
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1712–1722
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

TAG Parsing with Neural Networks and
Vector Representations of Supertags

Jungo Kasai
Dept. of Computer Science

Yale University
jungo.kasai@yale.edu

Robert Frank
Dept. of Linguistics

Yale University
robert.frank@yale.edu

R. Thomas McCoy
Dept. of Linguistics

Yale University
richard.mccoy@yale.edu

Owen Rambow
DSI

Columbia University
rambow@ccls.columbia.edu

Alexis Nasr
LIF

Université Aix Marseille
Alexis.Nasr@lif.univ-mrs.fr

Abstract

We present supertagging-based models for
Tree Adjoining Grammar parsing that use
neural network architectures and dense
vector representation of supertags (ele-
mentary trees) to achieve state-of-the-art
performance in unlabeled and labeled at-
tachment scores. The shift-reduce pars-
ing model eschews lexical information en-
tirely, and uses only the 1-best supertags to
parse a sentence, providing further support
for the claim that supertagging is “almost
parsing.” We demonstrate that the embed-
ding vector representations the parser in-
duces for supertags possess linguistically
interpretable structure, supporting analo-
gies between grammatical structures like
those familiar from recent work in distri-
butional semantics. This dense represen-
tation of supertags overcomes the draw-
backs for statistical models of TAG as
compared to CCG parsing, raising the pos-
sibility that TAG is a viable alternative for
NLP tasks that require the assignment of
richer structural descriptions to sentences.

1 Introduction

Recent work has applied Combinatory Categorial
Grammar (CCG, Steedman and Baldridge (2011))
to the problem of broad-coverage parsing in order
to derive grammatical representations that are suf-
ficiently rich to support tasks requiring deeper rep-
resentation of a sentence’s meaning (Lewis et al.,
2015; Reddy et al., 2016; Nadejde et al., 2017).
Yet CCG is only one of a number of mildly
context-sensitive grammar formalisms that can
provide such rich representations, and each has
distinct advantages. In this paper we explore the
applicability of another formalism, Tree Adjoin-

ing Grammar (TAG, Joshi and Schabes (1997)), to
the task of broad-coverage parsing.

TAG and CCG share the property of lexicaliza-
tion: words are associated with elementary units
of grammatical structure which are composed dur-
ing a derivation using one of a small set of oper-
ations to produce a parse tree. The task of pars-
ing involves the construction of a derivation tree
that encodes the application of this set of actions
to a set of elementary lexically-associated objects.
TAG differs from CCG in having an even richer set
of lexical units, so that the identification of these
units in a derivation could be even more informa-
tive for subsequent tasks involving semantic inter-
pretation, translation and the like, which have been
the focus of CCG-based work.

The elementary units of CCG and TAG (cate-
gories for CCG, and elementary trees for TAG)
determine a word’s combinatory potential, in a
way that is not the case for the usual part-of-
speech tags used in parsing. Indeed, the assign-
ment of elementary objects to the words in a sen-
tence almost determines the possible parse for a
sentence. The near uniqueness of a parse given a
sequence of lexical units motivated Bangalore and
Joshi (1999) to decompose the parsing problem
into two phases: supertagging, where elementary
objects, or supertags, are assigned to each word,
and stapling, where these supertags are combined
together. They claim that given a perfect supertag-
ger, a parse of a sentence follows from syntac-
tic features provided by the supertags, and there-
fore, supertagging is “almost parsing.” This claim
has been confirmed in subsequent work: it has
been shown that the task of parsing given a gold
sequence of supertags can achieve high accuracy
(TAG: (Bangalore et al., 2009; Chung et al., 2016),
CCG: (Lewis et al., 2016)). However, it has also
been revealed that the difficulty of supertagging,
because of the large set of possible supertags, re-

1712



sults in inaccuracies that prevent us from effec-
tively utilizing syntactic information provided by
the imperfect set of supertags that are assigned.
This problem is even more severe for TAG parsing.
TAG differs from CCG in having a smaller set of
combinatory operations, but a more varied set of
elementary objects: the TAG-annotated version of
the Penn Treebank that we use (Chen, 2001) in-
cludes 4727 distinct supertags (2165 occur once)
while the CCG-annotated version (Hockenmaier
and Steedman, 2007) includes 1286 distinct su-
pertags (439 occur once). As a result, building
a robust, broad-coverage TAG parser has proven
difficult.

In this work, we show that robust supertagging-
based parsing of TAG is indeed possible by us-
ing a dense representation of supertags that is in-
duced using neural networks. In the first half of
the paper, we present a neural network supertag-
ger based on a bi-directional LSTM (BLSTM) ar-
chitecture, inspired by the work of Xu (2015) and
Lewis et al. (2016) in CCG, and we make cru-
cial use of synchronized dropout (Gal and Ghahra-
mani, 2016). This supertagger achieves the state-
of-the-art accuracy on the WSJ Penn Treebank.
When combined with an existing TAG chart parser
(Bangalore et al., 2009), the LSTM-based su-
pertagger already yields state-of-the-art unlabeled
and labeled attachment scores.

