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Abstract
Semantic role labeling (SRL) is the task of
identifying the predicate-argument struc-
ture of a sentence. It is typically re-
garded as an important step in the stan-
dard NLP pipeline. As the semantic rep-
resentations are closely related to syntac-
tic ones, we exploit syntactic information
in our model. We propose a version of
graph convolutional networks (GCNs), a
recent class of neural networks operating
on graphs, suited to model syntactic de-
pendency graphs. GCNs over syntactic de-
pendency trees are used as sentence en-
coders, producing latent feature represen-
tations of words in a sentence. We ob-
serve that GCN layers are complementary
to LSTM ones: when we stack both GCN
and LSTM layers, we obtain a substantial
improvement over an already state-of-the-
art LSTM SRL model, resulting in the best
reported scores on the standard benchmark
(CoNLL-2009) both for Chinese and En-
glish.

1 Introduction

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002) can be informally described as the task
of discovering who did what to whom. For ex-
ample, consider an SRL dependency graph shown
above the sentence in Figure 1. Formally, the task
includes (1) detection of predicates (e.g., makes);
(2) labeling the predicates with a sense from a
sense inventory (e.g., make.01); (3) identifying
and assigning arguments to semantic roles (e.g.,
Sequa is A0, i.e., an agent / ‘doer’ for the corre-
sponding predicate, and engines is A1, i.e., a pa-
tient / ‘an affected entity’). SRL is often regarded
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Figure 1: An example sentence annotated with se-
mantic (top) and syntactic dependencies (bottom).

as an important step in the standard NLP pipeline,
providing information to downstream tasks such
as information extraction and question answering.

The semantic representations are closely re-
lated to syntactic ones, even though the syntax-
semantics interface is far from trivial (Levin,
1993). For example, one can observe that many
arcs in the syntactic dependency graph (shown in
black below the sentence in Figure 1) are mir-
rored in the semantic dependency graph. Given
these similarities and also because of availability
of accurate syntactic parsers for many languages,
it seems natural to exploit syntactic information
when predicting semantics. Though historically
most SRL approaches did rely on syntax (Thomp-
son et al., 2003; Pradhan et al., 2005; Punyakanok
et al., 2008; Johansson and Nugues, 2008), the last
generation of SRL models put syntax aside in fa-
vor of neural sequence models, namely LSTMs
(Zhou and Xu, 2015; Marcheggiani et al., 2017),
and outperformed syntactically-driven methods on
standard benchmarks. We believe that one of the
reasons for this radical choice is the lack of sim-
ple and effective methods for incorporating syn-
tactic information into sequential neural networks
(namely, at the level of words). In this paper we
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propose one way how to address this limitation.
Specifically, we rely on graph convolutional

networks (GCNs) (Duvenaud et al., 2015; Kipf
and Welling, 2017; Kearnes et al., 2016), a recent
class of multilayer neural networks operating on
graphs. For every node in the graph (in our case
a word in a sentence), GCN encodes relevant in-
formation about its neighborhood as a real-valued
feature vector. GCNs have been studied largely in
the context of undirected unlabeled graphs. We in-
troduce a version of GCNs for modeling syntactic
dependency structures and generally applicable to
labeled directed graphs.

One layer GCN encodes only information about
immediate neighbors and K layers are needed
to encode K-order neighborhoods (i.e., informa-
tion about nodes at most K hops aways). This
contrasts with recurrent and recursive neural net-
works (Elman, 1990; Socher et al., 2013) which, at
least in theory, can capture statistical dependencies
across unbounded paths in a trees or in a sequence.
However, as we will further discuss in Section 3.3,
this is not a serious limitation when GCNs are used
in combination with encoders based on recurrent
networks (LSTMs). When we stack GCNs on top
of LSTM layers, we obtain a substantial improve-
ment over an already state-of-the-art LSTM SRL
model, resulting in the best reported scores on the
standard benchmark (CoNLL-2009), both for En-
glish and Chinese.1

