efficiently generate structured relation informa-
tion from free texts, the research on distantly su-
pervised Relation Extraction (RE) (Mintz et al.,
2009; Riedel et al., 2013; Hoffmann et al., 2011)
has been attracting much attention, because it can
greatly reduce the manual annotation for training.
It essentially based on the assumption that the re-
lation between two entities in a Knowledge Base
(KB), is also likely hold within a sentence that
mentions the two entities in free texts. This as-
sumption plays a crucial role in distant supervi-
sion, which is quite effective in real applications.

However, the assumption of distant alignment
can also lead to the noisy training corpus prob-
lem (Fan et al., 2014), which is challenging for
the task as follows: i) Noisy features. Not all
relations existed in a KB keep the same mean-
ing of that relation for the corresponding entities
in a free text. For example, the second relation
mention in Figure 1 does not explicitly describe
any relation instance, so features extracted from
this sentence can be noisy. Such analogous cases
commonly exist in feature extraction. ii) Incom-
plete labels. Similar to noisy features, the gener-

Figure 1: Aligned Example (Fan et al., 2014):
the relation instances related to the entity pair
〈BarackObama,U.S.〉 in the KB, and its men-
tions in the free text.

ated label can be incomplete due to the incomplete
knowledge base (Ritter et al., 2013). For exam-
ple, the fourth relation mention in Figure 1 should
be labeled by the relation Senate-of. However, the
corresponding relation instance (Senate-of(Barack
Obama, U.S.)) is missing in the knowledge base.
Such analogous cases are also common in real ap-
plications. iii) Sparse features. Sophisticated
features extracted from the mentions can result in
a large number of sparse features (Riedel et al.,
2013). The generalization ability of feature based
prediction models will be badly hurt, when the fea-
tures do not match between testing and training.

To tackle the problem, we develop a novel dis-
tant supervision approach from a nonparametric
Bayesian perspective (Blei et al., 2016), along
with the previously most effective research line
(Petroni et al., 2015) of using matrix completion
(Fan et al., 2014) for relation extraction. Our goal
is to design a noise-tolerant relation extraction
model for distantly supervised corpus with noise
and sparsity problems. Different from (Fan et al.,
2014) as one state-of-the-art method in this line,
we model noisy data corpus using adaptive vari-
ance modeling approach (Chen et al., 2015), based
on Dirichlet Process (Blei and Jordan, 2004) in-
stead of a fixed way of controlling complex noise
weighting. To the best of our knowledge, we are
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the first to apply this technique on relation extrac-
tion with distant supervision.

2 Approach

The essence of the task is a multi-label classifica-
tion problem (Cabral et al., 2011) with noisy pat-
terns (Han and Sun, 2014). One simple way, to
solve the problem, is to learn separate classifiers
for each of relation labels, using n samples with d
features, by optimizing b ∈ R1×1 and w ∈ Rd×1,

argminb,w l(ytrain, [1 Xtrain]
[
b
w

]
), (1)

where 1 is the all-one column vector; Xtrain ∈
Rn×d and ytrain ∈ Rn×1 are the correspond-
ing feature matrix and label vector respectively.
However, label correlations are not considered in
the above formulation. To jointly consider feature
correlations and label correlations, (Cabral et al.,
2011) formulated the multi-label classification as a
matrix completion problem. As a powerful frame-
work, it has been successfully applied to relation
extraction task with distant supervision.

2.1 Previous Formulation
The work in (Fan et al., 2014) first adopted the
mentioned framework, as a general joint learning
and inference framework (Cabral et al., 2011), to
learn noise-tolerant distant supervision for rela-
tion extraction. It achieves the state-of-the-art per-
formance. Suppose we have a training corpus, in-
cluding n instances (entity pairs) including both
training and test data, with d-dimensional features
and t relation labels, which is built according to
the basic alignment assumption. The task can be
modeled with a sparse matrix Z ∈ Rn×(d+t), de-
fined as

Z =
[
Xtrain Ytrain

Xtest Ytest

]
, (2)

where each row in Z represents entity pair, and
each column represents noisy textual feature in X
or incomplete relation label in Y . In such a way,
relation extraction is transformed into a problem
of completing the unknown labels in Ytest for the
test data Xtest in Z. The rational of this model-
ing is that noisy features and incomplete labels are
semantically correlated, which can be explained
in an underlying low-rank structure (Riedel et al.,
2013). Taking noise into consideration, Z is fur-
ther defined as

Z = Z∗ + E, (3)

where Z∗ is the underlying low-rank matrix

Z∗ =
[
X∗train Y ∗train

X∗test Y ∗test

]
, (4)

and E is the error (noise) matrix

E =
[
EXtrain EYtrain

EXtest 0

]
. (5)

This error (noise) modeling approach has been
successfully applied to distantly supervised rela-
tion extraction. However, it still has clear lim-
itations. The noise model is limited to a single
source without considering the intrinsic clustering
structures of data. In addition, the true rank is usu-
ally hard to determine, for adaptively modeling the
correlations among features and labels.