In the second half of the work, we present
a shift-reduce parsing model based on a feed-
forward neural network that makes use of dense
supertag embeddings. Although this approach
has much in common with the approach to shift-
reduce CCG parsing taken by Zhang and Clark
(2011), it differs in its additive structures in su-
pertag embeddings. When a CCG operation com-
bines two supertags (categories), it yields a re-
sulting category that is typically distinct from the
two that are combined, and CCG shift-reduce
parsers (e.g. Xu (2015)) make use of this result
to guide subsequent actions. When the resulting
category is the same as some lexical category as-
signment (for example when function application
over (S\NP )/NP NP yields S\NP , the same
as an intransitive verb), the parser will benefit from
sharing statistics across these contexts. For TAG
however, substitution or adjoining of one elemen-
tary tree into another does not change the nature of
the elementary tree into which the operation has
taken place. Consequently, the results of partial

derivations are not identified with atomic lexical
entries, resulting in sparser data. We propose a so-
lution to this problem for TAG by introducing vec-
tor representations that are added to the supertag
embedding when an operation has been applied to
an elementary tree. Not only does this result in a
TAG-parser with the best known performance over
the WSJ Penn Treebank, but the resulting supertag
embeddings turn out to contain linguistically sen-
sible linear structure that we illustrate.

2 TAG Parsing and Dependency Parsing

TAG is a tree-rewriting system, and typically the
elementary structures of a TAG are phrase struc-
ture trees. Thus, TAG-derived structures are also
phrase structure trees. In addition, a TAG deriva-
tion also yields a record of the derivational op-
erations (substitutions, adjunctions) used to pro-
duce the derived tree. Since these operations are
context-free, this record also forms a tree, called
the derivation tree, whose nodes are the elemen-
tary objects and the edges are combinatory oper-
ations. If we assume the TAG is lexicalized (i.e.,
each elementary structure is anchored by at least
one terminal symbol), then we can label the nodes
of the derivation tree with the tree names and also
the anchors of the elementary trees, and we ob-
tain what is formally a dependency tree.1 Since
each node is also labeled with an elementary tree
from the grammar, we can associate rich linguistic
structure with that node, such as passive voice or
empty subject.

In addition, it has long been observed that the
derivation tree can also be interpreted linguisti-
cally as a dependency tree (Rambow and Joshi,
1997), if certain assumptions are made about the
shape of the elementary trees in the grammar
(Frank, 2001). The substitution operation corre-
sponds to the obligatory addition of an argument,
and adjunction is used to add adjuncts, as well
as function words to a lexical head. The one
exception is the treatment of long distance wh-
movement in TAG. Here, a matrix clause is rep-
resented by a predicative auxiliary tree which is
adjoined into the embedded clause, so that the wh-
element moved from the embedded clause can still
be substituted locally into the tree headed by its
verb. As a result, the dependency between the ma-
trix and embedded verbs is inverted relative to the

1For the difference between formal and linguistic depen-
dency, see Rambow (2010).

1713



regulate t27

emissions t3would t45bill t3

pass t722

to t31failed t119

they t29

SUBJ

which t100

OBJ
PREDAUX

ADJ
the t1

ADJ ADJ

SUBJ
ADJ

OBJ
regulate

emissionswouldbill

failed

pass

towhich

OBJ ADJ
they

SUBJ OBJ
the

ADJ ADJ

SUBJ
ADJ

OBJ

Figure 1: TAG derivation tree (left) and closely related dependency tree (right) for The bill, which they failed to pass, would
regulate emissions. Substitution edges are labeled SUBJ or OBJ, predicative auxiliary edges are labeled PREDAUX, while all
other adjoining edges are labeled ADJ. We use the same edge labels in the dependency tree. The derivation tree also carries
the name of the elementary tree used during the derivation, which can be used to look up rich syntactic information about that
word in context.

S

VP

NP1↓V♦

NP0↓

NP*

S

S

VP

NP

-NONE-

V♦

NP0

-NONE-

NP1↓

NP*

Figure 2: The elementary trees for t27 (left) and t722 (right).

normally assumed dependency. This can be seen
in Figure 1, where in the linguistically motivated
dependency tree (right) pass depends on failed
as the latter’s object, while in the TAG deriva-
tion tree (left), failed depends on pass, linked by
an arc marked PREDAUX for predicative auxil-
iary. These cases can be detected automatically
because of the trees used; as a result of this in-
version, there is almost no non-projectivity in En-
glish. In summary, TAG parsing into derivation
trees is very closely related to dependency pars-
ing. In this paper, we are interested in extracting
derivation trees, not the derived trees (which can
be recovered from the derivation trees).

The corpus we use is obtained by extracting
a TAG grammar from the WSJ part of the Penn
Treebank corpus, resulting in a grammar and
derivation trees labeled with the grammar Chen
(2001). For example, in Figure 1, t27 is the ba-
sic tree for a transitive verb (regulate), while t722
is the tree for a transitive verb which forms an ob-
ject relative clause with an overt relative pronoun
but an empty subject (Figure 2).2 The corpus and
grammar were iteratively refined to obtain linguis-
tically plausible derivation trees which could serve

2Our full grammar is shown at http://mica.lif.
univ-mrs.fr/d6.clean2-backup.pdf

as input for a generation task (Bangalore and Ram-
bow, 2000). As a result, the dependency struc-
ture is similar to Universal Dependency (Nivre
et al., 2016), apart from the different treatment of
long-distance wh-movement noted above: the pri-
mary dependencies are between the core meaning-
bearing lexical words, while function words (aux-
iliaries, determiners, complementizers) depend on
their lexical head and have no dependents.3 We
label verbal argument arcs with deep dependency
labels: Subject, Object, and Indirect Object nor-
malized for passive and dative shift. All other arcs
are labeled as Adjuncts. This means that our label
set is small, but determining the argument labels
requires detection of voice alternations and dative
shift.

