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Abstract

We propose a new, socially-impactful task
for natural language processing: from a
news corpus, extract names of persons
who have been killed by police. We
present a newly collected police fatality
corpus, which we release publicly, and
present a model to solve this problem that
uses EM-based distant supervision with
logistic regression and convolutional neu-
ral network classifiers. Our model out-
performs two off-the-shelf event extractor
systems, and it can suggest candidate vic-
tim names in some cases faster than one of
the major manually-collected police fatal-
ity databases.

Appendix, software, and data are avail-
able online at: http://slanglab.cs.umass.
edu/PoliceKillingsExtraction/

1 Introduction

The United States government does not keep sys-
tematic records of when police kill civilians, de-
spite a clear need for this information to serve the
public interest and support social scientific anal-
ysis. Federal records rely on incomplete cooper-
ation from local police departments, and human
rights statisticians assess that they fail to document
thousands of fatalities (Lum and Ball, 2015).
News articles have emerged as a valuable al-
ternative data source. Organizations including
The Guardian, The Washington Post, Mapping Po-
lice Violence, and Fatal Encounters have started
to build such databases of U.S. police killings
by manually reading millions of news articles'

"Fatal Encounters director D. Brian Burghart estimates he
and colleagues have read 2 million news headlines and ledes
to assemble its fatality records that date back to January, 2000
(pers. comm.); we find FE to be the most comprehensive pub-
licly available database.

Text Person killed
by police?

Alton Sterling was killed by police. True

Officers shot and killed Philando Castile. True

Officer Andrew Hanson was shot. False

Police report Megan Short was fatally shot ~ False

in apparent murder-suicide.

Table 1: Toy examples (with entities in bold) illus-
trating the problem of extracting from text names
of persons who have been killed by police.

and extracting victim names and event details.
This approach was recently validated by a Bu-
reau of Justice Statistics study (Banks et al.,
Dec. 2016) which augmented traditional police-
maintained records with media reports, finding
twice as many deaths compared to past govern-
ment analyses. This suggests textual news data has
enormous, real value, though manual news analy-
sis remains extremely laborious.

We propose to help automate this process by ex-
tracting the names of persons killed by police from
event descriptions in news articles (Table 1). This
can be formulated as either of two cross-document
entity-event extraction tasks:

1. Populating an entity-event database: From a
corpus of news articles D(*¢5%) over timespan
T, extract the names of persons killed by po-
lice during that same timespan (€ (pred)y,

2. Updating an entity-event database: In addi-
tion to D(test) | assume access to both a histor-
ical database of killings £(*") and a histor-
ical news corpus D("%") for events that oc-
curred before 7T'. This setting often occurs in
practice, and is the focus of this paper; it al-
lows for the use of distantly supervised learn-
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ing methods.?

The task itself has important social value, but the
NLP research community may be interested in a
scientific justification as well. We propose that
police fatalities are a useful test case for event
extraction research. Fatalities are a well defined
type of event with clear semantics for corefer-
ence, avoiding some of the more complex issues
in this area (Hovy et al., 2013). The task also
builds on a considerable information extraction lit-
erature on knowledge base population (e.g. Craven
et al. (1998)). Finally, we posit that the field of
natural language processing should, when possi-
ble, advance applications of important public in-
terest. Previous work established the value of
textual news for this problem, but computational
methods could alleviate the scale of manual labor
needed to use it.
To introduce this problem, we:

e Define the task of identifying persons killed
by police, which is an instance of cross-
document entity-event extraction (§3.1).

e Present a new dataset of web news articles
collected throughout 2016 that describe pos-
sible fatal encounters with police officers

(§3.2).

e Introduce, for the database update setting,
a distant supervision model (§4) that incor-
porates feature-based logistic regression and
convolutional neural network classifiers un-
der a latent disjunction model.

e Demonstrate the approach’s potential useful-
ness for practitioners: it outperforms two
off-the-shelf event extractors (§5) and finds
39 persons not included in the Guardian’s
“The Counted” database of police fatalities
as of January 1, 2017 (§6). This constitutes
a promising first step, though performance
needs to be improved for real-world usage.

