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Abstract

Very recently, some studies on neural de-
pendency parsers have shown advantage
over the traditional ones on a wide va-
riety of languages. However, for graph-
based neural dependency parsing systems,
they either count on the long-term mem-
ory and attention mechanism to implicitly
capture the high-order features or give up
the global exhaustive inference algorithms
in order to harness the features over a rich
history of parsing decisions. The former
might miss out the important features for
specific headword predictions without the
help of the explicit structural information,
and the latter may suffer from the error
propagation as false early structural con-
straints are used to create features when
making future predictions. We explore the
feasibility of explicitly taking high-order
features into account while remaining the
main advantage of global inference and
learning for graph-based parsing. The pro-
posed parser first forms an initial parse tree
by head-modifier predictions based on the
first-order factorization. High-order fea-
tures (such as grandparent, sibling, and un-
cle) then can be defined over the initial
tree, and used to refine the parse tree in
an iterative fashion. Experimental result-
s showed that our model (called INDP)
archived competitive performance to ex-
isting benchmark parsers on both English
and Chinese datasets.

1 Introduction and Motivation

The rise of machine learning methods in natural
language processing (NLP) coupled with the avail-
ability of treebanks (Buchholz and Marsi, 2006)

for a wide variety of languages has led to a rapid
increase in research on data-driven dependency
parsing. Two predominant paradigms for the data-
driven dependency parsing are often called graph-
based and transition-based dependency parsing
(McDonald and Nivre, 2007, 2011). The first cat-
egory learns the parameters to score correct de-
pendency subgraphs over incorrect ones, typically
by factoring the graphs into their component di-
rected arcs, and performs parsing by searching the
highest-scoring graph for a given sentence. The
second category of parsing systems instead learns
to predict one transition from one parse state to the
next given a parse history, and performs parsing by
taking the predicted transitions at each parse state
until a complete dependency graph is derived.

Empirical studies show that the graph-based
and transition-based models exhibit no statistical-
ly significant difference in accuracy on a variety
of languages, although they are very different the-
oretically (McDonald and Nivre, 2011). Graph-
based models are usually trained by maximizing
the difference in score between the entire correct
dependency graph and all incorrect ones for ev-
ery training sentence. However, exhaustive infer-
ence is generally NP-hard when the score is fac-
tored over any extended scope of the dependency
subgraph beyond a single arc (McDonald and Sat-
ta, 2007), which is the primary shortcoming of the
graph-based systems. In transition-based parsing,
the feature representations are not restricted to a
small number of arcs in the graph but can be de-
rived from all the dependency subgraphs built so
far, while the main disadvantage of these models
is that the local greedy parsing strategy may lead
to the error propagation because false early predic-
tions can eliminate valid parse trees.

With a few exceptions (Zeman and Zabokrtsky,
2005; Zhang and Clark, 2008; Zhang et al., 2014),
the graph-based parsers usually require global
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learning and inference, but define features over a
limited scope of the dependency graph, while the
transition-based ones typically use local, greedy
training and inference, but introduce a rich feature
space based on the history of parsing decisions.

Many approaches have been proposed to over-
come the weaknesses of traditional graph-based or
transition-based models. There are at least three
ways for potential improvement: ensemble—
weighting the predictions of multiple parsing sys-
tems (Sagae and Lavie, 2006; Hall et al., 2007),
feature integration—combining the two models by
allowing the output of one model to define fea-
tures for the other (Martins et al., 2008; Nivre and
McDonald, 2008; McDonald and Nivre, 2011),
and novel approaches—changing the underlying
model structure directly by constructing globally
trained transition-based parsers (Zhang and Clark,
2008; Huang and Sagae, 2010) or graph-based
parsers with rich features (Riedel and Clarke,
2006; Nakagawa, 2007; Smith and Eisner, 2008;
Martins et al., 2009).