3 TAG Supertagging

3.1 Long-Distance Dependencies and LSTMs
In CCG, a transitive verb is uniformly associated
with the category (S\NP )/NP , and variation in
the word order of a clause is addressed through
the use of different combinatory operations. This
results in greater parsing ambiguity given a se-
quence of categories. In TAG, the set of opera-
tions is more restricted. While this has the pos-
itive effect of reducing parsing ambiguity given a
sequence of elementary trees, it necessitates a pro-
liferation in the number of elementary trees. For
example, a TAG will associate different elemen-
tary trees for the same transitive verb in order to
derive canonical clauses, subject and object rela-
tives, and subject and object questions. Not only
does this lead to a larger number of supertags, it

3One difference should be noted: UD considers preposi-
tions always to be function words, while our TAG grammar
treats them as core words unless the Penn Treebank marks
them as closely related to the verb.

1714



also means that the determination of the correct
supertag requires sensitivity to long-distance de-
pendencies. For example, in the question Who
does Bill think Harry likes?, the category of the
verb like requires sensitivity to the first word of the
sentence. To address this problem, we make use of
a supertagging model that is based on a recurrent
network architecture, the Long Short-Term Mem-
ory (LSTM, Hochreiter and Schmidhuber (1997)),
which is constructed so that its update rule avoids
the vanishing/exploding gradient problem.

3.2 Supertagger Model

The model architecture we adopt is depicted
in Figure 3, a BLSTM. The input for each
word is represented via the concatenation of a
100-dimensional embedding of the word, a 5-
dimensional embedding of a predicted part of
speech tag, and a 10-dimensional embedding of
a suffix vector (which encodes the presence of 1
and 2 character suffixes of the word). We ini-
tialize the word embeddings to be the pre-trained
GloVe vectors (Pennington et al., 2014); for words
which do not have a corresponding GloVe vector,
we initialize their embedding to a zero vector. The
other embeddings are randomly initialized. Fea-
tures for each word are fed into the BLSTMs. To
produce an output for the network, we concatenate
the output vectors from the two LSTM directions
and apply an affine transformation before the soft-
max function to obtain a probability distribution
over the 4727 supertags. We train this network,
including the embeddings, by optimizing the neg-
ative log-likelihood of the observed sequences of
supertags in a mini-batch stochastic fashion with
the Adam optimization algorithm with l = 0.001
(Kingma and Ba, 2015).

Since neural networks have numerous param-
eters, regularization plays a key role in training.
This is typically accomplished by using dropout
(Srivastava et al., 2014). Although dropout train-
ing has been successful on feed-forward neural
networks, performing dropout on recurrent neural
networks has been problematic (Gal and Ghahra-
mani, 2016). Armed with a novel interpretation
of dropout based on variational inference on pa-
rameters, Gal and Ghahramani (2016) propose that
dropout noise should be shared across the time
steps. We apply this technique to the training of
our LSTM network, and achieve an improvement
of approximately 2% in accuracy.

Figure 3: BLSTM Supertagger Architecture.

4 Transition-based Parsing for TAG

As discussed in Section 2, TAG parsing into
derivation trees is closely related to dependency
parsing; it is natural to make use of techniques
from dependency parsing to reconstruct a TAG
derivation tree. We make use of this approach
here, eschewing complete chart-based parsing al-
gorithms in favor of greedy or beam-search-based
explorations of possible parses.

4.1 Shift-Reduce Parsing Algorithm
We employ the arc-eager system of shift-reduce
parsing, familiar from the MALT parser (Nivre
et al., 2006). In this system, an oracle is trained
to predict a sequence of transition operations from
an initial state to a terminal state for each sentence.
Each state is represented by c = (s, b, A) where s,
b, and A denote the stack, buffer and set of de-
pendency relations derived so far. Therefore, our
objective is to predict a transition operation given
the configuration set c. The initial configuration
is defined as s = [ROOT ], b = [w1, · · ·wn], and
A = ∅ where n is the number of tokens in the sen-
tence w1w2 · · ·wn. At a particular state, denote
the top ith element of the stack and the buffer by
si and bi respectively. The arc-eager system de-
fines four types of operations with corresponding
preconditions: LEFT-ARC, RIGHT-ARC, SHIFT
and REDUCE. For the present parser, the LEFT-
ARC and RIGHT-ARC operations are each further
divided into seven different types depending on
the derivational operation involved and the loca-
tion: Substitution 0-4, Adjoining, and Co-anchor
attachment. Substitution n represents an instance
of substitution into an argument slot of an elemen-
tary tree that is uniquely annotated with the num-

1715



ber n (we discuss the interpretation of such num-
bers below). Adjoining represents an application
of the adjoining operation. It is not further sub-
divided, as the current parser does not distinguish
among different loci of adjoining within an ele-
mentary tree. Co-anchor attachment represents the
substitution into a node that is construed as a co-
head of an elementary tree. An example of this is
the insertion of a particle into a verbally headed
tree associated with a verb-particle construction,
such as the insertion of up into the pick-headed
tree to generate I picked up the book. The transi-
tions terminate when the buffer is empty.