Interestingly, again unlike recursive neural net-
works, GCNs do not constrain the graph to be
a tree. We believe that there are many applica-
tions in NLP, where GCN-based encoders of sen-
tences or even documents can be used to incor-
porate knowledge about linguistic structures (e.g.,
representations of syntax, semantics or discourse).
For example, GCNs can take as input combined
syntactic-semantic graphs (e.g., the entire graph
from Figure 1) and be used within downstream
tasks such as machine translation or question an-
swering. However, we leave this for future work
and here solely focus on SRL.

The contributions of this paper can be summa-
rized as follows:

• we are the first to show that GCNs are effec-
tive for NLP;

• we propose a generalization of GCNs suited

1The code is available at https://github.com/
diegma/neural-dep-srl.

to encoding syntactic information at word
level;

• we propose a GCN-based SRL model and
obtain state-of-the-art results on English and
Chinese portions of the CoNLL-2009 dataset;

• we show that bidirectional LSTMs and
syntax-based GCNs have complementary
modeling power.

2 Graph Convolutional Networks

In this section we describe GCNs of Kipf and
Welling (2017). Please refer to Gilmer et al.
(2017) for a comprehensive overview of GCN ver-
sions.

GCNs are neural networks operating on graphs
and inducing features of nodes (i.e., real-valued
vectors / embeddings) based on properties of their
neighborhoods. In Kipf and Welling (2017), they
were shown to be very effective for the node clas-
sification task: the classifier was estimated jointly
with a GCN, so that the induced node features
were informative for the node classification prob-
lem. Depending on how many layers of convolu-
tion are used, GCNs can capture information only
about immediate neighbors (with one layer of con-
volution) or any nodes at most K hops aways (if
K layers are stacked on top of each other).

More formally, consider an undirected graph
G = (V, E), where V (|V | = n) and E are
sets of nodes and edges, respectively. Kipf and
Welling (2017) assume that edges contain all the
self-loops, i.e., (v, v) 2 E for any v. We can de-
fine a matrix X 2 Rm⇥n with each its column
xv 2 Rm (v 2 V) encoding node features. The
vectors can either encode genuine features (e.g.,
this vector can encode the title of a paper if citation
graphs are considered) or be a one-hot vector. The
node representation, encoding information about
its immediate neighbors, is computed as

hv = ReLU

0@ X
u2N (v)

(W xu + b)

1A , (1)

where W 2 Rm⇥m and b 2 Rm are a weight ma-
trix and a bias, respectively; N (v) are neighbors
of v; ReLU is the rectifier linear unit activation
function.2 Note that v 2 N (v) (because of self-
loops), so the input feature representation of v (i.e.
xv) affects its induced representation hv.

2We dropped normalization factors used in Kipf and
Welling (2017), as they are not used in our syntactic GCNs.
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Figure 2: A simplified syntactic GCN (bias terms
and gates are omitted); the syntactic graph of the
sentence is shown with dashed lines at the bottom.
Parameter matrices are sub-indexed with syntactic
functions, and apostrophes (e.g., subj’) signify that
information flows in the direction opposite of the
dependency arcs (i.e., from dependents to heads).

As in standard convolutional networks (LeCun
et al., 2001), by stacking GCN layers one can in-
corporate higher degree neighborhoods:

h(k+1)
v = ReLU

0@ X
u2N (v)

W (k)h(k)
u + b(k)

1A
where k denotes the layer number and h

(1)
v = xv.

3 Syntactic GCNs

As syntactic dependency trees are directed and la-
beled (we refer to the dependency labels as syn-
tactic functions), we first need to modify the com-
putation in order to incorporate label information
(Section 3.1). In the subsequent section, we incor-
porate gates in GCNs, so that the model can decide
which edges are more relevant to the task in ques-
tion. Having gates is also important as we rely on
automatically predicted syntactic representations,
and the gates can detect and downweight poten-
tially erroneous edges.