Very recently, some studies on the deep archi-
tectures have shown advantage over the shallow
ones on a wide variety of dependency parsing
benchmarks. Deep neural networks were used to
replace the classifiers for predicting optimal tran-
sitions in transition-based parers (Chen and Man-
ning, 2014) or the scoring functions for ranking
the subgraphs in graph-based rivals (Kiperwass-
er and Goldberg, 2016a,b). There are several re-
cent developments in neural dependency parsing
(Weiss et al., 2015; Zhou et al., 2015; Dyer et al.,
2015), which can be viewed as targeting the weak-
nesses of locally greedy algorithms in transition-
based models by using the beam search and con-
ditional random field loss objective, although us-
ing the beam search instead of strictly determin-
istic parsing can to some extent alleviate the error
propagation problem but does not eliminate it.

For graph-based neural dependency parsing
systems, they either count on the long-term mem-
ory and neural attention to implicitly capture the
high-order features (Kiperwasser and Goldberg,
2016b; Cheng et al., 2016; Dozat and Manning,
2017) or give up the global inference algorithm-
s in order to introduce features over a rich his-
tory of parsing decisions by a greedy, bottom-up
method (Kiperwasser and Goldberg, 2016a). The
former might miss out the important information
for specific headword predictions without the help

of the structural features derived from the entire
parse tree, while the latter may suffer from the er-
ror propagation as false structural constraints are
used to create features when making future pre-
dictions. In this study, we explore the feasibility of
explicitly taking advantage of high-order features
while remaining the strength of global exhaustive
inference and learning as a graph-based parser.

The proposed parser first encodes each word in
a sentence by distributed embeddings using a con-
volutional neural network and constructs an initial
parse graph by head-modifier predictions with a
maximum directed spanning tree algorithm based
on the first-order features (i.e. the score is fac-
tored over the arcs in a graph). Once an initial
parse graph is built, the high-order features (such
as grandparent, sibling, and uncle) can be defined,
and used to refine the structure of the parse tree in
an iterative way. Theoretically, the refinement will
continue until no change is made in the iteration.
But experimental results demonstrated that pretty
good performance can be achieved with no more
than twice updates because many dependencies
are determined by independent arc prediction and
a few head-modifier pairs need to be re-estimated
after one update (i.e. only a few changes above
and beyond the dominant first-order scores). We
call this proposed model an incremental neural de-
pendency parsing (INDP)'.

2 Incremental Neural Dependency
Parser

Given an input sentence x, we denote the set of
all valid dependency parse trees that can be con-
structed from x as Y(x). Assuming there exists a
graph scoring function s, the dependency parsing
problem can be formulated as finding the highest
scoring directed spanning tree for the sentence z.
y"(z) = argmax s(z, J; 0) M
GEY (w)
where y*(x) is the parse tree with the highest s-
core, and # is a set of the parameters used to com-
pute the scores. To make the search tractable, the
score of a graph is usually factorized into the sum

of its arc (head-modifier) scores (McDonald et al.,
2005a).

s(z,9;0) = Y

(h,m)€A(9)

s(h,m;0) )

!The source code is available at http://homepage.fudan.
edu.cn/zhengxq/deeplearning/
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where A(7) represents a set of directed arcs in the
parse tree §. The score of an arc (h, m) represents
the likelihood of creating a dependency from head
h to modifier (or dependent) m in a dependency
tree. If each arc score is estimated independent-
ly, we call it a first-order factorization. When the
scoring is based on two or more arcs, second- or
high-order factorizations are applied.

In traditional approaches, this score is common-
ly defined to be the product of a high dimension-
al feature representation of the arc and a learned
weighting parameter vector. The performance of
those systems is heavily dependent on the choice
of features. For that reason, much effort in design-
ing such systems goes into the feature engineer-
ing, which is important but labor-intensive, mainly
first based on human ingenuity and linguistic intu-
ition, and then confirmed or refined by empirical
analyses. In this study, a neural network is de-
signed instead to estimate the arc scores using the
high-order features. In the following, we first de-
scribe how the word representations are produced.
Then, the key components of the INDP, direction-
specific scoring with special normalization and in-
cremental refinement with high-order features, are
discussed in detail. Finally, we present the entire
parsing algorithm of the INDP.