This system will fail to capture non-projective
TAG derivation structures. However, as noted in
Section 2, there is almost no non-projectivity in
TAG derivation structures of English. Concretely,
we find that WSJ Sections 01-22 contain only 26
non-projective sentences (0.065%), and those sen-
tences are discarded during training. WSJ Section
00 does not have any non-projective sentences.

On the other hand, WSJ Sections 01-22 con-
tain 0.6% of non-projective sentences in depen-
dency grammar (Chen and Manning, 2014), an or-
der of magnitude more than non-projectivity for
TAG. This suggests that the problem of TAG pars-
ing is more compatible with standard shift-reduce
parsing than dependency grammar parsing is.4

4.2 Parser Model

In this work, we use a non-lexicalized parser,
which does not have access to the identities of the
words of the sentence to be parsed.5 Instead, the
parser’s decisions will be guided by the supertags
of the top k elements from the stack and the first k
elements of the buffer. Using these features as in-
put, we build a two-layer feed-forward network to
predict the action for the parser to take. As noted
above, the identity of the supertag does not allow

4We recognize alternatives to shift-reduce parsing. For
instance, Dozat and Manning (2017) propose a graph-based
parser that accommodates non-projectivity. It remains open
whether such alternatives will work for TAG parsing, and
we leave this for the future. We emphasize, however, that
because of the nature of TAG derivations, the issue of non-
projectivity is much less severe than dependency parsing.

5We have tried adding word embeddings as inputs to the
parser with different choices of hyperparameters (e.g., the
number of embedding dimensions). Unfortunately, our ex-
periments yielded degraded performance. It should be noted,
however, that TAG supertags typically provide enough infor-
mation for deriving correct parses; the only cases that su-
pertags cannot disambiguate are ambiguous attachments to
identical nonterminals (e.g. The picture of my friend with
green eyes).

the parser to encode whether a particular node in
an elementary tree has already been targeted by
a substitution operation. In order to overcome this
deficiency, we augment the parser’s state with sub-
stitution memory, which encodes for each possi-
ble substitution site (from 0 to 4) in a supertag T
whether that substitution has already applied in T .

Each supertag is mapped to a d-dimensional
vector by an embedding matrix E ∈ Rd×(N+2)

whereN denotes the number of supertags; we also
have additional vectors representing the empty
state and ROOT . Substitution memory is simi-
larly transformed, with a substitution memory em-
bedding matrix M ∈ Rd×5, to a d-dimensional
vector that encodes in a distributed manner where
substitution has applied. Each column in M is
the vector corresponding to a specific substitution
type. Each element from the stack and buffer is
then represented by adding the supertag T embed-
ding to the embedding associated with each vec-
tor from M corresponding to the substitution op-
erations already performed on T , if any. Mathe-
matically, suppose that we are at the configuration
c = (s, b, A), and p(i) ∈ R5 denotes the substitu-
tion history of si. p(i) is an indicator vector that
p
(i)
j = 1 if and only if we have already performed

substitution j into si in the parser, and 0 otherwise.
Define p(k+1) in the same way for b1.6 Then, the
input vector to the network can be expressed as

[Es1 +Mp(1); · · · ;Esk +Mp(k);

Eb1 +Mp(k+1); · · · ;Ebk]
This model with the additive substitution memory
has several conceptual advantages. First, the ad-
ditive structure gives us an unbounded scope of
the past transition, avoiding making decisions that
lead to substitution collisions without a computa-
tionally expensive architecture such as an ensem-
ble of LSTMs (Xu, 2015). Moreover, as TAG su-
pertags encode rich syntactic features, the parsing
data for some supertags tend to become scarce.
The most common 300 supertags in the Penn Tree
Bank WSJ Sections 01-22 cover 96.8% of the
data. In a situation of such data sparsity, it be-
comes crucial to link, for example, the behaviors
of intransitive verbs with those of transitive verbs.
With substitution memory, the network can de-
velop representations under which addition of ap-
propriate substitution vectors serves to transform

6Notice that no substitution should have happened on
b2, b3, . . . by construction.

1716



Figure 4: Shift-Reduce Parser Neural Network Architecture.

one supertag into another, allowing the generaliza-
tion across these contexts. Indeed, as we will show
in a later section, the substitution memory embed-
dings and supertag embeddings turn out to yield
interpretable and linguistically sensible structures.

Finally, we concatenate the vectors associated
with the relevant elements from the stack and
buffer into a 2dk dimensional vector and feed it
to the network to obtain a probability distribution
over the possible transition actions. The architec-
ture is visualized in Figure 4. Following Chen and
Manning (2014), we use the cube activation func-
tion for the first layer, which could better capture
interactions. We, again, optimize the negative log-
likelihood in a mini-batch stochastic fashion with
the Adam optimization algorithm with l = 0.001
(Kingma and Ba, 2015). With regards to decoding,
we consider both greedy parsing as well as a beam
search algorithm, where we keep transition action
hypotheses at each time step, in the experiments
we report below.