2 Related Work

This task combines elements of information ex-
traction, including: event extraction (a.k.a. seman-
tic parsing), identifying descriptions of events and
their arguments from text, and cross-document
relation extraction, predicting semantic relations
over entities. A fatality event indicates the killing

ZKonovalov et al. (2017) studies the database update task
where edits to Wikipedia infoboxes constitute events.

of a particular person; we wish to specifically
identify the names of fatality victims mentioned
in text. Thus our task could be viewed as unary
relation extraction: for a given person mentioned
in a corpus, were they killed by a police officer?

Prior work in NLP has produced a number
of event extraction systems, trained on text data
hand-labeled with a pre-specified ontology, in-
cluding ones that identify instances of killings (Li
and Ji, 2014; Das et al., 2014). Unfortunately, they
perform poorly on our task (§5), so we develop a
new method.

Since we do not have access to text specifically
annotated for police killing events, we instead turn
to distant supervision—inducing labels by align-
ing relation-entity entries from a gold standard
database to their mentions in a corpus (Craven and
Kumlien, 1999; Mintz et al., 2009; Bunescu and
Mooney, 2007; Riedel et al., 2010). Similar to this
work, Reschke et al. (2014) apply distant supervi-
sion to multi-slot, template-based event extraction
for airplane crashes; we focus on a simpler unary
extraction setting with joint learning of a proba-
bilistic model. Other related work in the cross-
document setting has examined joint inference for
relations, entities, and events (Yao et al., 2010; Lee
etal., 2012; Yang et al., 2015).

Finally, other natural language processing ef-
forts have sought to extract social behavioral
event databases from news, such as instances
of protests (Hanna, 2017), gun violence (Pavlick
et al., 2016), and international relations (Schrodt
and Gerner, 1994; Schrodt, 2012; Boschee et al.,
2013; O’Connor et al., 2013; Gerrish, 2013). They
can also be viewed as event database population
tasks, with differing levels of semantic specificity
in the definition of “event.”

3 Task and Data

3.1 Cross-document entity-event extraction
for police fatalties

From a corpus of documents D, the task is to ex-
tract a list of candidate person names, &£, and for
each e € € find

Pye = 1| xpm(e))- (1

Here y € {0,1} is the entity-level label where
ye = 1 means a person (entity) e was killed by
police; xpq() are the sentences containing men-
tions M (e) of that person. A mention i € M(e)
is a token span in the corpus. Most entities have
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Knowledge base Historical Test T z y
FE incident dates Jan 2000 —  Sep 2016 — “Hard” training observed fixed (distantly  observed
Aug 2016 Dec 2016 labeled)
FE gold entities (G) 17,219 452 “Soft” (EM) training  observed latent observed
News dataset Train Test Testing observed latent latent
doc. dates Jan 2016 — Sep 2016 — .. . . .
Aug 2016 Delé 2016 Table 3: Training and testing settings for mention
total docs. (D) 866,199 347,160 sentences z, mention labels z, and entity labels y.
total ments. (M) 132,833 68,925
pos. ments. (M™) 11,274 6,132
total entities (&) 49,203 24,550 . 7
pos. entities (£ 916 258 (John, Doe) from the string Mr. John A. Doe Jr..

Table 2: Data statistics for Fatal Encounters (FE)
and scraped news documents. M and & re-
sult from NER processing, while £ results from
matching textual named entities against the gold-
standard database (G).

multiple mentions; a single sentence can contain
multiple mentions of different entities.

3.2 News documents

We download a collection of web news articles
by continually querying Google News? throughout
2016 with lists of police keywords (i.e police, of-
ficer, cop etc.) and fatality-related keywords (i.e.
kill, shot, murder etc.). The keyword lists were
constructed semi-automatically from cosine simi-
larity lookups from the word2vec pretrained word
embeddings* in order to select a high-recall, broad
set of keywords. The search is restricted to what
Google News defines as a “regional edition” of
“United States (English)”” which seems to roughly
restrict to U.S. news though we anecdotally ob-
served instances of news about events in the U.K.
and other countries. We apply a pipeline of text
extraction, cleaning, and sentence de-duplication
described in the appendix.