2.1 Word Feature Representations

In graph-based neural dependency parsing work,
such as (Kiperwasser and Goldberg, 2016a,b;
Dozat and Manning, 2017), recurrent neural net-
work (RNN) is a popular statistical learner used
to produce the continuous vector representation-
s for each word in a sentence due to its ability to
bridge long time lags between relevant inputs. We
chose to use one-dimensional convolution instead
as a building block because it is good enough to
capture the interactions of word feature represen-
tations in a context window with less computa-
tional cost. Such a design makes the parameters
of our first-order parser to be optimized efficient-
ly, which will be augmented with the high-order
features (i.e. long distance dependencies) at incre-
mental refinement stages.

The words are fed into the network as indices
that are used by a lookup operation to transform
words into their feature vectors. We consider a
fixed-sized word dictionary D?. The vector repre-

2Unless otherwise specified, the word dictionary is ex-

tracted from the training set. Unknown words are mapped
to a special symbol that is not used elsewhere.

sentations are stored in a word embedding matrix
Eword ¢ RXIPI where d is the dimensionality of
the vector space (a hyper-parameter to be chosen)
and |D| is the size of the dictionary. Like (Chen
and Manning, 2014; Dyer et al., 2015; Weiss et al.,
2015; Cheng et al., 2016), we also map part-of-
speech (POS) tags to another g-dimensional vector
space, and provide POS type features for words.
Formally, assume we are given a sentence [y,
that is a sequence of n words x;,1 < ¢ < n. For
each word x; € D that has an associated index k;
into the column of the matrix E*°"?, and is labeled
as a POS tag of type l;, its feature representation is
obtained by concatenating both word and POS tag
embeddings as:

E(z;) = B ey, ® EP¢y, 3)

where EP°¢ ¢ R9*IPl is a POS tag embedding
matrix and |P| is the size of POS tag set P (fine-
grained POS tags are used if available). Binary
ek, and e;, are one-hot encoding vectors for the ith
word in the sentence.

The lookup table layer extracts features for each
single word, but the meaning of a word is strong-
ly related to its surrounding words. Given a word,
we consider a fixed size window w (another hyper-
parameter) of words around it. More precisely,
given an input sentence .|, the feature window
produced by the first lookup table layer at position
x; can be written as:

f;jln = (E(mi—Tl)/Q) e E(xl) e E(xi+w/2)) (4)

where the word feature window is a matrix f*" ¢
R(@+0)*w “and each column of the matrix is the
word feature vector in the context window. A one-
dimensional convolution is used to yield another
feature vector by taking the dot product of filter
vectors with the rows of the matrix f“" at the
same dimension. After each row of f*“" is con-
volved with the corresponding column of a filter
matrix W', some non-linear function ¢(-) will be
applied as:

fcon — ¢(fwin ® Wl) (5)

where the weights in the matrix W' e Rw*(d+a)
are the parameters to be trained, and the output
feor e R(+9) s a vector. We choose a hyper-
bolic tangent as the non-linear function ¢. The
word feature vectors from a window of text can
be computed efficiently thanks to the speed advan-
tage of the one-dimensional convolution (Kalch-
brenner et al., 2014).
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2.2 Direction-Specific Scoring

For the same head-modifier arc (h,m), the head
word h may occur on the left size of m (i.e. left-
arc) in some sentences while it also can appear
on the right size of m (i.e. right-arc) in other
ones. Considering two English sentences excerpt-
ed from the Penn Treebank (Buchholz and Marsi,
2006): “A group of workers exposed to it.”, and
“Mr. Vinken is chairman of Elsevier, the Dutch
publishing group.”, they have the same (group, of)
head-modifier arc, but those two words occur in
different orders. This would not be problem in
the traditional models, such as (McDonald et al.,
2005a; Nivre and McDonald, 2008), in which the
arc directions are directly used as features by their
structured learning algorithms. However, it is hard
to train a single neural network that gives a higher
score to the left-arc case than the right-arc one in
some situations while reverses in others because of
the symmetries in weight space (Note that we can-
not tell which case is correct in advance, and both
cases need to be scored). It would be more serious
when the first-order factorization is applied due to
the lack of context information.