4.3 Supertag Input to the Parser

We consider three types of supertag inputs to the
neural network parser: gold supertags, 1-best su-
pertags from the BLSTM supertagger, and 1-best
supertags from the MICA chart parser (Bangalore
et al., 2009). MICA searches through n-best su-
pertags with their corresponding probabilities and
produces a full parse forest that abides by the TAG
grammar. To generate the 1-best supertags from
MICA, we first feed 10-best supertags from the
BLSTM supertagger to the MICA chart parser,
and retain only the supertags of the best parse.
These supertags have the special property that
there exists a feasible parse in the TAG gram-
mar for every sentence, which does not necessarily
hold for the 1-best supertags from the BLSTM su-

pertagger.

5 Experiments

5.1 Experimental Setups

In order to ensure comparability with past work on
TAG parsing, we follow the protocol of Bangalore
et al. (2009) and Chung et al. (2016), and use the
grammar and the TAG-annotated WSJ Penn Tree
Bank described in Section 2. Following that work,
we use Sections 01-22 as the training set, Section
00 as the development set, and Section 23 as the
test set. The training, development, and test sets
comprise 39832, 1921, and 2415 sentences, re-
spectively. The development set contains 177 sen-
tences with at least one supertag that was absent
from the training set. We implement the networks
in TensorFlow (Abadi et al., 2015). During train-
ing, we shuffle the order of the sentences in the
training set to form mini-batches. Each mini-batch
consists of 100 sentences, except the last which
contains 32 sentences.

For supertagging, we first generate predicted
POS tags for both the training set and the develop-
ment set. The POS-tagger architecture is similar
to that of the supertagger shown in Figure 3, ex-
cept that, obviously, we do not feed it POS embed-
dings. The BLSTMs each contain 128 units, and
we do not apply dropout at this stage. To derive
predicted POS tags for the supertagger training
set, we perform 10-fold jackknife training over the
training set. For the supertagger, each direction of
LSTM computation involves two layers, and each
LSTM contains 512 units. The hidden units, layer-
to-layer, and input units dropout rates are 0.5, 0.5,
and 0.2 respectively. After each training epoch,
we test the parser on the development set. When
classification accuracy does not improve on two
consecutive epochs, we end the training.

For the parser, we initialize the supertag
embedding matrix E and the substitution
memory embedding matrix M according to
Uniform(− 1√

d
, 1√

d
). For all of the experiments

reported here, we fix the hyper-parameters as
follows: the embedding dimensions d for the
supertag and substitution memory embeddings
are 50, the number of units is 200 on both of the
two hidden layers, and the input dropout rate is
0.2 and the hidden dropout rate is 0.3. We choose
k = 3 or 5 for the stack/buffer scope. After
each training epoch, we test the parser on the
development set, and when the greedy accuracy

1717



fails to improving on two consecutive epochs, we
terminate the training.

5.2 Supertagging Results

We achieve on Section 00 supertagging accuracy
of 89.32%, 90.67% if we disregard the 177 sen-
tences that contain an unseen supertag. This
performance surpasses previous results on this
task: Bangalore et al. (2009) report 88.52% ac-
curacy using a maxent supertagger combined with
a chart parser (MICA), which is the best result
over a tag set of this complexity, though bet-
ter results are reported for considerably smaller
tag sets (on the order of 300 supertags). The
n-best and β pruning accuracy (Clark and Cur-
ran, 2007) are given in Figure 5. In the β prun-
ing scheme, we pick supertags whose probabil-
ities are greater than β times the probability of
the most likely supertag. We show the results for
β ∈ [0.075, 0.03, 0.01, 0.005, 0.001, 0.0001]. It
is noteworthy that with β = 0.005, the average
number of supertags picked for each token (ambi-
guity level) is about 2, but the accuracy surpasses
98%, suggesting that incorporating the β pruning
method in the stapling phase of TAG parsing will
enhance the parser. We also obtain comparable ac-
curacy of 89.44% on Section 23.

As discussed above, TAG supertags alone pro-
vide rich syntactic information. In order to under-
stand how much such information our supertag-
ger sucessfully captures, we analyze the 1-best su-
pertag results on the basis of the syntactic prop-
erties of the elementary trees defined in Chung
et al. (2016). Extending the notion of binary pre-
cision and recall, we define the macro-averaging
precision and recall as the simple average over
precision or recall corresponding to each class
(Sokolova and Lapalme, 2009). We also compute
accuracy, which is simply the ratio of correctly
classified examples to the entire number of exam-
ples. Table 1 shows the results along with those for
the maxent supertagger (Bangalore et al., 2009).
Recall tends to be lower than precision; we can
attribute this pattern to the nature of the macro-
averaging scheme that equally treats each class re-
gardless of the size; poor recall performance on a
small class, such as the class of dative shift verbs,
influences the overall recall as much as perfor-
mance on a large class. Observe, however, that
the BLSTM supertagger yields significantly bet-
ter performance on recall in general, and it outper-

Figure 5: Section 00 n-best accuracy (left), and β pruning
accuracy (right). Sentences with unseen supertags are disre-
garded.