2.2 Nonparametric Bayesian Modeling

The use of nonparametric Bayesian modeling has
been widely adopted in Natural Language Pro-
cessing (NLP) (Chen et al., 2014). Instead of im-
posing assumptions that might be wrong, it “lets
the data speak for itself”, without requiring opti-
mizing parameters blindly by hands (Blei and Jor-
dan, 2004). To take advantage of these merits, we
here adopt it for the task, with the following moti-
vations:

Motivation 1: Adaptive Noise-Clustered At-
tention. The goal is to find an adaptive cluster
specific noise parameterization for the complex
noisy corpus, without making overly strong as-
sumptions about the noise distribution in real ap-
plications.

Motivation 2: Adaptive Latent Feature
Space Selection. The goal is to automatically find
better dense representations of latent entity-pair,
feature and label without pre-specifying the rank
values by laboriously retraining models.

2.2.1 Nonparametric Bayesian Formulation
We develop a novel formulation for distantly su-
pervised relation extraction, using a nonparamet-
ric Bayesian approach, based on the Dirichlet Pro-
cess, which can been seen as an infinite Dirich-
let distribution, with clustering effect for modeling
categorical variables adaptively.

Noise component modeling. Instead of using a
single fixed noise model, we redefine E = [εi,j ] ∈
Rn×(d+t) in Eq.(5). εi,j is modeled by a summa-
tion of infinite noise models (Chen et al., 2015),
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p(εi,j) =
∞∑

k=1

θkN(εi,j |0, σk), (6)

where θk is the mixing proportion for the k-th
gaussian component N(εi,j |0, σk) with mean zero
and variance σk. The θ is obtained from the stick-
breaking process (Blei and Jordan, 2004), with∑∞

k=1 θk = 1,

θk = βk

k−1∏
l=1

(1− βl), (7)

where βk are independent draws from the beta dis-
tribution β(1, α). As a result, the noise entries
will cluster themselves into K groups without re-
quiring a complicated model selection procedure.
Since a mixture of Gaussians can approximate any
continuous probability distribution (Zhao et al.,
2014), this structural noise formulation can adapt
much wider range of real noises than previous for-
mulation (Fan et al., 2014) for relation extraction.

Low-rank component modeling. Different
from (Fan et al., 2014), instead of directly min-
imizing the rank of Z∗ in Eq.(3), we decom-
pose Z∗ into two low-rank matrices U and V ,
from probabilistic perspective (Salakhutdinov and
Mnih, 2007). This modeling approach can lead to
a more flexible way of estimating the optimal rank
values for latent feature spaces. To determine the
appropriate rank automatically, we adopt the Au-
tomatic Relevance Determination (ARD) method
(Babacan et al., 2012) by imposing a prior on each
dimmension (column) of U and V . Specifically,
we impose the Gaussian priors with variance λr

on the r-th columns of U and V , i.e., u.r and v.r:

p(U|λ) =
R∏

r=1

N(u.r|0, λrIU),

p(V|λ) =
R∏

r=1

N(v.r|0, λrIV),

λr ∼ IG(a1, b1),

(8)

where IG is an Inverse Gamma distribution for
modeling the variance λr. Considering a column
as latent factor in U or V with a zero mean in
the prior, a very small variance indicates that this
column will shrink to zero. Thus, the irrelevant
columns hurting the performance will be elimi-
nated adaptively, without pre-specifying the rank
values by retraining models laboriously as in the
previous modeling (Fan et al., 2014) for the task.

Prediction component modeling. We can
leverage the above presented low-rank component
for U, V and noise component for εi,j , to build
Eq.(9) for prediction. Different from the state-
of-the-art multi-label classification framework as
adopted in (Fan et al., 2014), for simplicity, we
design noise model for features and labels jointly,

p(yi,j) = N(yi,j |
ui.v

T
j.︸ ︷︷ ︸

low−rank component

, εi,j︸︷︷︸
noise component

), (9)

where ui. and vj. are defined in Eq.(8) as rows of
U and V respectively.

