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Abstract

In this paper we propose an end-to-
end neural CRF autoencoder (NCRF-AE)
model for semi-supervised learning of se-
quential structured prediction problems.
Our NCRF-AE consists of two parts: an
encoder which is a CRF model enhanced
by deep neural networks, and a decoder
which is a generative model trying to re-
construct the input. Our model has a uni-
fied structure with different loss functions
for labeled and unlabeled data with shared
parameters. We developed a variation of
the EM algorithm for optimizing both the
encoder and the decoder simultaneously
by decoupling their parameters. Our ex-
perimental results over the Part-of-Speech
(POS) tagging task on eight different lan-
guages, show that the NCRF-AE model
can outperform competitive systems in
both supervised and semi-supervised sce-
narios.

1 Introduction

The recent renaissance of deep learning has led
to significant strides forward in several Al fields.
In Natural Language Processing (NLP), charac-
terized by highly structured tasks, promising re-
sults were obtained by models that combine deep
learning methods with traditional structured learn-
ing algorithms (Chen and Manning, 2014; Dur-
rett and Klein, 2015; Andor et al., 2016; Wise-
man and Rush, 2016). These models combine the
strengths of neural models, that can score local
decisions using a rich non-linear representation,
with efficient inference procedures used to com-
bine the local decisions into a coherent global de-
cision. Among these models, neural variants of the
Conditional Random Fields (CRF) model (Laf-

ferty et al., 2001) are especially popular. By re-
placing the linear potentials with non-linear poten-
tial using neural networks these models were able
to improve performance in several structured pre-
diction tasks (Andor et al., 2016; Peng and Dredze,
2016; Lample et al., 2016; Ma and Hovy, 2016;
Durrett and Klein, 2015).

Despite their promise, wider adoption of these
algorithms for new structured prediction tasks can
be difficult. Neural networks are notoriously sus-
ceptible to over-fitting unless large amounts of
training data are available. This problem is exacer-
bated in the structured settings, as accounting for
the dependencies between decisions requires even
more data. Providing it through manual annotation
is often a difficult labor-intensive task.

In this paper we tackle this problem, and
propose an end-to-end neural CRF autoencoder
(NCRF-AE) model for semi-supervised learning
on sequence labeling problems.

An autoencoder is a special type of neural net,
modeling the conditional probability P(X]X),
where X is the original input to the model and
X is the reconstructed input (Hinton and Zemel,
1994). Autoencoders consist of two parts, an en-
coder projecting the input to a hidden space, and a
decoder reconstructing the input from it.

Traditionally, autoencoders are used for gener-
ating a compressed representation of the input by
projecting it into a dense low dimensional space.
In our setting the hidden space consists of discrete
variables that comprise the output structure. These
generalized settings are described in Figure 1a. By
definition, it is easy to see that the encoder (lower
half in Figure 1a) can be modeled by a discrimina-
tive model describing P(Y'|X) directly, while the
decoder (upper half in Figure 1a) naturally fits as
a generative model, describing P(X|Y'), where Y
is the label. In our model, illustrated in Figure 1b,
the encoder is a CRF model with neural networks
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as its potential extractors, while the decoder is a
generative model, trying to reconstruct the input.

Our model carries the merit of autoencoders,
which can exploit valuable information from unla-
beled data. Recent works (Ammar et al., 2014; Lin
et al., 2015) suggested using an autoencoder with
a CRF model as an encoder in an unsupervised set-
ting. We significantly expand on these works and
suggest the following contributions:

1. We propose a unified model seamlessly ac-
commodating both unlabeled and labeled data.
While past work focused on unsupervised struc-
tured prediction, neglecting the discriminative
power of such models, our model easily sup-
ports learning in both fully supervised and semi-
supervised settings. We developed a variation
of the Expectation-Maximization (EM) algorithm,
used for optimizing the encoder and the decoder
of our model simultaneously.

2. We increase the expressivity of the traditional
CREF autoencoder model using neural networks as
the potential extractors, thus avoiding the heavy
feature engineering necessary in previous works.