MICA BLSTM
Property # Prec Rec Acc Pre. Rec Acc

root 42 88.8 68.3 95.4 80.4 72.9 95.9
coanc 4 89.7 64.0 99.2 65.3 64.7 99.2
modif 28 82.2 57.3 92.4 73.6 63.6 93.7

dir 3 95.9 95.9 96.0 96.7 96.6 96.7
predaux 2 80.0 67.6 100.0 83.3 85.3 100.0

pred 2 93.3 90.6 99.6 93.3 93.1 99.7
comp 3 92.9 61.4 99.7 95.9 63.3 99.8

particle 3 94.0 92.1 97.1 92.8 92.5 97.5
particleShift 3 89.3 77.7 99.9 77.5 77.0 99.9

voice 4 94.6 92.7 99.4 94.4 94.7 99.4
wh 4 93.0 79.6 97.1 94.5 84.7 97.6
rel 6 68.4 71.2 96.5 88.9 73.6 97.2

esubj 3 94.0 94.0 96.9 95.4 95.3 97.4
datshift 3 92.8 45.3 99.9 96.9 53.3 99.9

Table 1: 1-best Supertag Analysis on Section 00. # indi-
cates the number of possible classes in a property. The Prec
and Rec columns show macro-averaging precision and recall.
The Acc columns indicate simple accuracy. For a complete
description of the properties, see Chung et al. (2016).

forms the maxent supertagger by a large margin in
handling long dependencies of wh-movement and
relativization.

Lastly, we interpret our supertagging perfor-
mance in the context of prepositional phrase (PP)
attachment ambiguity. Normally, in dependency
parsing, PP attachment is resolved by the parser.
However, in our case, it can be resolved before
parsing, during the supertagging step. This is be-
cause the supertags for prepositions vary depend-
ing on the type of constituent modified by the PP
containing the preposition; for example, t4 is the
supertag for a preposition whose PP modifies an
NP, while t13 is the supertag for a preposition
whose PP modifies a VP.

To test how well our supertagger resolves PP at-
tachment ambiguity, we used the dataset from Rat-
naparkhi et al. (1994) (derived from the PTB WSJ)
to extract a test set of sentences with PPs that are
ambiguous between attaching to a VP or to an NP.7

7We were unable to use the full test set because, in or-
der to run the supertagger on the test set, we had to map the
test examples back to their full sentences, but some of those
original sentences are no longer available in PTB3.

1718



We then supertagged these sentences and checked
whether the supertag for the preposition in the am-
biguous PP is a VP modifier or an NP modifier. Of
our test set of 1951 sentences, 1616 had supertags
modifying the correct part of speech, to give an
accuracy of 0.826. Table 2 compares this result to
past work. The supertagger outperforms all other
models besides the Word Vector model. Since this
Word Vector model (like the MaxEnt model) is
specifically trained for this task, and given that our
supertagger is not trained for this particular task,
the accuracy is reasonably encouraging. This re-
sult suggests that TAG supertagging is a reason-
able intermediate level between only resolving PP
attachment and conducting full parsing.

System PP Attachment Accuracy
Malt (Nivre et al., 2006) 79.7*

MaxEnt (Ratnaparkhi et al., 1994) 81.6*
Word Vector (Belinkov et al., 2014) 88.7*

Parsey McParseface (Andor et al., 2016) 82.3
BLSTM Supertagger 82.6

Table 2: Various PP attachment results. * denotes the results
on a different dataset.

5.3 Parsing Results

Parsing results and comparison with prior models
are summarized in Tables 3, 4 (Section 00), and 5
(Section 23). From Table 4, we see that the com-
bination of the BLSTM supertagger, MICA chart
parser, and the neural network parser achieves
state-of-the-art performance, even compared to
parsers that make use of lexical information, POS
tags, and hand-engineered features. With gold su-
pertags, the neural network parser with beam size
16 performs slightly better than the chart parser.
As shown in Table 5, our supertag-based parser
outperforms SyntaxNet (Andor et al., 2016) with
the computationally expensive global normaliza-
tion. This suggests that, besides providing the
grammars and linguistic features that can be used
in downstream tasks in addition to derivation trees
(Semantic Role Labeling: (Chen and Rambow,
2003), Textual Entailments: (Xu et al., 2017)), su-
pertagging also improves parsing performance.

5.4 Learned Vector Representation

We motivated the use of embeddings in the parser
to encode properties of the supertags and the sub-
stitution operations performed on them. We can
examine their structure in a way similar to what
Mikolov et al. (2013) did for word embeddings by
performing analogy tests on the learned supertag

embeddings. Consider, for example, the anal-
ogy that an elementary tree representing a clause
headed by a transitive verb (t27) is to a clause
headed by an intransitive verb (t81) as a subject
relative clause headed by a transitive verb (t99)
is to a subject relative headed by an intransitive
verb (t109). Following Mikolov et al. (2013),
we can express this analogy with the equation
t27− t81 ≈ t99− t109, which can be rearranged
as t27 − t81 + t109 ≈ t99. By seeing if this ap-
proximate equality holds when the embeddings of
the relevant supertags have been added and sub-
tracted, we can test how well the embeddings cap-
ture syntactic properties of the supertags.