3.1 Incorporating directions and labels
Now, we introduce a generalization of GCNs ap-
propriate for syntactic dependency trees, and in

general, for directed labeled graphs. First note
that there is no reason to assume that information
flows only along the syntactic dependency arcs
(e.g., from makes to Sequa), so we allow it to flow
in the opposite direction as well (i.e., from depen-
dents to heads). We use a graph G = (V, E), where
the edge set contains all pairs of nodes (i.e., words)
adjacent in the dependency tree. In our example,
both (Sequa, makes) and (makes, Sequa) belong
to the edge set. The graph is labeled, and the label
L(u, v) for (u, v) 2 E contains both information
about the syntactic function and indicates whether
the edge is in the same or opposite direction as
the syntactic dependency arc. For example, the la-
bel for (makes, Sequa) is subj, whereas the label
for (Sequa, makes) is subj0, with the apostrophe
indicating that the edge is in the direction oppo-
site to the corresponding syntactic arc. Similarly,
self-loops will have label self . Consequently, we
can simply assume that the GCN parameters are
label-specific, resulting in the following computa-
tion, also illustrated in Figure 2:

h(k+1)
v = ReLU

0@ X
u2N (v)

W
(k)
L(u,v)h

(k)
u + b

(k)
L(u,v)

1A .

This model is over-parameterized,3 especially
given that SRL datasets are moderately sized, by
deep learning standards. So instead of learning the
GCN parameters directly, we define them as

W
(k)
L(u,v) = V

(k)
dir(u,v), (2)

where dir(u, v) indicates whether the edge (u, v)
is directed (1) along, (2) in the opposite direction
to the syntactic dependency arc, or (3) is a self-
loop; V

(k)
dir(u,v) 2 Rm⇥m. Our simplification cap-

tures the intuition that information should be prop-
agated differently along edges depending whether
this is a head-to-dependent or dependent-to-head
edge (i.e., along or opposite the corresponding
syntactic arc) and whether it is a self-loop. So we
do not share any parameters between these three
very different edge types. Syntactic functions are
important, but perhaps less crucial, so they are en-
coded only in the feature vectors bL(u,v).

3.2 Edge-wise gating
Uniformly accepting information from all neigh-
boring nodes may not be appropriate for the SRL

3Chinese and English CoNLL-2009 datasets used 41 and
48 different syntactic functions, which would result in having
83 and 97 different matrices in every layer, respectively.
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setting. For example, we see in Figure 1 that many
semantic arcs just mirror their syntactic counter-
parts, so they may need to be up-weighted. More-
over, we rely on automatically predicted syntactic
structures, and, even for English, syntactic parsers
are far from being perfect, especially when used
out-of-domain. It is risky for a downstream ap-
plication to rely on a potentially wrong syntactic
edge, so the corresponding message in the neural
network may need to be down-weighted.

In order to address the above issues, inspired
by recent literature (van den Oord et al., 2016;
Dauphin et al., 2016), we calculate for each edge
node pair a scalar gate of the form

g(k)
u,v = �

⇣
h(k)

u · v̂(k)
dir(u,v) + b̂

(k)
L(u,v)

⌘
, (3)

where � is the logistic sigmoid function,
v̂

(k)
dir(u,v) 2 Rm and b̂

(k)
L(u,v) 2 R are weights and

a bias for the gate. With this additional gating
mechanism, the final syntactic GCN computation
is formulated as

h(k+1)
v =ReLU(X

u2N (v)

g(k)
v,u(V (k)

dir(u,v)h
(k)
u + b

(k)
L(u,v))). (4)

3.3 Complementarity of GCNs and LSTMs
The inability of GCNs to capture dependencies
between nodes far away from each other in the
graph may seem like a serious problem, especially
in the context of SRL: paths between predicates
and arguments often include many dependency
arcs (Roth and Lapata, 2016). However, when
graph convolution is performed on top of LSTM
states (i.e., LSTM states serve as input xv = h

(1)
v

to GCN) rather than static word embeddings, GCN
may not need to capture more than a couple of
hops.