3.3 Entity and mention extraction

We process all documents with the open source
spaCy NLP package’® to segment sentences, and
extract entity mentions. Mentions are token spans
that (1) were identified as “persons” by spaCy’s
named entity recognizer, and (2) have a (firstname,
lastname) pair as analyzed by the HAPNIS rule-
based name palrser,6 which extracts, for example,

3https://news.google.com/
*https://code.google.com/archive/p/word2vec/
Version 0.101.0, https:/spacy.io/
Shttp://www.umiacs.umd.edu/~hal/HAPNIS/

To prepare sentence text for modeling, our pre-
processor collapses the candidate mention span to
a special TARGET symbol. To prevent overfitting,
other person names are mapped to a different PER-
SON symbol; e.g. “TARGET was killed in an en-
counter with police officer PERSON.”

There were initially 18,966,757 and 6,061,717
extracted mentions for the train and test periods
respectively. To improve precision and computa-
tional efficiency, we filtered to sentences that con-
tained at least one police keyword and one fatal-
ity keyword. This filter reduced positive entity re-
call a moderate amount (from 0.68 to 0.57), but re-
moved 99% of the mentions, resulting in the | M|
counts in Table 2.8

Other preprocessing steps included heuristics
for extraction and name cleanups and are detailed
in the appendix.

4 Models

Our goal is to classify entities as to whether they
have been killed by police (§4.1). Since we do
not have gold-standard labels to train our model,
we turn to distant supervision (Craven and Kum-
lien, 1999; Mintz et al., 2009), which heuristically
aligns facts in a knowledge base to text in a corpus
to impute positive mention-level labels for super-
vised learning. Previous work typically examines
distant supervision in the context of binary relation
extraction (Bunescu and Mooney, 2007; Riedel
et al., 2010; Hoffmann et al., 2011), but we are
concerned with the unary predicate “person was
killed by police.” As our gold standard knowledge

"For both training and testing, we use a name matching as-
sumption that a (firstname, lastname) match indicates coref-
erence between mentions, and between a mention and a fatal-
ity database entity. This limitation does affect a small num-
ber of instances—the test set database contains the unique
names of 453 persons but only 451 unique (firstname, last-
name) tuples—but relaxing it raises complex issues for future
work, such as how to evaluate whether a system correctly pre-
dicted two different fatality victims with the same name.

8In preliminary experiments, training and testing an n-
gram classifier (§4.4) on the full mention dataset without key-
word filtering resulted in a worse AUPRC than after the filter.

1549



base (G), we use Fatal Encounters’ (FE) publicly
available dataset: around 18,000 entries of vic-
tim’s name, age, gender and race as well as loca-
tion, cause and date of death. (We use a version of
the FE database downloaded Feb. 27, 2017.) We
compare two different distant supervision training
paradigms (Table 3): “hard” label training (§4.2)
and “soft” EM-based training (§4.3). This section
also details mention-level models (§4.4,84.5) and
evaluation (§4.6).

4.1 Approach: Latent disjunction model

Our discriminative model is built on mention-level
probabilistic classifiers. Recall a single entity will
have one or more mentions (i.e. the same name
occurs in multiple sentences in our corpus). For
a given mention ¢ in sentence x;, our model pre-
dicts whether the person is described as having
been killed by police, z; = 1, with a binary lo-
gistic model,

Pz =1|z) =o(B" f,(xi)). 2)

We experiment with both logistic regression (§4.4)
and convolutional neural networks (§4.5) for this
component, which use logistic regression weights
[ and feature extractor parameters . Then we
must somehow aggregate mention-level decisions
to determine entity labels y,.° If a human reader
were to observe at least one sentence that states a
person was killed by police, they would infer that
person was killed by police. Therefore we aggre-
gate an entity’s mention-level labels with a deter-
ministic disjunction:

Plye =1 2m(e) = 1{Viemee) z} - 3)

At test time, z; is latent. Therefore the correct
inference for an entity is to marginalize out the
model’s uncertainty over z;:

P<ye = 1“%/\/{(6)) =1- P(ye = 0|x/\/l(e)> “)

= 1= Plamie) = 0] 2pm(0) )
=1- ] G=PG=1]z)). (©
1EM(e)

Eq. 6 is the noisyor formula (Pearl, 1988; Craven
and Kumlien, 1999). Procedurally, it counts strong
probabilistic predictions as evidence, but can also

°An alternative approach is to aggregate features across
mentions into an entity-level feature vector (Mintz et al.,
2009; Riedel et al., 2010); but here we opt to directly model
at the mention level, which can use contextual information.

incorporate a large number of weaker signals as
positive evidence as well.!?