Interestingly, our model’s predictions, which
unify the discriminative neural CRF encoder and
the generative decoder, have led to an improved
performance over the highly optimized neural
CRF (NCRF) model alone, even when trained in
the supervised settings over the same data.

3. We demonstrate the advantages of our model
empirically, focusing on the well-known Part-
of-Speech (POS) tagging problem over 8§ differ-
ent languages, including low resource languages.
In the supervised setting, our NCRF-AE outper-
formed the highly optimized NCRF. In the semi-
supervised setting, our model was able to suc-
cessfully utilize unlabeled data, improving on the
performance obtained when only using the la-
beled data, and outperforming competing semi-
supervised learning algorithms.

Furthermore, our newly proposed algorithm
is directly applicable to other sequential learn-
ing tasks in NLP, and can be easily adapted to
other structured tasks such as dependency parsing
or constituent parsing by replacing the forward-
backward algorithm with the inside-outside algo-
rithm. All of these tasks can benefit from semi-
supervised learning algorithms. !

'Our code and experimental set up will be available at
https://github.com/cosmozhang/NCRF-AE

2 Related Work

Neural networks were successfully applied to
many NLP tasks, including tagging (Ma and
Hovy, 2016; Mesnil et al., 2015; Lample et al.,
2016), parsing (Chen and Manning, 2014), text
generation (Sutskever et al., 2011), machine trans-
lation (Bahdanau et al., 2015), sentiment anal-
ysis (Kim, 2014) and question answering (An-
dreas et al., 2016). Most relevant to this work are
structured prediction models capturing dependen-
cies between decisions, either by modeling the de-
pendencies between the hidden representations of
connected decisions using RNN/LSTM (Vaswani
et al., 2016; Katiyar and Cardie, 2016), by explic-
itly modeling the structural dependencies between
output predictions (Durrett and Klein, 2015; Lam-
ple et al., 2016; Andor et al., 2016), or by combin-
ing the two approaches (Socher et al., 2013; Wise-
man and Rush, 2016).

In contrast to supervised latent variable models,
such as the Hidden Conditional Random Fields in
(Quattoni et al., 2007), which utilize additional la-
tent variables to infer for supervised structure pre-
diction, we do not presume any additional latent
variables in our NCRF-AE model in both super-
vised and semi-supervised setting.

The difficulty of providing sufficient super-
vision has motivated work on semi-supervised
and unsupervised learning for many of these
tasks (McClosky et al., 2006; Spitkovsky et al.,
2010; Subramanya et al., 2010; Stratos and
Collins, 2015; Marinho et al., 2016; Tran et al.,
2016), including several that also used autoen-
coders (Ammar et al., 2014; Lin et al., 2015; Miao
and Blunsom, 2016; Kocisky et al., 2016; Cheng
et al., 2017). In this paper we expand on these
works, and suggest a neural CRF autoencoder, that
can leverage both labeled and unlabeled data.

3 Neural CRF Autoencoder

In semi-supervised learning the algorithm needs to
utilize both labeled and unlabeled data. Autoen-
coders offer a convenient way of dealing with both
types of data in a unified fashion.

A generalized autoencoder (Figure 1a) tries to
reconstruct the input X given the original input X,
aiming to maximize the log probability P(X|X)
without knowing the latent variable Y explicitly.
Since we focus on sequential structured prediction
problems, the encoding and decoding processes
are no longer for a single data point (x,y) (x if
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unlabeled), but for the whole input instance and
output sequence (x, y) (x if unlabeled). Addition-
ally, as our main purpose in this study is to recon-
struct the input with precision, & is just a copy of

(b) The neural CRF autoencoder
model in this work.

Decoder

Encoder

(a) A generalized
autoencoder.

Figure 1: On the left is a generalized autoencoder,
of which the lower half is the encoder and the up-
per half is the decoder. On the right is an illus-
tration of the graphical model of our NCRF-AE
model. The yellow squares are interactive poten-
tials among labels, and the green squares represent
the unary potentials generated by the neural net-
works.