Based on the above observations, we use a
multi-layer perceptron (MLP) to score the left-
arc cases, and another MLP to score the right-arc
ones. Those two MLPs share the word and POS
tag embeddings, and can update them when nec-
essary during the training process. Formally, if a
MLP with one hidden layer is used, the score of
each possible head-modifier arc is computed as:

s(h,m;0) = W2 (W (fi" @ f3" @ fil's,) + %)) (6)

where the convolutional outputs of the head and
dependent words are concatenated with a bucket-
ed distance between the head and modifier, denot-
ed by fi’% , in buckets of 0 (root), 1, 2, 3-5, and 6+,
and feed into the MLP for scoring. The weights in
the hidden and output layers are denoted by W2
and W3 respectively, and the corresponding bias
by b%. Once every possible arc is scored, we ob-
tain a matrix like Figure 1, in which the element
at the row ¢ and column j is the score for (z;, z;)
arc, denoted by s(i, j). An artificial word, x(, has
been inserted at the beginning of a sentence that
will always serve as the single root of the graph
and is primarily a means to simplify computation.
The scores at the lower (or upper) triangular are
computed by the left-arc (or right-arc) MLP, and
the shaded elements do not need to be calculated.

We can treat s(i, j) as a score of the corresponding
arc and then search for the highest scoring directed
spanning tree to form a dependency parse tree as
proposed in (McDonald et al., 2005b). This prob-
lem can be solved using the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967),
which can be implemented in O(n?).

Xo cee Xi cee Xn
Xo
. The score of (xi-1, x;) arc
. e | |
. T 1 1
Right-arc scores
=== r-=t--4---F-~
Xi [So,i Si-1, i Siv1, i Sn,i)
.
.
Left-arc scores
Xn

Figure 1: Scoring matrix for possible head and modifier
arcs, in which the element at the row ¢ and column j is the
score for (z;,x;) arc, denoted by s(i, j). A dependency tree
can be formed by finding the highest scoring directed span-
ning tree over the scoring matrix.

The left-arc and right-arc MLPs should care-
fully collaborate with each other; otherwise, one
MLP would be overwhelmed by another (i.e. the
maximum score produced by one MLP is less than
the minimum by another). To overcome this bias
problem, we use the partition function by sum-
ming over the elements in each row of the scoring
matrix, namely the scores/probabilities are nor-
malized across the two MLPs. The conditional
probability of arc (z;,z;) given a sentence ;.
is defined as:

exp s(zi, z;;0)
Z; (x[lzn]; 9)

exp s(zi, ;5 0)

p((zi, ;) |2 (103 0) =
(N
where Z; (x[1:n];0) = b))
i€{0...n},i#j
Each Z;(x[;.,); 0) is a normalization term used to
predict x;’s head word.

2.3 Incremental Refinement with High-order
Features

Given an input sentence, once the initial depen-
dency tree is built using the first-order factoriza-
tion, we can define the high-order features over
the resulting tree. For each head-modifier arc, the
modifier’s left sibling, right sibling, leftmost child,
and rightmost child vector representations are con-
catenated with the inputs of Equation (6), which
are then feed into two new left-arc and right-arc
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MLPs to update the scoring matrix. Like the head
and modifier, those additional feature representa-
tions are added as the results produced by the con-
volution layer. As shown in Figure 2, commonly-
used high-order features have been take into ac-
count, such as consecutive sibling (H, B, S), tri-
siblings (B, M, S), and grandparent (H, M, R).
The missing feature vectors are replaced by one of
four special vectors, namely “left-sibling”, “right-
sibling”, “leftmost-child”, and “rightmost-child”
according to their relations to the modifier word.

Figure 2: High-order features. (a) An example dependency
parse tree. (b) The subgraph used to define high-order fea-
tures for the head-modifier arc (H, M).

Although high-order features are used, the high-
est scoring parse tree still can be founded efficient-
ly in O(n?) by the Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds, 1967). The main
rationale is that, even in the presence of high-order
features, the resulting scores remain based on s-
ingle head-modifier arcs. The higher-order fea-
tures are derived from the parse tree obtained with
first-order inference, and because that tree is al-
ready pretty good, these higher-order features end
up being a good approximation, and such approx-
imation can be further improved by incremental
refinements upon the parse tree. Thus, the high-
order features used by the scoring MLPs can offer
deliberate refinement above and beyond the first-
order results. Theoretically, the refinement can be
made until there is no update in the scoring matrix.
However, experimental results show that compa-
rable performance can be achieved with no more
than twice high-order refinements (see Section 3).