In order to train these classifiers, we need
mention-level labels (z;) which we impute via
two different distant supervision labeling meth-
ods: “hard” and “soft.”

4.2 ‘“Hard” distant label training

In “hard” distant labeling, labels for mentions in
the training data are heuristically imputed and di-
rectly used for training. We use two labeling rules.
First, name-only:

zi = 1if e € ™) : name(i) = name(e).

(N

This is the direct unary predicate analogue of
Mintz et al. (2009)’s distant supervision assump-
tion, which assumes every mention of a gold-
positive entity exhibits a description of a police
killing.

This assumption is not correct. We manually
analyze a sample of positive mentions and find 36
out of 100 name-only sentences did not express a
police fatality event—for example, sentences con-
tain commentary, or describe killings not by po-
lice. This is similar to the precision for distant su-
pervision of binary relations found by Riedel et al.
(2010), who reported 10-38% of sentences did not
express the relation in question.

Our higher precision rule, name-and-location,
leverages the fact that the location of the fatality is
also in the Fatal Encounters database and requires
both to be present:

2 = 1if Je € gltrain) .

‘ . ®)
name(i) = name(e) and location(e) € x;.
We use this rule for training since precision is
slightly better, although there is still a consider-
able level of noise.

4.3 “Soft” (EM) joint training

At training time, the distant supervision assump-
tion used in “hard” label training is flawed: many
positively-labeled mentions are in sentences that

1In early experiments, we experimented with other, more
ad-hoc aggregation rules with a “hard”-trained model. The
maximum and arithmetic mean functions performed worse
than noisyor, giving credence to the disjunction model. The
sum rule (3°, P(z: = 1 | x;)) had similar ranking perfor-
mance as noisyor—perhaps because it too can use weak sig-
nals, unlike mean or max—though it does not yield proper
probabilities between 0 and 1.
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do not assert the person was killed by a police of-
ficer. Alternatively, at training time we can treat
z; as a latent variable and assume, as our model
states, that at least one of the mentions asserts
the fatality event, but leave uncertainty over which
mention (or multiple mentions) conveys this in-
formation. This corresponds to multiple instance
learning (MIL; Dietterich et al. (1997)) which has
been applied to distantly supervised relation ex-
traction by enforcing the at least one constraint at
training time (Bunescu and Mooney, 2007; Riedel
etal., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Ritter et al., 2013). Our approach differs by
using exact marginal posterior inference for the E-
step.

With z; as latent, the model can be trained with
the EM algorithm (Dempster et al., 1977). We ini-
tialize the model by training on the “hard” distant
labels (§4.2), and then learn improved parameters
by alternating E- and M-steps.

The E-step requires calculating the marginal
posterior probability for each z;,

q(2i) = P(zi | Zp(e;)» Yes)- ©)

This corresponds to calculating the posterior prob-
ability of a disjunct, given knowledge of the out-
put of the disjunction, and prior probabilities of all
disjuncts (given by the mention-level classifier).
Since P(z | 2,y) = P(z,y | 2)/P(y | x),

P(zi = L ye, = 1‘1"/\/[(61‘))
P(yei = 1|IM(ei))

The numerator simplifies to the mention predic-
tion P(z = 1 | x;) and the denominator is the
entity-level noisyor probability (Eq. 6). This has
the effect of taking the classifier’s predicted prob-
ability and increasing it slightly (since Eq. 10’s de-
nominator is no greater than 1); thus the disjunc-
tion constraint implies a soft positive labeling. In
the case of a negative entity with y. = 0, the dis-
junction constraint implies all z4(.) stay clamped
to 0 as in the “hard” label training method.

The ¢(z;) posterior weights are then used for the
M-step’s expected log-likelihood objective:

maxz Z q(zi = 2)log Py(z = z | m;).
0 i z€{0,1}
(1D

This objective (plus regularization) is maximized
with gradient ascent as before.

This approach can be applied to any mention-
level probabilistic model; we explore two in the
next sections.

q(zi=1) = 10)

%\:) 0.16 — C=le2
o C=le-1
S | —Ct
< 014 A A A b c=10
PR A AP AP\ AAANIANANNNAN €=100

25 50 75 100 125 150 175 200
EM iteration

Figure 1: For soft-LR (EM), area under precision
recall curve (AUPRC) results on the test set during
training, for different inverse regularization values
(C, the parameters’ prior variance).