As shown in Figure 1b, our NCRF-AE model
consists of two parts: the encoder (the lower half)
is a discriminative CRF model enhanced by deep
neural networks as its potential extractors with en-
coding parameters A, describing the probability
of a predicted sequence of labels given the input;
the decoder (the upper half) is a generative model
with reconstruction parameters &, modeling the
probability of reconstructing the input given a se-
quence of labels. Accordingly, we present our
model mathematically as follows:

Poa(Zlx) = ZP@,A<CEvy’$)
Yy

= Po(Z|y)Palylz),
Yy

where Pp(y|x) is the probability given by the
neural CRF encoder, and Pg(&|y) is the proba-
bility produced by the generative decoder.

When making a prediction, the model tries to
find the most probable output sequence by per-
forming the following inference procedure using
the Viterbi algorithm:

y* = argmax Pg A (&, y|x).
y

To clarity, as we focus on POS tagging prob-
lems in this study, in the unsupervised setting

where the true POS tags are unknown, the labels
used for reconstruction are actually the POS tags
being induced. The labels induced here are core-
spoding to the hidden nodes in a generalized au-
toencoder model.

3.1 Neural CRF Encoder

In a CRF model, the probability of predicted labels
Y, given sequence x as input is modeled as

e®(@,y)
Z Y

Pa(ylz) =

where Z = 3" e®(®9) is the partition function that
]
marginalize over all possible assignments to the

predicted labels of the sequence, and ®(x,y) is
the scoring function, which is defined as:

®(z,y) = Z (@, i) + ¥ (ye—1, 1)

The partition function Z can be computed effi-
ciently via the forward-backward algorithm. The
term ¢(x,y;) corresponds to the score of a par-
ticular tag y; at position ¢ in the sequence, and
¥ (yt—1,ye) represents the score of transition from
the tag at position ¢ — 1 to the tag at position t.
In our NCRF-AE model, ¢(x, y;) is described by
deep neural networks while v (y;—1,y¢) by a tran-
sition matrix. Such a structure allows for the use
of distributed representations of the input, for in-
stance, the word embeddings on a continuous vec-
tor space (Mikolov et al., 2013).

Typically in our work, ¢(x,y;) is modeled
jointly by a multi-layer perceptron (MLP) that
utilizes the word-level information, and a bi-
directional long-short term memory (LSTM) neu-
ral network (Hochreiter and Urgen Schmidhuber,
1997) that captures the character level information
within each word. A bi-directional structure can
extract character level information from both di-
rections, with which we expect to catch the pre-
fix and suffix information of words in an end-
to-end system, rather than using hand-engineered
features. The bi-directional LSTM neural network
consumes character embeddings e, € R*! as in-
put, where k; is the dimensionality of the charac-
ter embeddings. A normal LSTM can be denoted
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as:
iy = o(Weiee, + Wyihi—1 + b;),
fi =0(Weree, + Wythi_1 + by),
Oy = U(Weoect + Whoht—l + bO))

gi = Relu(Wecee, + Wichi—1 + b,),
¢t =fi ©ci1+ 1 O gy,
ht =0;©® tanh(ct),

where © denotes element-wise multiplication.
Then a bi-directional LSTM neural network ex-
tends it as follows, by denoting the procedure of
generating h; as H:

— —
h:= H(Weﬁ)ect + W?? hi_1+ b?),
— —

hy=HW e, + Weehi_1+bs),

where e., here is the character embedding for
character c in position ¢ in a word.