We add a softmax layer to the network (after re-
moving the last scoring layer) to predict syntactic
labels for each arc. Labeling is trained by mini-
mizing the cross-entropy error of the softmax layer
using backpropagation. The network performs the
structure prediction and labeling jointly. The two
tasks shared the several layers (from the input to
convolutional layers) of the network. When mini-

Inputs:
0: neural network parameters.
x: an input sentence.
T': maximum number of iterations.

Output: optimal dependency tree y™.

Algorithm:

: form an initial tree using the first-order features;
:t=0;

: repeat

update the scoring matrix using the high-order features;
find the highest scoring tree y by Chu-Liu-Edmonds
algorithm;

t=t+1;

: until no change in this iteration or t > 7';

: predict syntactic labels based on the parse tree y;
:return y* = y;

© 0w o>

Figure 3: Incremental neural dependency parsing (INDP)
algorithm.

mizing the cross-entropy error of the softmax lay-
er, the error will also backpropagate and influence
both the network parameters and the embeddings.
We list our incremental neural dependency pars-
ing algorithm in Figure 3. Staring with an initial
tree formed using the first-order features, the al-
gorithm makes changes to the parse tree with the
high-order refinements in an attempt to climb the
objective function.

2.4 Training

Given a training example (z,y), we defined a
structured margin A(x,y, ) loss for proposing a
parse ¢ for sentence z when y is the true parse.
This penalty is proportional to the number of un-
labeled arcs on which the two parse trees do not
agree. In general, A(z,y, ) isequal to 0 if y = g.
The loss function is defined as a penalization of
incorrect arcs:

Alz,y,9) = >

(h,m)€A(9)

r{(h,m) ¢ A(y)}  ®)

where k is a penalization term to each incorrect
arc, and A(y) is a set of arcs in the true parse y.
For a training set, we seek a function with small
expected loss on unseen sentences. The function
we consider take the following form as Equation
(1). The score of a tree ¢ is higher if the algorithm
is more confident that the structure of the tree is
correct. In the max-margin estimation framework,
we want to ensure that the highest scoring tree is
the true parse for all training instances (¢, y),i =
1,---, h,and it’s score to be larger up to a margin
defined by the loss. For all ¢ in the training data:

s(0,2",y") > s(0,2",9) + A(z', ¥, 9) ©)
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These lead us to minimize the following regu-
larized objective for A training instances:

h
1 i A
J() = 7 E E*(0) + §Ht9|\2,where

Ei(6) = max (0, (s(0,a",3) + Al y',g) (1O
geEY (xt)

where the coefficient A governs the relative impor-
tance of the regularization term compared with the
error. The trees are penalized more by the loss
when they deviate from the correct one. Minimiz-
ing this objective maximizes the score of the cor-
rect tree, and minimizes that of the highest scoring
but incorrect parse tree. The objective is not differ-
entiable due to the hinge loss. We use the subgra-
dient method to compute a gradient-like direction
for minimizing the objective function.

3 Experiments

We conducted three sets of experiments. The first
one is to test several variants of the INDP on the
development set, to gain some understanding of
how the choice of hyper-parameters impacts up-
on the performance. The goal of the second one
is to see how well the incremental approach en-
hanced with the high-order features to improve the
first-order results by analysing parsing errors rela-
tive to sentence length. In the third set, we com-
pared the performance of the INDP with existing
state-of-the-art models on both English and Chi-
nese datasets. We report unlabeled attachment s-
cores (UAS) and labeled attachment scores (LAS)
with punctuations being omitted from evaluation.

3.1 Datasets

We show test results for the proposed model on
the English Penn Treebank (PTB), converted into
Stanford dependencies using version 3.3.0 of the
Stanford dependency converter, and the Chinese
Penn Treebank (CTB). We follow the standard s-
plits of PTB, using section 2-21 for training, sec-
tion 22 as development set and 23 as test set. We
use POS tags generated from the Stanford POS
tagger (Toutanova et al., 2003); for the Chinese
PTB dataset, we use gold word segmentation and
POS tags.