To create a set of such analogies, we extracted
all pairs (stag1, stag2) such that stag2 is the re-
sult of excising exactly one substitution node from
stag1. The idea here is that, once a substitution
node is filled within a supertag, the result behaves
like a supertag without that substitution node; for
example, a transitive verb with its object filled
behaves like an intransitive verb. We then cre-
ate analogies by choosing two such pairs, (stag1,
stag2) and (stag3, stag4), chosen so that stag1 and
stag2 are related in the same way that stag3 and
stag4 are related. From these two pairs we then
form an equation of the form stag1 − stag2 +
stag4 ≈ stag3.

We considered three different criteria for choos-
ing which pairs of pairs can form analogies: A-
1, where both pairs must have the same deep
syntactic role (Drole) for the excised substitution
node; A-2, where both pairs must have the same
Drole and POS for the excised substitution node;
and A-3, where both pairs must have the same
Drole and same POS for the excised substitution
node, and the heads of all supertags in the analogy
must have the same POS. For each analogy gen-
erated, we computed the left hand side by adding
and subtracting the relevant supertag embeddings
and used cosine similarity to determine the most
similar embeddings to the result and whether the
intended right hand side was among the closest
neighbors. We used four metrics for evaluation:
Acc, the proportion of analogies for which the
closest neighbor was the correct supertag; Acc-
300, the proportion of analogies for which the
closest neighbor amongst the 300 most common
supertags was the correct supertag; Avg Rank, the
average position of the correct choice in the ranked
list of the closest neighbors; and Avg Rank-300,

1719



Gold Stags BLSTM BLSTM+Chart
k B UAS LAS UAS LAS UAS LAS
3 1 96.74±0.06 96.47±0.06 89.54±0.03 88.06±0.04 90.03±0.02 88.56±0.02

3 16 97.62±0.06 97.42±0.07 90.31±0.04 88.85±0.04 90.85±0.02 89.38±0.02

5 1 96.96±0.19 96.67±0.20 89.63±0.03 88.12±0.04 90.07±0.06 88.60±0.06

5 16 97.68±0.06 97.46±0.05 90.38±0.05 88.92±0.04 90.88±0.06 89.39±0.06

Table 3: Parsing Results on Section 00. k is # of elements from stack and buffer used as input, B is the beam size. We show
mean and standard deviation over 5 trials with different initialization for each configuration. BLSTM+Chart shows results
obtained by feeding the 1-best supertag inputs from the MICA chart parser discussed in Section 4.3.

Gold Stags Predicted Stags
Parser Features UAS LAS Stag Acc UAS LAS
MALT-Stag Words, POS, Stags (1-best) 97.20* 96.90* 88.52 88.50* 86.80*

Maxent+Chart (MICA) Stags (10-best) 97.60 97.30 88.52 87.60 85.80
P3 Words, POS, Stags (1-best), Stag features 97.46* 96.51* 87.88 89.96* 87.86*

BLSTM+Chart Stags (10-best) 89.32 90.05 88.32
BLSTM+NN Stags (1-best) 97.68±0.06 97.46±0.05 89.32 90.38±0.05 88.92±0.04

BLSTM+Chart+NN Stags (1-best) – – 89.31 90.88±0.06 89.39±0.06

Table 4: Section 00 Performance Comparison with Prior Models. The P3 results are from Chung et al. (2016). P3 is based on
the model described in Nivre et al. (2004). * denotes the results with gold POS tags. For the NN parser, k=5 and B=16.

Model Stag Acc UAS LAS
SyntaxNet – 90.47±0.05 88.99±0.06

Maxent+Chart 86.85 86.66 84.90
BLSTM+Chart 89.44 90.20 88.66
BLSTM+NN 89.44 90.31±0.03 88.98±0.03

BLSTM+Chart+NN 89.71 90.97±0.03 89.68±0.03

Table 5: Supertagging and Parsing Results on Section 23. For
the NN parser, k=5 and B=16 throughout. We trained Syn-
taxnet (Andor et al., 2016) with global normalization beam
size 16 using the TensorFlow toolkit.

the average position of the correct choice in the
ranked list of the closest neighbors amongst the
300 most common supertags.

We expect that the embeddings for common su-
pertags would be better representations than em-
beddings for rare supertags. Thus, we restricted
our experiment to analogies between supertags
among the 300 most common ones in the train-
ing set. (Indeed, experiments that included rare
supertags in the analogies produced poor results.)

Table 6 provides the results for the 3 types of
analogies, which are very promising, particularly
type A-3. We can visualize these results by per-
forming PCA on the embedding vectors. Figure 6a
shows the first 2 PCA components of A-3 analo-
gies involving supertags containing transitive and
intransitive predicates across a variety of struc-
tures. We see that virtually all pairs differ from one
another by a similar vector, and in fact this differ-
ence is essentially the vector associated with sub-
stitution 1 in the substitution embedding memory
(shown in blue). Figure 6b shows the case of pairs
of canonical sentence elementary trees (read in I
read the book) and their subject relative analogs
(read in the guy who read the book). This again
shows a systematic mapping between grammati-

Type Acc Acc-300 Avg Rank Avg Rank-300
A-1 0.20 0.28 49.5 10.2
A-2 0.44 0.60 17.4 3.68
A-3 0.61 0.81 2.26 1.38

Table 6: Analogy Task Results.

cally related embeddings, suggesting that the em-
beddings encode relevant structural properties.