The inputs to the MLP are word embed-
dings e, € R*2 for each word v, where ky is
the dimensionality of the vector, concatenated
with the final representation generated by the
bi-directional LS)F M _over the characters of that
word: u = [ey; hy; hy). In order to leverage the
capacity of the CRF model, we use a word and its
context together to generate the unary potential.
More specifically, we adopt a concatenation v; =
[Ut—(w—l)/2§ T U1 Uy Uy 15 ;ut—&-(w—l)/ﬂ
as the inputs to the MLP model, where ¢ denotes
the position in a sequence, and w being an odd
number indicates the context size. Further, in
order to enhance the generality of our model, we
add a dropout layer on the input right before the
MLP layer as a regularizer. Notice that different
from a normal MLP, the activation function of
the last layer is no more a softmax function, but
a linear function generates the log-linear part
¢¢(x, y;) of the CRF model:

ht = RelU(W’Ut + b)
qbt = w;ht + by.

The transition score ¥ (yi—1,y;) is a single
scalar representing the interactive potential. We
use a transition matrix ¥ to cover all the transi-
tions between different labels, and W is part of the
encoder parameters A.

All the parameters in the neuralized encoder are
updated when the loss function is minimized via
error back-propagation through all the structures
of the neural networks and the transition matrix.

The detailed structure of the neural CRF en-
coder is demonstrated in Fig 2. Note that the
MLP layer is also interchangeable with a recur-
rent neural network (RNN) layer or LSTM layer.
But in our pilot experiments, we found a single
MLP structure yields better performance, which
we conjecture is due to over-fitting caused by the
high complexity of those alternatives.

Figure 2: A demonstration of the neural CRF en-
coder. l; and r; are the output of the forward and
backward character-level LSTM of the word at po-
sition ¢ in a sentence, and e; is the word-level em-
bedding of that word. w; is the concatenation of
e, l; and r;, denoted by blue dashed arrows.

3.2 Generative Decoder

In our NCRF-AE, we assume the generative pro-
cess follows several multinomial distributions:
each label y has the probability 6, ., to recon-
struct the corresponding word z, i.e., P(x|y) =
0y—.. This setting naturally leads to a constraint
>0y, = 1. The number of parameters of the

x
decoder is |Y| x |X|. For a whole sequence,
the reconstruction probability is Pe(&|y) =

UP(@H%)-

4 A Unified Learning Framework

We first constructed two loss functions for labeled
and unlabeled data using the same model. Our
model is trained in an on-line fashion: given a
labeled or unlabeled sentence, our NCRF-AE op-
timizes the loss function by choosing the corre-
sponding one. In an analogy to coordinate de-
scent, we optimize the loss function of the NCRF-
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AE by alternatively updating the parameters ® in
the decoder and the parameters A in the encoder.
The parameters ® in the decoder are updated via
a variation of the Expectation-Maximization (EM)
algorithm, and the the parameters A in the encoder
are updated through a gradient-based method due
to the non-convexity of the neuralized CRF. In
contrast to the early autoencoder models (Ammar
et al., 2014; Lin et al., 2015), our model has two
distinctions: First, we have two loss functions to
model labeled example and unlabeled examples;
Second, we designed a variant of EM algorithm to
alternatively learn the parameters of the encoder
and the decoder at the same time.

4.1 Unified Loss Functions for Labeled and
unlabeled Data

For a sequential input with labels, the complete
data likelihood given by our NCRF-AE is

Po A(Z,y|z) = Po(Z|y)Pa(y|x)

. e2(@y)
= IZ[P(%L%) 7
e;st(m’y)
-z

where

si(x,y) = log P(z¢|ye) + ¢(, yt) + ¥ (ye—1,yt)-

If the input sequence is unlabeled, we can sim-
ply marginalize over all the possible assignment to
labels. The probability is formulated as

Poa(dlz) =) P&, ylz)
Yy
_v
=

where U = e; St(m,y).

Our formlflation have two advantages. First,
term U is different from but in a similar form
as term Z, such that to calculate the probability
P(&|x) for an unlabeled sequence, the forward-
backward algorithm to compute the partition func-
tion Z can also be applied to compute U effi-
ciently. Second, our NCRF-AE highlights a uni-
fied structure of different loss functions for labeled
and unlabeled data with shared parameters. Thus
during training, our model can address both la-
beled and unlabeled data well by alternating the

loss functions. Using negative log-likelihood as
our loss function, if the data is labeled, the loss
function is:

loss; = —log Pe A(Z,y|x)

= _(Z St(mvy) - log Z)

t

If the data is unlabeled, the loss function is:

loss, = —log Pe A(Z|x)
= —(logU — log Z).