3.2 Training Strategy

Previous work demonstrated that the performance
can be improved by using word embeddings

learned from large-scale unlabeled data in many
NLP tasks both in English (Collobert et al., 2011;
Socher et al., 2011) and Chinese (Zheng et al.,
2013). Unsupervised pretraining guides the learn-
ing towards basins of attraction of minima that
support better generalization (Erhan et al., 2010).
We leveraged large unlabeled corpus to learn word
embeddings, and then used these improved em-
beddings to initialize the word embedding ma-
trices of the neural networks. English and Chi-
nese Wikipedia documents were used to train the
word embeddings by Word2Vec tool® proposed in
(Mikolov et al., 2013).

Previous studies show that a joint solution (i.e.,
performing several tasks at the same time) usu-
ally leads to the improvement in accuracy over
pipelined systems because the error propagation
is avoided and the various information normally
used in the different steps of pipelined systems
can be integrated. The INDP networks are also
trained in a joint way, but adopting three-step strat-
egy. The parameters of the parsing neural network
using the first-order factorization are first learned,
and when its unlabeled parsing accuracy exceeds
a given threshold (e.g. 85%), we start to train the
high-order parsing network. The weights already
trained in the first step will remain unchanged for
the first several epochs, and they are in fact used to
generate the high-order features. After the parsing
accuracy reaches another threshold (e.g. 90%), all
the parameters for the first-order, and high-order
predictions as well as labeling are trained jointly.

3.3 Hyper-parameter Choices

Hyper-parameters was tuned with the PTB 3.3.0
development set by trying only a few different net-
works. Generally, the dimensionality of the em-
beddings, and the numbers of hidden units, pro-
vided they are large enough, have a limited impact
on the generalization performance. In the follow-
ing experiments, the window size was set to 5, the
learning rate to 0.02, and the number of hidden
layer to 300. The embedding size of words was set
to 50, and that of tags to 30, which achieved a good
trade-off between speed and performance. All ex-
periments were run on a computer equipped with
an Intel Xeon processor working at 2.2GHz, with
16GB RAM and a NVIDIA Titan GPU. The pars-
ing speed of the INDP is around 250-300 sents/sec
in average on the PTB dataset.

3 Available at http://code.google.com/p/word2vec/
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3.4 Sentence Length Factors

It is well known that dependency parsers tend to
have lower accuracies for longer sentences be-
cause the increased presence of complex syntactic
structures. In order to get a better understanding of
how well the incremental strategy and high-order
features benefit the models, Figure 4 shows the ac-
curacy of our neural dependency parser using the
first-order features only (indicated with “NDP +
First-order”) and INDP with at most twice high-
order refinements (indicated with “INDP + High-
order + M2”) on the English PTB develop set. For
simplicity, the experiments report unlabeled pars-
ing accuracy, and identical experiments using la-
beled parsing accuracy did not reveal any addition-
al information.

1

o
©

o
3
T

|

....... INDP + High-order + M2
L INDP + First-order —

Unlabeled Parsing Accuracy
o
oo

0.6 | |
<=10 11-20

| |
21-30 3140
Sentence Length

Figure 4: Accuracy relative to sentence length.

The INDP with the high-order refinements is
more precise than the parser using only the first-
order features. Due to the fact that longer de-
pendencies are typically harder to parse, there is
still a degradation in performance for our INDP.
However, the accuracy curve for INDP is slightly
flatter than its reduced version in which the high-
order features and incremental recipe are not ap-
plied when the sentence length is within 11-50.
This behavior can be explained by the reasons that
the feature representations are not restricted to a
limited number of graph arcs, but can take into ac-
count with the (almost) entire dependency graph
built so far at the refinement stages of the INDP,
and it do offer substantial refinements.