(a) Transitive/intransitive (b) Declarative/relative

Figure 6: Embedding vector alignments.

6 Conclusions and Future Work

We presented a state-of-the-art TAG supertagger
and parser, the former based on a BLSTM archi-
tecture, and the latter on a non-lexicalized shift-
reduce parser using a feed-forward network. The
parser makes crucial use of supertag embeddings
that provide linguistically interpretable vector rep-
resentations of the supertags. These positive re-
sults suggest that TAG can provide the foundation
of NLP systems for tasks requiring deeper anal-
ysis than current dependency parsers provide, and
we will apply our parser to such tasks in the future.
Nonetheless, a large discrepancy remains in parser
performance with gold supertags and predicted su-
pertags, indicating that supertagging is still a bot-
tleneck. We will explore ways to leverage our su-
pertagger’s high β-pruning accuracy in parsing.

1720



References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of Association for Computational Linguis-
tics.

Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen
Rambow, and Benoı̂t Sagot. 2009. MICA: A Proba-
bilistic Dependency Parser Based on Tree Insertion
Grammars. In NAACL HLT 2009 (Short Papers).

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An Approach to Almost Parsing. Com-
putational Linguistics 25:237–266.

Srinivas Bangalore and Owen Rambow. 2000. Ex-
ploiting a probabilistic hierarchical model for gen-
eration. In Proceedings of the 18th International
Conference on Computational Linguistics (COLING
2000). Saarbrücken, Germany.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for preposi-
tional phrase attachment. Transactions of the Asso-
ciation for Computational Linguistics (2):561–572.

Danqi Chen and Christopher D Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

John Chen and Owen Rambow. 2003. Use of Deep
Linguistics Features for the Recognition and Label-
ing of Semantic Arguments. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Wonchang Chung, Suhas Siddhesh Mhatre, Alexis
Nasr, Owen Rambow, and Srinivas Bangalore. 2016.

Revisiting supertagging and parsing: How to use su-
pertags in transition-based parsing. In Proceedings
of the 12th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+12).
pages 85–92.

Stephen Clark and James R. Curran. 2007. Wide-
coverage semantic representations from a CCG
parser. Computational Linguistics 4.

Timothy Dozat and Christopher Manning. 2017. Deep
biaffine attention for neural dependency parsing. In
ICLR.

Robert Frank. 2001. Phrase Structure Composition
and Syntactic Dependencies. MIT Press, Cam-
bridge, Mass.

Yarin Gal and Zoubin Ghahramani. 2016. A theoreti-
cally grounded application of dropout in recurrent
neural networks. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
29, Curran Associates, Inc., pages 1019–1027.
http://papers.nips.cc/paper/6241-a-theoretically-
grounded-application-of-dropout-in-recurrent-
neural-networks.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics 33(3):355–396.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, Vol-
ume 3: Beyond Words, Springer, New York, pages
69–124.

Diederik P. Kingma and Jimmy Lei Ba. 2015. ADAM:
A Method for Stochastic Optimization. In Inter-
national Conference on Learning Representations
(ICLR).

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a∗ CCG parsing and semantic role labeling”.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of NAACL-
HLT 2016. pages 221–231.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their
Compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

1721



Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Syntax-aware neural
machine translation using CCG. ArXiv Preprint
1702.01147v1.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Sara Goggi, Marko Grobelnik, Bente Maegaard,
Joseph Mariani, Helene Mazo, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Eu-
ropean Language Resources Association (ELRA),
Paris, France.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In HLT-
NAACL 2004 Workshop: Eighth Conference
on Computational Natural Language Learning
(CoNLL-2004). pages 49–56.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In LREC.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, pages 1532–1543.

Owen Rambow. 2010. The simple truth about de-
pendency and phrase structure representations: An
opinion piece. In Human Language Technolo-
gies: The 2010 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Los Angeles, California, pages 337–
340. http://www.aclweb.org/anthology/N10-1049.

Owen Rambow and Aravind Joshi. 1997. A formal
look at dependency grammars and phrase-structure
grammars, with special consideration of word-order
phenomena. In Leo Wanner, editor, Recent Trends
in Meaning-Text Theory, John Benjamins, Amster-
dam and Philadelphia, pages 167–190.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A maximum entropy model for preposi-
tional phrase attachment. In ARPA Human Lan-
guage Technology Workshop. pages 250–255.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics 4:127–140.

Marina Sokolova and Guy Lapalme. 2009. A system-
atic analysis of performance measures for classifi-
cation tasks. Information Processing and Manage-
ment 45:427–437.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search 15 (15):1929–1958.

Mark Steedman and Jason Baldridge. 2011. Combina-
tory categorial grammar. In Robert Borsley and Ker-
sti Börjars, editors, Non-Transformational Syntax:
Formal and Explicit Models of Grammar, Wiley-
Blackwell.

Pauli Xu, Robert Frank, Jungo Kasai, and Owen Ram-
bow. 2017. TAG parsing evaluation using textual en-
tailments. In Proceedings of the 13th International
Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+13).

Wenduan Xu. 2015. LSTM shift-reduce CCG parsing.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1754–
1764.

Yue Zhang and Stephen Clark. 2011. Shift-Reduce
CCG Parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 683–692.

1722