Thus, during training, based on whether the en-
countered data is labeled or unlabeled, our model
can select the appropriate loss function for learn-
ing parameters. In practice, we found for labeled
data, using a combination of loss; and loss,, actu-
ally yields better performance.

5 Mixed Expectation-Maximization
Algorithm

The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) was applied to a wide
range of problems. Generally, it establishes a
lower-bound of the objective function by using
Jensen’s Inequality. It first tries to find the pos-
terior distribution of the latent variables, and then
based on the posterior distribution of the latent
variables, it maximizes the lower-bound. By al-
ternating expectation (E) and maximization (M)
steps, the algorithm iteratively improves the lower-
bound of the objective function.

In this section we describe the mixed
Expectation-Maximization  (EM)  algorithm
used in our study. Parameterized by the encoding
parameters A and the reconstruction parameters
®, our NCRF-AE consists of the encoder and the
decoder, which together forms the log-likelihood
a highly non-convex function. However, a careful
observation shows that if we fix the encoder, the
lower bound derived in the E step, is convex with
respect to the reconstruction parameters © in the
M step. Hence, in the M step we can analytically
obtain the global optimum of ®. In terms of
the reconstruction parameters ® by fixing A,
we describe our EM algorithm in iteration ¢ as
follows:

In the E-step, we let Q(y;) = P(y;|x;, &;), and
treat y; the latent variable as it is not observable in
unlabeled data. We derive the lower-bound of the
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log-likelihood using Q(y;):

Zlogp(iﬂwz ZlOgZQ yz wlv;/z)|$z)
-’Ez,yzlazz)
222 Qlw)les =g,y

where Q(y;) is computed using parameters
©(~1) in the previous iteration ¢ — 1.

In the M-step, we try to improve the aforemen-
tioned lower-bound using all examples:

P (2:]y:) Pa (yilx;)
Q(yi)

arg rg?gc ZZ: yz Q(y;) log Pg ) (Zily;) + const

(1
argmax »_ log 0., Z Qy)C(y, z)

Yy—x

arg max Z log Gyﬂx y~QlC(y, )]

y‘ﬁf

st 3000, =1

o)

arg max Z Z Qy)1
i Yi

In this formulation, const is a constant with re-
spect to the parameters we are updating. Q(y)
is the distribution of a label y at any position by
marginalizing labels at all other positions in a se-
quence. By denoting C(y,x) as the number of
times that (z,y) co-occurs, Eyvq_, [C(y,x)]
is the expected count of a particular reconstruc-
tion at any position, which can also be calculated
using Baum-Welch algorithm (Welch, 2003), and
can be summed over for all examples in the dataset
(In the labeled data, it is just a real count). The al-
gorithm we used to calculate the expected count
is described in Algorithm 1. Therefore, it can
be shown that the aforementioned global optimum
can be calculated by simply normalizing the ex-
pected counts. In terms of the encoder’s parame-
ters A, they are first updated via a gradient-based
optimization before each EM iteration. Based on
the above discussion, our Mixed EM Algorithm is
presented in Algorithm 2.

Algorithm 1 Obtain Expected Count (1)

Require: the expected count table 7,
1: for an unlabeled data example x; do

2: Compute  the forward  messages:
a(y,t) Vy,t. > ¢ is the position in a
sequence.

3: Compute the backward messages:
Bly,t) Vy,t.

4: Calculate the expected count for each x in

@it P(yslae) o< aly, t) x B(y, ).
p Te(we,ye) — Te(@e, ye) + Plyelwe) > Te
is the expected count table.
6: end for

Algorithm 2 Mixed Expectation-Maximization

1: Initialize expected count table 7, using la-
beled data {z,y}! and use it as ®©) in the
decoder.

2: Initialize A in the encoder randomly.