To elaborate on this, let us speculate what role
GCNs would play when used in combinations
with LSTMs, given that LSTMs have already been
shown very effective for SRL (Zhou and Xu, 2015;
Marcheggiani et al., 2017). Though LSTMs are
capable of capturing at least some degree of syn-
tax (Linzen et al., 2016) without explicit syntactic
supervision, SRL datasets are moderately sized,
so LSTM models may still struggle with harder
cases. Typically, harder cases for SRL involve ar-
guments far away from their predicates. In fact,
20% and 30% of arguments are more than 5 to-
kens away from their predicate, in our English and

A1
Classifier

J layers 
BiLSTM

Lane   disputed   those   estimates

�

dobj

nmodnsubj

K layers 
GCN

word
representation

Figure 3: Predicting an argument and its label
with an LSTM + GCN encoder.

Chinese collections, respectively. However, if we
imagine that we can ‘teleport’ even over a sin-
gle (longest) syntactic dependency edge, the ’dis-
tance’ would shrink: only 9% and 13% arguments
will now be more than 5 LSTM steps away (again
for English and Chinese, respectively). GCNs pro-
vide this ‘teleportation’ capability. These observa-
tions suggest that LSTMs and GCNs may be com-
plementary, and we will see that empirical results
support this intuition.

4 Syntax-Aware Neural SRL Encoder

In this work, we build our semantic role la-
beler on top of the syntax-agnostic LSTM-based
SRL model of Marcheggiani et al. (2017), which
already achieves state-of-the-art results on the
CoNLL-2009 English dataset. Following their ap-
proach we employ the same bidirectional (BiL-
STM) encoder and enrich it with a syntactic GCN.

The CoNLL-2009 benchmark assumes that
predicate positions are already marked in the test
set (e.g., we would know that makes, repairs and
engines in Figure 1 are predicates), so no predicate
identification is needed. Also, as we focus here
solely on identifying arguments and labeling them
with semantic roles, for predicate disambiguation
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(i.e., marking makes as make.01) we use of an off-
the-shelf disambiguation model (Roth and Lapata,
2016; Björkelund et al., 2009). As in Marcheg-
giani et al. (2017) and in most previous work, we
process individual predicates in isolation, so for
each predicate, our task reduces to a sequence la-
beling problem. That is, given a predicate (e.g.,
disputed in Figure 3) one needs to identify and la-
bel all its arguments (e.g., label estimates as A1
and label those as ‘NULL’, indicating that those is
not an argument of disputed).

The semantic role labeler we propose is com-
posed of four components (see Figure 3):

• look-ups of word embeddings;

• a BiLSTM encoder that takes as input the
word representation of each word in a sen-
tence;

• a syntax-based GCN encoder that re-encodes
the BiLSTM representation based on the au-
tomatically predicted syntactic structure of
the sentence;

• a role classifier that takes as input the GCN
representation of the candidate argument and
the representation of the predicate to predict
the role associated with the candidate word.

4.1 Word representations
For each word wi in the considered sentence, we
create a sentence-specific word representation xi.
We represent each word w as the concatenation
of four vectors:4 a randomly initialized word em-
bedding xre 2 Rdw , a pre-trained word embed-
ding xpe 2 Rdw estimated on an external text col-
lection, a randomly initialized part-of-speech tag
embedding xpos 2 Rdp and a randomly initial-
ized lemma embedding xle 2 Rdl (active only if
the word is a predicate). The randomly initialized
embeddings xre, xpos, and xle are fine-tuned dur-
ing training, while the pre-trained ones are kept
fixed. The final word representation is given by
x = xre � xpe � xpos � xle, where � represents the
concatenation operator.