For each interaction between entity-pair and
feature (or relation), εi,j as defined in Eq.(6) can
be injected into Eq.(9) (Chen et al., 2015) by

εi,j = σzij ,

σzij ∼ IG(a0, b0),
zij = k ∼Mult(θk),

(10)

where θk is modeled in Eq.(7); Mult is a Multino-
mial distribution.

The mechanism of the introduced clustered
noise component for relation extraction can be
easily understood through considering its role in
the Gaussian distribution. As shown in Eq.(9),
εi,j is used to control the variance. Large vari-
ance value means low confidence, and the small
value means high confidence, for fitting yi,j with
ui.v

T
j. . The variance parameter εi,j , generated by

noise component Eq.(7,10), serves as a confidence
parameter for training instance. In the algebra
view of likelihood, variance parameter is just the
weight of training instance (i.e., the interaction be-
tween ”entity pair and feature” or ”entity pair and
label”), measuring the importance for its contribu-
tion to the total likelihood. We can treat this mech-
anism as an importance weighting mechanism, for
selecting noisy interactions yij with different clus-
tering structures adaptively.

In this mechanism, for each yi,j in noisy corpus,
it allows 1→ 0 (noisy feature) for features, and al-
low 1 → 0 (label with no supportive features) or
0 → 1 (incomplete label) for labels. In addition,
for the task, we expect that our method can auto-
matically adjust the importance weight for reduc-
ing the effect of common features, to differentiate
two instances with different labels. To achieve the
goal, in matrix Z, we fit both ”1” (observed) and
”0” for training labels as discriminative supervi-
sion, while we only fit ”1” (observed) for features.
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Dataset #training #testing %more than one label #features #relation labels
NYT’10 4,700 1,950 7.5% 244,903 51
NYT’13 8,077 3,716 0% 1,957 51

Table 1: Statistics about the two widely used datasets.

(a) NYT’10 dataset (b) NYT’13 dataset

Figure 2: Precision-Recall curve on NYT’10 and NYT’13 datasets. DRMC-b(1) (Fan et al., 2014).

Models P R F1
Mintz 63.59% 61.20% 62.37%
Hoffmann 67.18% 36.41% 47.23%
Surdeanu 76.23% 53.18% 62.65%
DRMC-b 61.03% 66.82% 63.79%
DRMC-1 64.17% 71.74% 67.75%
Our 87.94% 46.00% 63.44%

Table 2: Results at the highest F1 point in the
Precision-Recall (P-R) curve on NYT’10 dataset.
Mintz (Mintz et al., 2009); Hoffmann (Hoffmann
et al., 2011); Surdeanu (Surdeanu et al., 2012);
DRMC-b(1) (Fan et al., 2014);

Learning. To combine Eqs. (7)-(10), we can
construct the full Bayesian model. The goal turns
to infer the posterior of all involved variables:

p(U,V, λ, σ, z, β|Xobserved,Yobserved), (11)

where Xobserved,Yobserved are the observed bi-
nary features (fitting 1) and labels (fitting both 1
and 0). Variational inference is adopted as shown
in (Chen et al., 2015).

Prediction. After learning1, we use the expec-
tation E(P (yi,j)) in Eq.(9) to complete the entries
in Ytest. Finally, we can acquire Top-N predicted
relations via ranking the values E(P (yi,j)), given
entity pair i, for different relations j.

1We implement the system for relation extraction, based
on the code at http://peixianc.me/amf codes.zip.

3 Experiments

We evaluate our method on two widely used
datasets as shown in Table 1 with the same setting
in (Fan et al., 2014).

Dataset. NYT’10, was developed by (Riedel
et al., 2010). NYT’13, was also released by (Riedel
et al., 2013), in which they only regarded the
lexicalized dependency path between two entities
as features. Both are automatically generated by
aligning Freebase to New York Times corpus.

Parameter setting. For all the conducted ex-
periments, the model hyperparameters are fixed
without further tuning: a0 = b0 = 10−4, a1 =
b1 = 0.1 and α = 1.