Features

D1 length 3 dependency paths that include TARGET:
word, POS, dep. label

D2 length 3 dependency paths that include TARGET:
word and dep. label

D3 length 3 dependency paths that include TARGET:
word and POS

D4 all length 2 dependency paths with word, POS, dep.
labels

N1 n-grams length 1,2, 3

N2 n-grams length 1, 2, 3 plus POS tags

N3 n-grams length 1, 2, 3 plus directionality and posi-
tion from TARGET

N4 concatenated POS tags of 5-word window centered
on TARGET

N5 word and POS tags for 5-word window centered on
TARGET

Table 4: Feature templates for logistic regression
grouped into syntactic dependencies (D) and N-
gram () features.

4.4 Feature-based logistic regression

We construct hand-crafted features for regular-
ized logistic regression (LR) (Table 4), designed
to be broadly similar to the n-gram and syntac-
tic dependency features used in previous work
on feature-based semantic parsing (e.g. Das et al.
(2014); Thomson et al. (2014)). We use random-
ized feature hashing (Weinberger et al., 2009) to
efficiently represent features in 450,000 dimen-
sions, which achieved similar performance as an
explicit feature representation. The logistic regres-
sion weights (3 in Eq. 2) are learned with scikit-
learn (Pedregosa et al., 2011).'! For EM (soft-LR)
training, the test set’s area under the precision re-
call curve converges after 96 iterations (Fig. 1).

""With FeatureHasher, 12 regularization, ‘lbfgs’ solver,
and inverse strength C' = 0.1, tuned on a development dataset
in “hard” training; for EM training the same regularization
strength performs best.
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4.5 Convolutional neural network

We also train a convolutional neural network
(CNN) classifier, which uses word embeddings
and their nonlinear compositions to potentially
generalize better than sparse lexical and n-gram
features. CNNs have been shown useful for
sentence-level classification tasks (Kim, 2014;
Zhang and Wallace, 2015), relation classification
(Zeng et al., 2014) and, similar to this setting,
event detection (Nguyen and Grishman, 2015).
We use Kim (2014)’s open-source CNN imple-
mentation,'?> where a logistic function makes the
final mention prediction based on max-pooled val-
ues from convolutional layers of three different
filter sizes, whose parameters are learned (v in
Eq. 2). We use pretrained word embeddings for
initialization,'® and update them during training.
We also add two special vectors for the TARGET
and PERSON symbols, initialized randomly.'*

For training, we perform stochastic gradient de-
scent for the negative expected log-likelihood (Eq.
11) by sampling with replacement fifty mention-
label pairs for each minibatch, choosing each
(i,k) € M x {0, 1} with probability proportional
to q(z; = k). This strategy attains the same ex-
pected gradient as the overall objective. We use
“epoch” to refer to training on 265,700 examples
(approx. twice the number of mentions). Unlike
EM for logistic regression, we do not run gradi-
ent descent to convergence, instead applying an E-
step every two epochs to update g; this approach
is related to incremental and online variants of EM
(Neal and Hinton, 1998; Liang and Klein, 2009),
and is justified since both SGD and E-steps im-
prove the evidence lower bound (ELBO). It is
also similar to Salakhutdinov et al. (2003)’s ex-
pectation gradient method; their analysis implies
the gradient calculated immediately after an E-
step is in fact the gradient for the marginal log-
likelihood. We are not aware of recent work
that uses EM to train latent-variable neural net-
work models, though this combination has been
explored (e.g. Jordan and Jacobs (1994))

4.6 Evaluation

On documents from the test period (Sept—Dec
2016), our models predict entity-level labels

https://github.com/yoonkim/CNN _sentence

From the same word2vec embeddings used in §3.

"“Training proceeds with ADADELTA (Zeiler, 2012). We
tested several different settings of dropout and L2 regulariza-
tion hyperparameters on a development set, but found mixed
results, so used their default values.