4.2 Bidirectional LSTM layer
One of the most popular and effective ways to
represent sequences, such as sentences (Mikolov
et al., 2010), is to use recurrent neural networks

4We drop the index i from the notation for the sake of
brevity.

(RNN) (Elman, 1990). In particular their gated
versions, Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014),
have proven effective in modeling long sequences
(Chiu and Nichols, 2016; Sutskever et al., 2014).

Formally, an LSTM can be defined as a func-
tion LSTM✓(x1:i) that takes as input the sequence
x1:i and returns a hidden state hi 2 Rdh . This
state can be regarded as a representation of the
sentence from the start to the position i, or, in
other words, it encodes the word at position i
along with its left context. However, the right
context is also important, so Bidirectional LSTMs
(Graves, 2008) use two LSTMs: one for the for-
ward pass, and another for the backward pass,
LSTMF and LSTMB , respectively. By con-
catenating the states of both LSTMs, we cre-
ate a complete context-aware representation of
a word BiLSTM(x1:n, i) = LSTMF (x1:i) �
LSTMB(xn:i). We follow Marcheggiani et al.
(2017) and stack J layers of bidirectional LSTMs,
where each layer takes the lower layer as its input.

4.3 Graph convolutional layer

The representation calculated with the BiLSTM
encoder is fed as input to a GCN of the form de-
fined in Equation (4). The neighboring nodes of a
node v, namely N (v), and their relations to v are
predicted by an external syntactic parser.

4.4 Semantic role classifier

The classifier predicts semantic roles of words
given the predicate while relying on word repre-
sentations provided by GCN; we concatenate hid-
den states of the candidate argument word and the
predicate word and use them as input to a classi-
fier (Figure 3, top). The softmax classifier com-
putes the probability of the role (including special
‘NULL’ role):

p(r|ti, tp, l) / exp(Wl,r(ti � tp)), (5)

where ti and tp are representations produced by
the graph convolutional encoder, l is the lemma
of predicate p, and the symbol / signifies pro-
portionality.5 As FitzGerald et al. (2015) and
Marcheggiani et al. (2017), instead of using a fixed
matrix Wl,r or simply assuming that Wl,r = Wr,

5We abuse the notation and refer as p both to the predicate
word and to its position in the sentence.
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Figure 4: F1 as function of word distance. The
distance starts from zero, since nominal predicates
can be arguments of themselves.

we jointly embed the role r and predicate lemma l
using a non-linear transformation:

Wl,r = ReLU(U(ql � qr)), (6)

where U is a parameter matrix, whereas ql 2 Rd0
l

and qr 2 Rdr are randomly initialized embed-
dings of predicate lemmas and roles. In this way
each role prediction is predicate-specific, and, at
the same time, we expect to learn a good represen-
tation for roles associated with infrequent predi-
cates. As our training objective we use the cate-
gorical cross-entropy.

5 Experiments

5.1 Datasets and parameters
We tested the proposed SRL model on the English
and Chinese CoNLL-2009 dataset with standard
splits into training, test and development sets. The
predicted POS tags for both languages were pro-
vided by the CoNLL-2009 shared-task organizers.
For the predicate disambiguator we used the ones
from Roth and Lapata (2016) for English and from
Björkelund et al. (2009) for Chinese. We parsed
English sentences with the BIST Parser (Kiper-
wasser and Goldberg, 2016), whereas for Chinese
we used automatically predicted parses provided
by the CoNLL-2009 shared-task organizers.

For English, we used external embeddings of
Dyer et al. (2015), learned using the structured
skip n-gram approach of Ling et al. (2015). For
Chinese we used external embeddings produced
with the neural language model of Bengio et al.
(2003). We used edge dropout in GCN: when

Figure 5: Performance with dependency arcs of
given type dropped, on Chinese development set.