Model comparison. Since (Fan et al., 2014)
achieves the state-of-the-art performance on the
two datasets, we mainly compare our method with
that in the same setting, to verify the effective-
ness. NYT’10 dataset: Table 2 indicates that our
model achieves the highest precision performance
among all of the competitors. Although the re-
call performance is not competitive, the F1 score
is also comparable to DRMC-b. Figure 2(a) fur-
ther shows the strong precision performance when
the recall is not large. NYT’13 dataset: Figure
2(b) illustrates that our approach outperforms the
state-of-the-art methods, which shows that our ap-
proach can maintain a fairly high precision even
when recall is larger. In addition, in practical ap-
plications, we also concern about the precision on
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Top-N NFE-
13

DRMC-
b

DRMC-
1

Our

Top-100 62.9% 82.0% 80.0% 92.0%
Top-200 57.1% 77.0% 80.0% 88.2%
Top-500 37.2% 70.2% 77.0% 86.3%
Average 52.4% 76.4% 79.0% 88.8%

Table 3: Precision of Top-N predicted instances
on NYT’13 dataset. NFE-13 (Riedel et al., 2013);
DRMC-b(1) (Fan et al., 2014).

Models P R F1
DRMC-b 47.70% 49.58% 48.62%
DRMC-1 67.99% 50.42% 57.90%
Our 66.46% 53.30% 59.16%

Table 4: Results at the highest F1 point in the
Precision-Recall (P-R) curve on NYT’13 dataset.
DRMC-b(1) (Fan et al., 2014).

Top-N predicted instances. Table 3 shows that our
model achieves much significant improvements on
that. Moreover, Table 4 shows that our method can
achieve the best F1, compared with the baselines.

NYT’10 and NYT’13 have different perfor-
mance records, which could be explained as fol-
lows. From the dataset perspective, NYT’10 is a
dataset with multi-label instances, which is more
complex than NYT’13 only having single label in-
stances. This is one reason of why the trends are
quite different between them. More essentially,
we further discuss the differences from the model
mechanism perspective, to explain the reasons. In
(Fan et al., 2014)’s work, it has no explicit noise
modeling mechanism. The noise is modeled im-
plicitly as the error of cost functions. From the
probabilistic view, that error is sampled from sin-
gle Gaussian with zero mean and fixed variance.
In contrast, our method uses infinite Gaussian with
automatically learnt variance. It may cause over-
fitting for complex dataset with sparse features. In
addition, we guess the reason is that in (Fan et al.,
2014)’s work, they use two separate cost func-
tions for features and labels, while in our work we
use one unified noise component for both of them,
which shows the promising precision performance
in NYT’10 when recall is less than 0.4.

In addition, in our experiments, we found that
early stopping is crucial for achieving good re-
sults while model learning. This also verifies that
the potential overfitting problem should be further
considered while using the more flexible nonpara-

metric method for NLP task.

4 Related Work

Our work is closest to (Fan et al., 2014), since
we focus on the same noisy corpus problem. Al-
though from different perspectives, we study it
along with the same line of using matrix factoriza-
tion (Petroni et al., 2015) for relation extraction. In
this line, (Riedel et al., 2013) initially considered
the task as a matrix factorization problem. Their
method consists of several models, such as PCA
(Collins et al., 2001) and collaborative filtering
(Koren, 2008). However, the data noise brought by
the assumption of distant supervision (Mintz et al.,
2009), is not considered in the work. Another line
addressing the problem uses deep neural networks
(Zeng et al., 2015; Wang et al., 2015). The differ-
ence is that it is a supervised learning approach,
while our focused one is a joint learning approach
with transductive style, in which both training and
test data are exploited simultaneously. In addi-
tion, (Han and Sun, 2016) explored Markov logic
technique to enrich supervision knowledge, which
can incorporate indirect supervision globally. Our
method could be further augmented by that idea,
using additional logical constraint to reduce the
uncertainty for the clustered noise modeling.

5 Conclusion

In this paper, building on recent advances from the
nonparametric Bayesian literature, we reformulate
the task of relation extraction with distant super-
vision, based on the adaptive variance learning
with intrinsic clustering structures. For the task,
it can solve the sparsity problem via the learnt
low-rank dense representations and can allow fit-
ting noisy corpus through adaptive variance ad-
justment. Meanwhile, it can avoid turning a large
number of parameters. Experiments suggest sub-
stantially higher top-precision than the competi-
tors. In the future work, we plan to develop more
sophisticated noise models for features and labels
separately, and try to explore logical information,
particularly in this context of nonparametric noise
modeling, for further benefiting this task.
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