- June 6, Nov. 22,
date of killing ‘21374 %16
I
€1 ! €2
knowledge base - ! o >
‘
el = \ €2=
entity labels “historical” : . ~. “positive”
, testset . .
‘ =
1 el €2
I
train/test Oct. 3, Dec. 1,
date of news report aplit 2016 2016

Figure 2: At test time, there are matches between
the knowledge base and the news reports both for
persons killed during the test period (“positive”)
and persons killed before it (“historical’’). Histori-
cal cases are excluded from evaluation.
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D o013
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Figure 3: Test set AUPRC for three runs of soft-
CNN (EM) (blue, higher in graph), and hard-CNN
(red, lower in graph). Darker lines show perfor-
mance of averaged predictions.

P(ye = 1 | mpq(e)) (Eq. 6), and we wish to eval-
uate whether retrieved entities are listed in Fatal
Encounters as being killed during Sept-Dec 2016.
We rank entities by predicted probabilities to con-
struct a precision-recall curve (Fig. 4, Table 5).
Area under the precision-recall curve (AUPRC) is
calculated with a trapezoidal rule; F1 scores are
shown for convenient comparison to non-ranking
approaches (§5).

Excluding historical fatalities: Our model
gives strong positive predictions for many people
who were killed by police before the test period
(i.e. before Sept 2016), when news articles con-
tain discussion of historical police killings. We
exclude these entities from evaluation, since we
want to simulate an update to a fatality database
(Fig 2). Our test dataset contains 1,148 such his-
torical entities.

Data upper bound: Of the 452 gold entities
in the FE database at test time, our news corpus
only contained 258 (Table 2), hence the data up-
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10 Models
c hard-LR
208 hard-CNN
g —— 50ft-CNN (EM)
(U]
506 soft-LR (EM)
Ko)
0]
- 0.4
>
4 L
=
& 0.21 RPHIE,R3 RPIJIE, R1

RPIJIE, R2
[ ]
0.0

0.0 0.1 0.2 0.3 0.4 0.5
Entity-level recall

Figure 4: Precision-recall curves for the given
models.

Model AUPRC F1
hard-LR, dep. feats. 0.117 0.229
hard-LR, n-gram feats. 0.134 0.257
hard-LR, all feats. 0.142 0.266
hard-CNN 0.130 0.252
soft-CNN (EM) 0.164 0.267
soft-LR (EM) 0.193 0.316
Data upper bound (§4.6) 0.57 0.73

Table 5: Area under precision-recall curve
(AUPRC) and F1 (its maximum value from the PR
curve) for entity prediction on the test set.

per bound of 0.57 recall, which also gives an up-
per bound of 0.57 on AUPRC. This is mostly a
limitation of our news corpus; though we collect
hundreds of thousands of news articles, it turns
out Google News only accesses a subset of rele-
vant web news, as opposed to more comprehensive
data sources manually reviewed by Fatal Encoun-
ters’ human experts. We still believe our dataset is
large enough to be realistic for developing better
methods, and expect the same approaches could
be applied to a more comprehensive news corpus.

5 Off-the-shelf event extraction baselines

From a practitioner’s perspective, a natural first
approach to this task would be to run the corpus
of police fatality documents through pre-trained,
“off-the-shelf” event extractor systems that could
identify killing events. In modern NLP research,
a major paradigm for event extraction is to formu-
late a hand-crafted ontology of event classes, an-
notate a small corpus, and craft supervised learn-

Rule Prec. Recall Fl
SEMAFOR R1 0.011 0436 0.022
R2 0.031 0.162  0.051
R3 0.098 0.009 0.016
RPI-JIE R1 0.016 0.447  0.030
R2 0.044 0327 0.078
R3 0.172  0.168  0.170
Data upper bound (§4.6) 1.0 0.57 0.73

Table 6: Precision, recall, and F1 scores for test
data using event extractors SEMAFOR and RPI-
JIE and rules R1-R3 described below.

ing systems to predict event parses of documents.

We evaluate two freely available, off-the-shelf
event extractors that were developed under this
paradigm: SEMAFOR (Das et al., 2014), and the
RPI Joint Information Extraction System (RPI-
JIE) (Li and Ji, 2014), which output semantic
structures following the FrameNet (Fillmore et al.,
2003) and ACE (Doddington et al., 2004) event
ontologies, respectively.'” Pavlick et al. (2016)
use RPI-JIE to identify instances of gun violence.