System (English) P R F1

LSTMs 84.3 81.1 82.7
LSTMs + GCNs (K=1) 85.2 81.6 83.3
LSTMs + GCNs (K=2) 84.1 81.4 82.7
LSTMs + GCNs (K=1), no gates 84.7 81.4 83.0

GCNs (no LSTMs), K=1 79.9 70.4 74.9
GCNs (no LSTMs), K=2 83.4 74.6 78.7
GCNs (no LSTMs), K=3 83.6 75.8 79.5
GCNs (no LSTMs), K=4 82.7 76.0 79.2

Table 1: SRL results without predicate disam-
biguation on the English development set.

computing h
(k)
v , we ignore each node v 2 N (v)

with probability �. Adam (Kingma and Ba, 2015)
was used as an optimizer. The hyperparameter
tuning and all model selection were performed on
the English development set; the chosen values are
shown in Appendix.

5.2 Results and discussion

In order to show that GCN layers are effective, we
first compare our model against its version which
lacks GCN layers (i.e. essentially the model of
Marcheggiani et al. (2017)). Importantly, to mea-
sure the genuine contribution of GCNs, we first
tuned this syntax-agnostic model (e.g., the number
of LSTM layers) to get best possible performance
on the development set.6

We compare the syntax-agnostic model with 3
syntax-aware versions: one GCN layer over syn-
tax (K = 1), one layer GCN without gates and
two GCN layers (K = 2). As we rely on the same

6For example, if we would have used only one layer of
LSTMs, gains from using GCNs would be even larger.
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System (Chinese) P R F1

LSTMs 78.3 72.3 75.2
LSTMs + GCNs (K=1) 79.9 74.4 77.1
LSTMs + GCNs (K=2) 78.7 74.0 76.2
LSTMs + GCNs (K=1), no gates 78.2 74.8 76.5

GCNs (no LSTMs), K=1 78.7 58.5 67.1
GCNs (no LSTMs), K=2 79.7 62.7 70.1
GCNs (no LSTMs), K=3 76.8 66.8 71.4
GCNs (no LSTMs), K=4 79.1 63.5 70.4

Table 2: SRL results without predicate disam-
biguation on the Chinese development set.

System P R F1

Lei et al. (2015) (local) - - 86.6
FitzGerald et al. (2015) (local) - - 86.7
Roth and Lapata (2016) (local) 88.1 85.3 86.7
Marcheggiani et al. (2017) (local) 88.7 86.8 87.7
Ours (local) 89.1 86.8 88.0

Björkelund et al. (2010) (global) 88.6 85.2 86.9
FitzGerald et al. (2015) (global) - - 87.3
Foland and Martin (2015) (global) - - 86.0
Swayamdipta et al. (2016) (global) - - 85.0
Roth and Lapata (2016) (global) 90.0 85.5 87.7

FitzGerald et al. (2015) (ensemble) - - 87.7
Roth and Lapata (2016) (ensemble) 90.3 85.7 87.9
Ours (ensemble 3x) 90.5 87.7 89.1

Table 3: Results on the test set for English.

off-the-shelf disambiguator for all versions of the
model, in Table 1 and 2 we report SRL-only scores
(i.e., predicate disambiguation is not evaluated) on
the English and Chinese development sets. For
both datasets, the syntax-aware model with one
GCN layers (K = 1) performs the best, outper-
forming the LSTM version by 1.9% and 0.6% for
Chinese and English, respectively. The reasons
why the improvements on Chinese are much larger
are not entirely clear (e.g., both languages are rela-
tive fixed word order ones, and the syntactic parses
for Chinese are considerably less accurate), this
may be attributed to a higher proportion of long-
distance dependencies between predicates and ar-
guments in Chinese (see Section 3.3). Edge-wise
gating (Section 3.2) also appears important: re-
moving gates leads to a drop of 0.3% F1 for En-
glish and 0.6% F1 for Chinese.