3.5 Results

We report the experimental results on the English
PTB and Chinese CTB datasets in Table 1 and 2
respectively, in which our networks are denoted
by “INDP”. The “M1” indicates that the results

are obtained by the INDP with just one refinemen-
t over the parse graphs built using the first-order
features, and similarly, the “M2” indicates the re-
sults are achieved by the INDP with at most twice
high-order refinements, while the “UNC” in the
last row indicates that the refinements will contin-
ue until no change is made in the structure pre-
dictions (see the algorithm listed in Figure 3). All
compared transition-based parsing systems are in-
dicated by a “1”, and graph-based ones by “§”.

Table 1: Results on the English PTB dataset.

Model UAS | LAS
Zhou et al (2015)% 93.28 | 92.35
Weiss et al (2015)1 94.26 | 92.41
Ballesteros et al (2016)% 93.56 | 91.42
Kiperwasser and Goldberg (2016b)1 93.90 | 91.90
Andor et al (2016)1 94.61 | 92.79
Kuncoro et al (2016)1 95.80 | 94.60
Kiperwasser and Goldberg (2016a)§ 93.00 | 90.90
Cheng et al (2016)§ 94.10 | 91.49
Hashimoto et al (2016)§ 94.67 | 92.90
Dozat and Manning (2017)§ 95.74 | 94.08
NDP + First-order 90.88 | 88.93
INDP + High-order + M1 93.31 | 91.51
INDP + High-order + M2 94.76 | 93.12
INDP + High-order + UNC 95.53 | 93.94

From these numbers, a handful of trends are
readily apparent. Firstly, we note that the “full-
fledged” INDP (indicated with “UNC”) is superi-
or to that without the high-order refinements by a
fairly significant margin (5.01% for English and
6.55% for Chinese in LAS). Another striking re-
sult of these experiments is that comparable per-
formance can be obtained by no more than twice
refinements with high-order features, and “INDP
+ High-order + M2” achieves a good trade-off be-
tween the performance and parsing complexity.

Table 2: Results on the Chinese CTB dataset.

Model UAS | LAS
Ballesteros et al (2016)1 87.65 | 86.21
Kiperwasser and Goldberg (2016b) 87.60 | 86.10
Kiperwasser and Goldberg (20162)§ 87.10 | 85.50
Cheng et al (2016)§ 88.10 | 85.70
Dozat and Manning (2017)§ 89.30 | 88.23
NDP + First-order 82.97 | 81.39
INDP + High-order + M1 87.35 | 85.82
INDP + High-order + M2 88.78 | 87.28
INDP + High-order + UNC 89.42 | 87.94

Our INDP gets nearly the same performance on
the English PTB as the current models of (Kun-
coro et al., 2016) and (Dozat and Manning, 2017)
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in spite of its simpler architectures, and gets state-
of-the-art UAS accuracy on the Chinese CTB. The
INDP lags behind in LAS, indicating one of a few
possibilities. Firstly, we tried only a few differ-
ent network configurations, and there are many
ways (such as using deeper architectures, and re-
cruiting bi-directional recurrent neural networks
to produce word feature representations) that we
could improve it further. Secondly, the model of
(Kuncoro et al., 2016) is particularly designed to
capture phrase compositionality, and thus, another
possible improvement is to capture such composi-
tionality by optimizing the network architectures,
which may also lead to a better label score.

4 Related Work

Dependency-based syntactic representations of
sentences have been found to be useful for vari-
ous NLP tasks, especially for those involving nat-
ural language understanding in some way. We
briefly review prior work both on graph-based and
transition-based neural dependency parsers.

In transition-based parsing, we learn a model
for scoring transitions from one state to the next,
conditioned on the parse history, and parse a sen-
tence by taking the highest-scoring transition out
of every state until a complete dependency graph
has been derived. Chen and Manning (2014) made
the first successful attempt at introducing deep
learning into a transition-based dependency pars-
er. At each step, the feed-forward neural network
assigns a probability to every action the parse can
take from certain state (words on the stack and
buffer). Some researchers have attempted to ad-
dress the limitations of (Chen and Manning, 2014)
by augmenting it with additional complexity.