3: for t in epochs do

4: Train the encoder on labeled data {x, y}
and unlabeled data {z}* to update A*~1 to
AW®,

5: Re-initialize expected count table 7, with
Os.

6: Use labeled data {z, y}' to calculate real
counts and update 7.

7: Use unlabeled data {x}" to compute the
expected counts with parameters A(®) and
O~ and update 7.

8  Obtain O®) globally and analytically
based on T..

9: end for

This mixed EM algorithm is a combination of
the gradient-based approach to optimize the en-
coder by minimizing the negative log-likelihood
as the loss function, and the EM approach to up-
date the decoder’s parameters by improving the
lower-bound of the log-likelihood.

6 Experiments

6.1 Experimental Settings

Dataset We evaluated our model on the POS
tagging task, in both the supervised and semi-
supervised learning settings, over eight different
languages from the UD (Universal Dependencies)
1.4 dataset (Mcdonald et al., 2013). The task is
defined over 17 different POS tags, used across
the different languages. We followed the original
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English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
Tokens 254830 | 391107 | 293088 | 272913 | 99389 | 423346 121923 139023
Training 12543 | 14554 14118 12837 4029 14187 4477 5792
Development| 2002 1596 799 502 1552 559 200
Testing 2077 298 977 499 274 297 297

Table 1: Statistics of different UD languages used in our experiments, including the number of tokens,
and the number of sentences in training, development and testing set respectively.

UD division for training, development and test-
ing in our experiments. The statistics of the data
used in our experiments are described in table 1.
The UD dataset includes several low-resource lan-
guages which are of particular interest to our semi-
supervised model.

Input Representation and Neural Architecture
Our model uses word embeddings as input. In our
pilot experiments, we compared the performance
on the English dataset of the pre-trained embed-
ding from Google News (Mikolov et al., 2013)
and the embeddings we trained directly on the UD
dataset using the skip-gram algorithm (Mikolov
et al., 2013). We found these two types of em-
beddings yield very similar performance on the
POS tagging task. So in our experiments, we used
embeddings of different languages directly trained
on the UD dataset as input to our model, whose
dimension is 200. For the MLP neural network
layer, the number of hidden nodes in the hidden
layer is 20, which is the same for the hidden layer
in the character-level LSTM. The dimension of the
character-level embeddings sent into the LSTM
layer is 15, which is randomly initialized. In or-
der to incorporate the global information of the in-
put sequence, we set the context window size to 3.
The dropout rate for the dropout layer is set to 0.5.

Learning We used ADADELTA (Zeiler, 2012)
to update parameters A in the encoder, as
ADADELTA dynamically adapts learning rate
over time using only first order information
and has minimal computational overhead beyond
vanilla stochastic gradient descent (SGD). The au-
thors of ADADELTA also argue this method ap-
pears robust to noisy gradient information, dif-
ferent model architecture choices, various data
modalities and selection of hyper-parameters. We
observed that ADADELTA indeed had faster con-
vergence than vanilla SGD optimization. In our
experiments, we include word embeddings and
character embeddings as parameters as well. We
used Theano to implement our algorithm, and all

the experiments were run on NVIDIA GPUs. To
prevent over-fitting, we used the “early-stop” strat-
egy to determine the appropriate number of epochs
during training. We did not take efforts to tune
those hyper-parameters and they remained the
same in both our supervised and semi-supervised
learning experiments.

6.2 Supervised Learning

In these settings our Neural CRF autoencoder
model had access to the full amount of annotated
training data in the UD dataset. As described in
Section 5, the decoder’s parameters ® were esti-
mated using real counts from the labeled data.

We compared our model with existing sequence
labeling models including HMM, CRF, LSTM
and neural CRF (NCRF) on all the 8 languages.
Among these models, the NCRF can be most di-
rectly compared to our model, as it is used as the
base of our model, but without the decoder (and as
a result, can only be used for supervised learning).