Stacking two GCN layers does not give any ben-
efit. When BiLSTM layers are dropped altogether,
stacking two layers (K = 2) of GCNs greatly im-
proves the performance, resulting in a 3.8% jump
in F1 for English and a 3.0% jump in F1 for Chi-

System P R F1

Zhao et al. (2009) (global) 80.4 75.2 77.7
Björkelund et al. (2009) (global) 82.4 75.1 78.6
Roth and Lapata (2016) (global) 83.2 75.9 79.4
Ours (local) 84.6 80.4 82.5

Table 4: Results on the Chinese test set.

nese. Adding a 3rd layer of GCN (K = 3) further
improves the performance.7 This suggests that ex-
tra GCN layers are effective but largely redundant
with respect to what LSTMs already capture.

In Figure 4, we show the F1 scores results on
the English development set as a function of the
distance, in terms of tokens, between a candidate
argument and its predicate. As expected, GCNs
appear to be more beneficial for long distance de-
pendencies, as shorter ones are already accurately
captured by the LSTM encoder.

We looked closer in contribution of specific de-
pendency relations for Chinese. In order to assess
this without retraining the model multiple times,
we drop all dependencies of a given type at test
time (one type at a time, only for types appear-
ing over 300 times in the development set) and ob-
serve changes in performance. In Figure 5, we see
that the most informative dependency is COMP
(complement). Relative clauses in Chinese are
very frequent and typically marked with particle
Ñ (de). The relative clause will syntactically de-
pend on Ñ as COMP, so COMP encodes impor-
tant information about predicate-argument struc-
ture. These are often long-distance dependencies
and may not be accurately captured by LSTMs.
Although TMP (temporal) dependencies are not as
frequent (⇠2% of all dependencies), they are also
important: temporal information is mirrored in se-
mantic roles.

In order to compare to previous work, in Ta-
ble 3 we report test results on the English in-
domain (WSJ) evaluation data. Our model is lo-
cal, as all the argument detection and labeling de-
cisions are conditionally independent: their inter-
action is captured solely by the LSTM+GCN en-
coder. This makes our model fast and simple,
though, as shown in previous work, global mod-
eling of the structured output is beneficial.8 We
leave this extension for future work. Interestingly,

7Note that GCN layers are computationally cheaper than
LSTM ones, even in our non-optimized implementation.

8As seen in Table 3, labelers of FitzGerald et al. (2015)
and Roth and Lapata (2016) gained 0.6-1.0%.
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System P R F1

Lei et al. (2015) (local) - - 75.6
FitzGerald et al. (2015) (local) - - 75.2
Roth and Lapata (2016) (local) 76.9 73.8 75.3
Marcheggiani et al. (2017) (local) 79.4 76.2 77.7
Ours (local) 78.5 75.9 77.2

Björkelund et al. (2010) (global) 77.9 73.6 75.7
FitzGerald et al. (2015) (global) - - 75.2
Foland and Martin (2015) (global) - - 75.9
Roth and Lapata (2016) (global) 78.6 73.8 76.1

FitzGerald et al. (2015) (ensemble) - - 75.5
Roth and Lapata (2016) (ensemble) 79.7 73.6 76.5
Ours (ensemble 3x) 80.8 77.1 78.9

Table 5: Results on the out-of-domain test set.

we outperform even the best global model and
the best ensemble of global models, without using
global modeling or ensembles. When we create an
ensemble of 3 models with the product-of-expert
combination rule, we improve by 1.2% over the
best previous result, achieving 89.1% F1.9

For Chinese (Table 4), our best model outper-
forms the state-of-the-art model of Roth and Lap-
ata (2016) by even larger margin of 3.1%.

For English, in the CoNLL shared task, systems
are also evaluated on the out-of-domain dataset.
Statistical models are typically less accurate when
they are applied to out-of-domain data. Con-
sequently, the predicted syntax for the out-of-
domain test set is of lower quality, which neg-
atively affects the quality of GCN embeddings.
However, our model works surprisingly well on
out-of-domain data (Table 5), substantially out-
performing all the previous syntax-aware mod-
els. This suggests that our model is fairly robust
to mistakes in syntax. As expected though, our
model does not outperform the syntax-agnostic
model of Marcheggiani et al. (2017).