For each mention ¢ € M we use SEMAFOR
and RPI-JIE to extract event tuples of the form
t; = (event type, agent, patient) from the sentence
x;. We want the system to detect (1) killing events,
where (2) the killed person is the target mention ¢,
and (3) the person who killed them is a police of-
ficer. We implement a small progression of these
neo-Davidsonian (Parsons, 1990) conjuncts with
rules to classify z; = 1 if:!°

e (R1) the event type is ‘kill.’

e (R2) R1 holds and the patient token span
contains e;.

SMany other annotated datasets encode similar event
structures in text, but with lighter ontologies where event
classes directly correspond with lexical items—including
PropBank, Prague Treebank, DELPHI-IN MRS, and Abstract
Meaning Representation (Kingsbury and Palmer, 2002; Hajic
et al., 2012; Oepen et al., 2014; Banarescu et al., 2013). We
assume such systems are too narrow for our purposes, since
we need an extraction system to handle different trigger con-
structions like “killed” versus “shot dead.”

For SEMAFOR, we use the FrameNet ‘Killing’ frame
with frame elements ‘Victim’ and ‘Killer’. For RPI-JIE, we
use the ACE ‘life/die’ event type/subtype with roles ‘vic-
tim’ and ‘agent’. SEMAFOR defines a token span for ev-
ery argument; RPI-JIE/ACE defines two spans, both a head
word and entity extent; we use the entity extent. SEMAFOR
only predicts spans as event arguments, while RPI-JIE also
predicts entities as event arguments, where each entity has
a within-text coreference chain over one or more mentions;
since we only use single sentences, these chains tend to be
small, though they do sometimes resolve pronouns. For de-
termining R2 and R3, we allow a match on any of an entity’s
extents from any of its mentions.
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o (R3) R2 holds and the agent token span con-
tains a police keyword.

As in §4.1 (Eq. 3), we aggregate mention-level z;
predictions to obtain entity-level predictions with
a deterministic OR of 24 (c)-

RPI-JIE under the full R3 system performs best,
though all results are relatively poor (Table 6).
Part of this is due to inherent difficulty of the task,
though our task-specific model still outperforms
(Table 5). We suspect a major issue is that these
systems heavily rely on their annotated training
sets and may have significant performance loss on
new domains, or messy text extracted from web
news, suggesting domain transfer for future work.

6 Results and discussion

Significance testing: We would like to test robust-
ness of performance results to the finite datasets
with bootstrap testing (Berg-Kirkpatrick et al.,
2012), which can accomodate performence met-
rics like AUPRC. It is not clear what the appro-
priate unit of resampling should be—for example,
parsing and machine translation research in NLP
often resamples sentences, which is inappropriate
for our setting. We elect to resample documents
in the test set, simulating variability in the gener-
ation and retrieval of news articles. Standard er-
rors for one model’s AUPRC and F1 are in the
range 0.004-0.008 and 0.008-0.010 respectively;
we also note pairwise significance test results. See
appendix for details.

Overall performance: Our results indicate our
model is better than existing computational meth-
ods methods to extract names of people killed by
police, by comparing to F1 scores of off-the-shelf
extractors (Table 5 vs. Table 6; differences are sta-
tistically significant).

We also compare entities extracted from our test
dataset to the Guardian’s “The Counted” database
of U.S. police killings during the span of the test
period (Sept.—Dec., 2016),'” and found 39 persons
they did not include in the database, but who were
in fact killed by police. This implies our approach
could augment journalistic collection efforts. Ad-
ditionally, our model could help practitioners by
presenting them with sentence-level information
in the form of Table 7; we hope this could de-
crease the amount of time and emotional toll re-
quired to maintain real-time updates of police fa-
tality databases.

https://www.theguardian.com/us-news/series/
counted-us-police-killings, downloaded Jan. 1, 2017.

CNN: Model predictions were relatively un-
stable during the training process. Despite the
fact that EM’s evidence lower bound objective
(H(Q) + Egllog P(Z,Y|X)]) converged fairly
well on the training set, test set AUPRC substan-
tially fluctuated as much as 2% between epochs,
and also between three different random initial-
izations for training (Fig. 3). We conducted these
multiple runs initially to check for variability, then
used them to construct a basic ensemble: we aver-
aged the three models’ mention-level predictions
before applying noisyor aggregation. This outper-
formed the individual models—especially for EM
training—and showed less fluctuation in AUPRC,
which made it easier to detect convergence. Re-
ported performance numbers in Table 5 are with
the average of all three runs from the final epoch
of training.