The results, summarized in Table 2, show that
our NCRF-AE consistently outperformed all other
systems, on all the 8 languages, including Russian,
Indonesian and Croatian which had considerably
less data compared to other languages. Interest-
ingly, the NCRF consistently came second to our
model, which demonstrates the efficacy of the ex-
pressivity added to our model by the decoder, to-
gether with an appropriate optimization approach.

To better understand the performance difference
by different models, we performed error analy-
sis, using an illustrative example, described in Fig-
ure 3.

In this example, the LSTM incorrectly predicted
the POS tag of the word “search’ as a verb, instead
of a noun (part of the NP “nice search engine”),
while predicting correctly the preceding word,
“nice”, as an adjective. We attribute the error to
LSTM lacking an explicit output transition scor-
ing function, which would penalize the ungram-
matical transition between “ADJ” and “VERB”.
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Models English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
HMM 86.28% | 91.23% | 85.59% | 92.03% | 79.82% | 91.31% 89.40% 86.98%
CRF 89.96% | 93.40% | 86.83% | 94.07% | 83.38% | 91.47% 88.63% 86.90%
LSTM 90.50% | 94.16% | 88.40% | 94.96% | 84.87% | 93.17% 89.42% 88.95%
NCRF 91.52% | 95.07% | 90.27% | 96.20% | 93.37% | 93.34% 92.32% 93.85%
NCRF-AE | 92.50% | 95.28% | 90.50% | 96.64% | 93.60% | 93.86% | 93.96% 94.32%

Table 2: Supervised learning accuracy of POS tagging on 8 UD languages using different models

Models English | French | German | Italian | Russian | Spanish | Indonesian | Croatian
NCRF o) | 88.01% | 93.38% | 90.43% | 91.75% | 86.63% | 91.22% 88.35% 86.11%
NCRF-AE | 88.41% | 93.69% | 90.75% | 92.17% | 87.82% | 91.70% 89.06% 87.92%
(oL)

HMM-EM | 79.92% | 88.15% | 77.01% | 84.57% | 72.96% | 86.77% 83.61% 77.20%
NCRF-AE | 86.79% | 92.83% | 89.78% | 90.68% | 86.39% | 91.30% 88.86% 86.55%
(HEM)

NCRF-AE | 89.43% | 93.89% | 90.99% | 92.85% | 88.93% | 92.17% | 89.41% 89.14%

Table 3: Semi-supervised learning accuracy of POS tagging on 8 UD languages. HEM means hard-EM,
used as a self-training approach, and OL means only 20% of the labeled data is used and no unlabeled

data is used.

Text Google is a nice search engine

Gold PROPN VERB DET ADJ NOUN NOUN  PUNCT
NCRF-AE PROPN VERB DET ADJ NOUN NOUN PUNCT

NCRF NOUN  VERB DET ADJ NOUN NOUN PUNCT

LSTM PROPN VERB DET ADJ ~ VERB  NOUN PUNCT

Figure 3: An example from the test set to compare
the predicted results of our NCRF-AE model, the
NCRF model and the LSTM model.

The NCRF, which does score such transitions,
correctly predicted that word. However, it incor-
rectly predicted “Google” as a noun rather than
a proper-noun. This is a subtle mistake, as the
two are grammatically and semantically similar.
This mistake appeared consistently in the NCRF
results, while NCRF-AE predictions were correct.

We attribute this success to the superior ex-
pressivity of our model: The prediction is done
jointly by the encoder and the decoder, as the re-
construction decision is defined over all output
sequences, picking the jointly optimal sequence.
From another perspective, our NCRF-AE model
is a combination of discriminative and generative
models, in that sense the decoder can be regarded
as a soft constraint that supplements the encoder.
Such that, the decoder performs as a regularizer to
check-balance the choices made by the encoder.

6.3 Semi-supervised Learning

In the semi-supervised settings we compared our
models with other semi-supervised structured pre-
diction models. In addition, we studied how vary-
ing the amount of unlabeled data would change the
performance of our model.

As described in Sec. 5, the decoder’s parame-
ters © are initialized by the labeled dataset using
real counts and updated in training.