A beam search and a conditional random field
loss function were incorporated into the transition-
based neural network models (Weiss et al., 2015;
Zhou et al., 2015; Andor et al., 2016), which allow
the parsers to keep the top-k partial parse trees and
revoke previous actions once it finds evidence that
they may have been incorrect by locally greedy
choices. Dyer et al (2015) used three LSTMs to
represent the buffer, stack, and parsing history,
getting state-of-the-art results on Chinese and En-
glish dependency parsing tasks.

Graph-based parsers use machine learning for
scoring each possible edge for a given sentence,
typically by factoring the graphs into their compo-
nent arcs, and constructing the parse tree with the

highest score from these weighted edges. Kiper-
wasser and Goldberg (2016b) presented a neural
graph-based parser in which the bi-directional L-
STM’s recurrent output vector for each word is
concatenated with each possible head’s vector (al-
so produced by the same biLSTM), and the result
is used as input to a multi-layer perceptron (MLP)
for scoring this modifier-head pair. Given the s-
cores of the arcs, the highest scoring tree is con-
structed using Eisner’s decoding algorithm (FEis-
ner, 1996). Labels are predicted similarly, with
each word’s recurrent output vector and its head’s
vector being used in a multi-class MLP.

Kiperwasser and Goldberg (2016a) also pro-
posed a hierarchical tree LSTM to model the de-
pendency tree structures in which each word is
represented by the concatenation of its left and
right modifier (child) vectors, and the modifier
vectors are generated by two (leftward or right-
ward) recurrent neural networks. The tree repre-
sentations were produced in a bottom-up recursive
way with the (greedy) easy-first parsing algorithm
(Goldberg and Elhadad, 2010). Similarly, Cheng
et al (2016) proposed a graph-based neural depen-
dency parser that is able to predict the scores for
the next arc, conditioning on previous parsing de-
cisions. In addition to using one bi-directional re-
current network that produces a recurrent vector
for each word, they also have uni-directional re-
current neural networks (left-to-right and right-to-
left) that keep track of the probabilities of each
previous parsing actions.

In their many-task neural model, Hashimoto
et al (2016) included a graph-based dependency
parse in which the traditional MLP-based method
that Kiperwasser and Goldberg (2016b) used was
replaced with a bilinear one. Dozat and Manning
(2017) modified the neural graph-based approach
of (Kiperwasser and Goldberg, 2016b) in a few
ways to improve the performance. In addition to
building a network that is larger and uses more
regularization, they replace the traditional MLP-
based attention mechanism and affine label classi-
fier with biaffine ones.

This work is most closely related to the graph-
based parsing approaches with multiple high-order
refinements (Rush and Petrov, 2012; Zhang et al.,
2014), although the neural networks were not used
in their parsers. Rush and Petrov (2012) proposed
a multi-pass coarse-to-fine approach in which a
coarse model was used to prune the search space
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in order to make the inference with up to third-
order features practical. They start with a linear-
time vine pruning pass and build up to high-order
models. Zhang et al (2014) introduced a random-
ized greedy algorithm for dependency parsing in
which they begin with a tree drawn from the u-
niform distribution and use hill-climbing strategy
to find the optimal parse tree. Although they re-
ported that drawing the initial tree randomly re-
sults in the same performance as when initialized
from a trained first-order distribution, but multi-
ple random restarts are required to avoid getting
stuck in a locally optimal solution. Their greedy
algorithm breaks the parsing into a sequence of lo-
cal steps, which correspond to choosing the head
for each modifier word (one arc at a time) in the
bottom-up order relative to the current tree. In
contrast, we employed the global inference algo-
rithm to change the entire tree (all at a time) in
each refinement step, which makes the improve-
ment more efficient.

5 Conclusion

Graph-based parsers cannot easily condition on
any extended scope of the dependency parse tree
beyond a single arc, which is their primary short-
coming relative to transition-based competitors.
We have shown that a simple, generally applica-
ble incremental neural dependency parsing algo-
rithm can deliver close to state-of-the-art parsing
performance, which allows the high-order features
to be taken into account without hurting the advan-
tage of global exhaustive inference and learning
as a member of graph-based parsing systems. Fu-
ture work will involve exploring ways of augment-
ing the parser with a more innovative architecture
than the relatively simple one used in current neu-
ral graph-based parsers.
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