LR vs. CNN: After feature ablation we found
that hard-CNN and hard-LR with n-gram features
(N1-N5) had comparable AUPRC values (Table
5). But adding dependency features (D1-D4)
caused the logistic regression models to outper-
form the neural networks (albeit with bare signif-
icance: p = 0.046). We hypothesize these de-
pendency features capture longer-distance seman-
tic relationships between the entity, fatality trigger
word, and police officer, which short n-grams can-
not. Moving to sequence or graph LSTMs may
better capture such dependencies.

Soft (EM) training: Using the EM algorithm
gives substantially better performance: for the
CNN, AUC improves from 0.130 to 0.164, and for
LR, from 0.142 to 0.193. (Both improvements are
statistically significant.) Logistic regression with
EM training is the most accurate model. Exam-
ining the precision-recall curves (Fig. 4), many of
the gains are in the higher confidence predictions
(left side of figure). In fact, the soft EM model
makes fewer strongly positive predictions: for ex-
ample, hard-LR predicts y. = 1 with more than
99% confidence for 170 out of 24,550 test set en-
tities, but soft-LR does so for only 24. This makes
sense given that the hard-LR model at training
time assumes that many more positive entity men-
tions are evidence of a killing than they are in re-
ality (§4.2).

Manual analysis: Manual analysis of false
positives indicates misspellings or mismatches of
names, police fatalities outside of the U.S., peo-
ple who were shot by police but not killed, and
names of police officers who were killed are com-

1554



entity (e) ment.(¢) ment. text (x;)

prob.
Keith Scott 0.98 Charlotte protests Charlotte’s Mayor Jennifer Roberts speaks to reporters the morning after
(true pos) protests against the police shooting of Keith Scott, in Charlotte, North Carolina .
Terence 0.96 Tulsa Police Department released video footage Monday, Sept. 19, 2016, showing white Tulsa
Crutcher police officer Betty Shelby fatally shooting Terence Crutcher, 40, a black man police later
(true pos) determined was unarmed.
Mark Duggan 0.97 The fatal shooting of Mark Duggan by police led to some of the worst riots in England’s recent
(false pos) history.
Logan Clarke 0.92 Logan Clarke was shot by a campus police officer after waving kitchen knives at fellow stu-
(false pos) dents outside the cafeteria at Hug High School in Reno, Nevada, on December 7.

Table 7: Example of highly ranked entities, with selected mention predictions and text.

mon false positive errors (see detailed table in the
appendix). This suggests many prediction errors
are from ambiguous or challenging cases.'®

Future work: While we have made progress
on this application, more work is necessary for ac-
curacy to be high enough to be useful for practi-
tioners. Our model allows for the use of mention-
level semantic parsing models; systems with ex-
plicit trigger/agent/patient representations, more
like traditional event extraction systems, may be
useful, as would more sophisticated neural net-
work models, or attention models as an alternative
to disjunction aggregation (Lin et al., 2016).

One goal is to use our model as part of a
semi-automatic system, where people manually
review a ranked list of entity suggestions. In this
case, it is more important to focus on improving
recall—specifically, improving precision at high-
recall points on the precision-recall curve. Our
best models, by contrast, tend to improve preci-
sion at lower-recall points on the curve. Higher
recall may be possible through cost-sensitive train-
ing (e.g. Gimpel and Smith (2010)) and using fea-
tures from beyond single sentences within the doc-
ument.

Furthermore, our dataset could be used to con-
tribute to communication studies, by exploring re-
search questions about the dynamics of media at-
tention (for example, the effect of race and ge-
ography on coverage of police killings), and dis-
cussions of historical killings in news—for ex-
ample, many articles in 2016 discussed Michael
Brown’s 2014 death in Ferguson, Missouri. Im-
proving NLP analysis of historical events would
also be useful for the event extraction task it-
self, by delineating between recent events that re-

8We attempted to correct non-U.S. false positive errors
by using CLAVIN, an open-source country identifier, but this
significantly hurt recall.

quire a database update, versus historical events
that appear as “noise” from the perspective of the
database update task. Finally, it may also be pos-
sible to adapt our model to extract other types of
social behavior events.
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