6.3.1 Varying Unlabeled Data Proportion

We first experimented with varying the proportion
of unlabeled data, while fixing the amount of la-
beled data. We conducted these experiments over
two languages, English and low-resource language
Croatian. We fixed the proportion of labeled data
at 20%, and gradually added more unlabeled data
from 0% to 20% (from full supervision to semi-
supervision). The unlabeled data was sampled
from the same dataset (without overlapping with
the labeled data), with the labels removed. The
results are shown in Figure 4.

The left most point of both sub-figures is the
accuracy of fully supervised learning with 20% of
the whole data. As we can observe, the tagging
accuracy increased as the proportion of unlabeled
data increased.
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Figure 4: UD English and Croatian POS tag-
ging accuracy versus increasing proportion of un-
labeled sequences using 20% labeled data. The
green straight line is the performance of the neural
CREF, trained over the labeled data.

6.3.2 Semi-supervised POS Tagging on
Multiple Languages

We compared our NCRF-AE model with other
semi-supervised learning models, including the
HMM-EM algorithm and the hard-EM version of
our NCRF-AE. The hard EM version of our model
can be considered as a variant of self-training, as
it infers the missing labels using the current model
in the E-step, and uses the real counts of these la-
bels to update the model in the M-step. To contex-
tualize the results, we also provide the results of
the NCRF model and the supervised version our
NCRF-AE model trained on 20% of the data. We
set the proportion of labeled data to 20% for each
language and set the proportion of unlabeled data
to 50% of the dataset. There was no overlap be-
tween labeled and unlabeled data.

The results are summarized in Table 3. Simi-
lar to the supervised experiments, the supervised
version of our NCRF-AE, trained over 20% of the
labeled data, outperforms the NCRF model. Our
model was able to successfully use the unlabeled
data, leading to improved performance in all lan-
guages, over both the supervised version of our
model, as well as the HMM-EM and Hard-EM
models that were also trained over both the labeled
and unlabeled data.

6.3.3 Varying Sizes of Labeled Data on
English

As is known to all, semi-supervised approaches
tend to work well when given a small size of la-
beled training data. But with the increase of la-
beled training data size, we might get diminishing
effectiveness. To verify this conjecture, we con-
ducted additional experiments to show how vary-
ing sizes of labeled training data affect the effec-
tiveness of our NCRF-AE model. In these exper-

¢ NCRF-AE-Semi NCRF-AE-Sup

88.5

Tagging Accuracy
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Figure 5: Performance of the NCRF-AE model on
different proportion of labeled and unlabeled data.
The green line shows the results on only labeled
data, and the red line on both labeled and unla-
beled data. The difference between the red line
and the green line are gradually vanishing.

iments, we gradually increased the proportion of
labeled data, and in accordance decreased the pro-
portion of unlabeled data.

The results of these experiments are demon-
strated in Figure 5. As we speculated, we ob-
served diminishing effectiveness when increasing
the proportion of labeled data in training.

7 Conclusion

We proposed an end-to-end neural CRF autoen-
coder (NCRF-AE) model for semi-supervised se-
quence labeling. Our NCRF-AE is an integration
of a discriminative model and generative model
which extends the generalized autoencoder by us-
ing a neural CRF model as its encoder and a gen-
erative decoder built on top of it. We suggest a
variant of the EM algorithm to learn the parame-
ters of our NCRF-AE model.

We evaluated our model in both supervised
and semi-supervised scenarios over multiple lan-
guages, and show it can outperform other super-
vised and semi-supervised methods. Additional
experiments suggest how varying sizes of labeled
training data affect the effectiveness of our model.

These results demonstrate the strength of our
model, as it was able to utilize the small amount
of labeled data and exploit the hidden information
from the large amount of unlabeled data, with-
out additional feature engineering which is of-
ten needed in order to get semi-supervised and
weakly-supervised systems to perform well. The
superior performance on the low resource lan-
guage also suggests its potential in practical use.
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