6 Related Work

Perhaps the earliest methods modeling syntax-
semantics interface with RNNs are due to (Hen-
derson et al., 2008; Titov et al., 2009; Gesmundo
et al., 2009), they used shift-reduce parsers for
joint SRL and syntactic parsing, and relied on
RNNs to model statistical dependencies across
syntactic and semantic parsing actions. A more

9To compare to previous work, we report combined scores
which also include predicate disambiguation. As we use dis-
ambiguators from previous work (see Section 5.1), actual
gains in argument identification and labeling are even larger.

modern (e.g., based on LSTMs) and effective rein-
carnation of this line of research has been pro-
posed in Swayamdipta et al. (2016). Other re-
cent work which considered incorporation of syn-
tactic information in neural SRL models include:
FitzGerald et al. (2015) who use standard syntac-
tic features within an MLP calculating potentials
of a CRF model; Roth and Lapata (2016) who en-
riched standard features for SRL with LSTM rep-
resentations of syntactic paths between arguments
and predicates; Lei et al. (2015) who relied on
low-rank tensor factorizations for modeling syn-
tax. Also Foland and Martin (2015) used (non-
graph) convolutional networks and provided syn-
tactic features as input. A very different line of
research, but with similar goals to ours (i.e. inte-
grating syntax with minimal feature engineering),
used tree kernels (Moschitti et al., 2008).

Beyond SRL, there have been many propos-
als on how to incorporate syntactic information
in RNN models, for example, in the context of
neural machine translation (Eriguchi et al., 2017;
Sennrich and Haddow, 2016). One of the most
popular and attractive approaches is to use tree-
structured recursive neural networks (Socher et al.,
2013; Le and Zuidema, 2014; Dyer et al., 2015),
including stacking them on top of a sequential
BiLSTM (Miwa and Bansal, 2016). An ap-
proach of Mou et al. (2015) to sentiment analysis
and question classification, introduced even before
GCNs became popular in the machine learning
community, is related to graph convolution. How-
ever, it is inherently single-layer and tree-specific,
uses bottom-up computations, does not share pa-
rameters across syntactic functions and does not
use gates. Gates have been previously used in
GCNs (Li et al., 2016) but between GCN layers
rather than for individual edges.

Previous approaches to integrating syntactic in-
formation in neural models are mainly designed
to induce representations of sentences or syntac-
tic constituents. In contrast, the approach we pre-
sented incorporates syntactic information at word
level. This may be attractive from the engineering
perspective, as it can be used, as we have shown,
instead or along with RNN models.

7 Conclusions and Future Work

We demonstrated how GCNs can be used to in-
corporate syntactic information in neural models
and specifically to construct a syntax-aware SRL
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model, resulting in state-of-the-art results for Chi-
nese and English. There are relatively straightfor-
ward steps which can further improve the SRL re-
sults. For example, we relied on labeling argu-
ments independently, whereas using a joint model
is likely to significantly improve the performance.
Also, in this paper we consider the dependency
version of the SRL task, however the model can
be generalized to the span-based version of the
task (i.e. labeling argument spans with roles rather
that syntactic heads of arguments) in a relatively
straightforward fashion.

More generally, given simplicity of GCNs and
their applicability to general graph structures (not
necessarily trees), we believe that there are many
NLP tasks where GCNs can be used to incorporate
linguistic structures (e.g., syntactic and semantic
representations of sentences and discourse parses
or co-reference graphs for documents).
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Cernocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of INTERSPEECH.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of ACL.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role label-
ing. Computational Linguistics, 34(2):193–224.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. In Proceedings of
EMNLP.
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